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Abstract: Cancer is a widespread and incurable disease caused by genetic mutations, leading to
uncontrolled cell proliferation and metastasis. Connexins (Cx) are transmembrane proteins that
facilitate intercellular communication via hemichannels and gap junction channels. Among them,
Cx46 is found mostly in the eye lens. However, in pathological conditions, Cx46 has been observed in
various types of cancers, such as glioblastoma, melanoma, and breast cancer. It has been demonstrated
that elevated Cx46 levels in breast cancer contribute to cellular resistance to hypoxia, and it is an
enhancer of cancer aggressiveness supporting a pro-tumoral role. Accordingly, Cx46 is associated
with an increase in cancer stem cell phenotype. These cells display radio- and chemoresistance, high
proliferative abilities, self-renewal, and differentiation capacities. This review aims to consolidate the
knowledge of the relationship between Cx46, its role in forming hemichannels and gap junctions,
and its connection with cancer and cancer stem cells.

Keywords: Connexin46; GJA3; cancer stem cells; breast cancer; gap junction channels

1. Introduction

Cancer is a devastating non-communicable disease that claims millions of lives world-
wide each year [1]. Despite significant clinical and scientific efforts, a cure for cancer
remains elusive. One key factor contributing to this challenge is the development of resis-
tance by some cancer cells to conventional treatments such as chemotherapy, radiotherapy,
and immunotherapy [2–5]. Normally, cells in our body divide to repair and maintain
healthy tissues, but in cancer, this process becomes disrupted, leading to uncontrolled cell
division and the formation of solid tumors in most cases. As these tumors grow, certain
cancer cells detach and spread to distant parts of the body through the bloodstream or
lymphatic system, a complex process known as metastasis [6]. Although there are many
types of cancer, they all share common features such as cell dedifferentiation, significant
changes in cell metabolism, loss of contact with neighboring cells, and the presence of
cancer stem cells (CSCs) [7,8]. Although CSCs make up a small fraction of cells within
a tumor, they are critical to cancer progression, recurrence, metastasis, and resistance to
treatment [9,10]. Similar to other types of stem cells, CSCs possess the ability to self-renew
and differentiate, which are key characteristics known as stemness in cancer cells [11].
Additionally, CSCs exhibit a high level of drug resistance, making them particularly chal-
lenging to eliminate [12]. Hence, a proposed model for chemoresistance and cancer relapse
posits that, while conventional chemotherapy induces the death of cancer cells, cancer stem
cells (CSCs) manage to survive. Over time, these CSCs repopulate the tumor with both
more CSCs and new cancer cells. Consequently, this leads to the development of resistance
to chemotherapy within the entire tumor [13]. On the other hand, Connexins (Cxs) are
transmembrane proteins involved in the progression of cancer. Some of these proteins
inhibit cancer cell aggressiveness, while others exacerbate it. Despite extensive research, the
precise role of these proteins in cancer biology remains incompletely understood. However,
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in the past decade, certain studies have begun to shed light on the potential role of a specific
type of Cx, namely Cx46, as an enhancer of CSC characteristics. In this review, our primary
objective is to explore the relationship between the presence of Cx46 and the aggressiveness
of cancer, with a particular focus on how it contributes to the gain of function in CSCs.
We also propose potential molecular mechanisms that may underlie this phenomenon.
Additionally, we address some of the controversies that have arisen between basic research
findings and clinical observations.

2. Connexins General Characteristics

Connexins (Cxs) are a family of proteins that share a common plasma membrane
structure, characterized by four transmembrane domains, two extracellular loops, one intra-
cellular loop, and both the C- and N-termini located on the cytoplasmic side [14] (Figure 1).
In humans, 21 isoforms of Cxs have been identified [15], and these isoforms are named
based on their predicted molecular weight (e.g., Cx46 is predicted to have a molecular
weight of ~46 kDa). While Cx isoforms display significant homology, their C-terminus is
the most variable region in terms of length and amino acid sequence. Accordingly, the
C-terminus of each Cx type contains diverse regulatory sites, such as consensus phos-
phorylation sites [16,17], pH [18], protein–protein interaction sites [19,20], and cleavage
sites [21,22], among others. With the exception of Cx23 [23], almost all Cxs have six con-
served extracellular cysteines, which are thought to form intramolecular disulfide bridges,
crucial for hemichannel docking and the formation of gap junction channels (GJCs) [24].
However, the role of these extracellular cysteines in hemichannel function seems to be more
complex, thus Cx43 hemichannels formed by a protein without extracellular cysteines re-
main functional [25]; however, substitution of a single cysteine for alanine in Cx46 results in
hemichannels with highly reduced permeability to DAPI [26]. Moreover, these extracellular
cysteines have been proposed as redox sensors in the Cx46 hemichannel [27]. In mammals,
almost all cell types express at least one type of Cx, although the level of expression varies
among different Cx types. Among these, Cx43 is the most widely expressed [28–31]. On
the other hand, Cx46 is predominantly limited to the eye lens [32,33]. Interestingly, despite
the differences in regulation and expression observed among Cxs, all of them exert their
physiological and pathological functions via three distinct mechanisms: hemichannel, GJCs,
and engagement in protein–protein interactions. In the next sections, we will discuss each
of these mechanisms of action with some degree of detail.
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Figure 1. When two hemichannels from different cells come into contact, they form a gap junction
channel, facilitating the flow of molecules and ions between these cells. Each hemichannel is com-
posed of six connexins, each consisting of four transmembrane domains and three loops. One loop is
intracellular (IL), while the other two are extracellular (EL1–EL2). D1–D4 denote transmembrane
segments of a Cxs. Additionally, both the NH2 and COOH terminals face the cytoplasm. Furthermore,
each hemichannel allows the bidirectional exchange (red arrows) of ions and molecules between the
intracellular and extracellular environments.
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Hemichannels play a crucial role in cell-to-cell communication and are composed of six
Cx monomers. It depends on the type of Cx, whether it forms in the endoplasmic reticulum,
Golgi apparatus, or post-Golgi vesicles, and is subsequently transported to the plasma
membrane [34,35]. The presence of undocked hemichannels on the plasma membrane
has been demonstrated using various techniques such as Cryo-EM, biochemical assays,
electrophysiological measurements, freeze-fracture, and functional assays including dye
uptake and ATP release [36–50]. These hemichannels act as channels that are permeable
not only to ions but also to molecules such as ATP [47], glutamate [48], glucose [41], and
D-serine [50], among others (Figure 1). This property is based on the fact that hemichannels
possess relatively large por456+es. For instance, the pore of Cx26 has an approximate
diameter of 14 Å [51]. However, their selectivity appears to be complex and depends on
molecular characteristics such as size, charge, and shape [52]. Currently, the understand-
ing of the physiological roles of hemichannels is expanding each year. Thus, they have
been implicated in synaptic regulation [53], memory consolidation [54], and the release
of neuroactive molecules [42,55]. Furthermore, they have been found to be involved in
osmotic regulation [56], light processing in the retina [57], CO2 sensing [58], and PGE2
release [59]. Many of these functions are enabled by the release of signaling molecules,
as previously discussed. However, it is important to note that the controlled opening of
hemichannels is crucial for these physiological processes, as uncontrolled opening can
lead to cell damage due to excessive entry of Na+ and Ca2+ [60–62] or even cell lysis [63].
Despite the significance of controlled hemichannel opening, the precise mechanisms that
regulate them under such conditions remain not yet fully understood. One possible regu-
latory mechanism involves transient elevations of intracellular Ca2+ concentration [64,65].
Further research is needed to fully understand the hemichannel control mechanisms in the
physiological contexts.

GJCs form when two hemichannels dock at the junctional membrane between adjacent
cells, where each hemichannel is contributed by different cells. As hemichannels, GJCs
enable the passive exchange of ions and small molecules, facilitating communication
between the cytoplasm of neighboring cells [14]. Several molecules have demonstrated
some degree of permeability via GJCs, including second messengers (i.e., cAMP and
IP3), metabolites (i.e., glucose), and even small peptides [66–68] (Figure 1). However,
the solute selectivity of GJCs is determined by specific Cx isoforms [69,70]. For instance,
Cx32 GJCs have been shown to be approximately 100 times less permeable to ATP than
Cx43 GJCs, but they exhibit more effective transferring of adenosine compared to Cx43
GJCs [71]. As hemichannels, the variation in GJC permeability between Cx isoforms is likely
attributed to the size, shape, and charge of the ions or molecules passing through these
channels [72]. Under physiological conditions, GJCs play a crucial role in coordinating
metabolic and signaling responses among groups of cells. For instance, it is widely accepted
that Cx43 GJCs coordinate the flow of action potentials between cardiomyocytes, ensuring
proper heart rhythm and function [73]. However, when changes in the permeability of
Cx43 GJCs may occur due to a health problem such as a heart attack, the conduction
of action potentials across the GJCs is hindered, leading to slowed conduction and the
potential emergence of arrhythmias [74,75]. It is important to note that Cx43-mediated
arrhythmias are a complex phenomenon that extends beyond alterations in ion conduction
via GJCs. It has been also demonstrated that Cx43 can form hemichannels that can open
to the plasma membrane, allowing ion flux into the extracellular space and affecting
cardiomyocyte excitability [76]. Consequently, Cx43 hemichannels have been proposed as
potential targets for the arrhythmia treatment [74,77]. Another example is Cx46 and Cx50
GJC in the eye lens, where they play a crucial role in the metabolic maintenance of lens
cells [78]. The lens, a transparent structure without blood supply, relies on an intercellular
circuit facilitated by Cx46 and Cx50 GJCs to ensure the exchange of nutrients, oxygen, and
metabolic waste [79–81]. Specifically, Cx46 GJCs are instrumental in enabling the transport
of reduced glutathione (GSH) from cortical fiber cells to nuclear cells via diffusion [82].
Consequently, any mutations or oxidative stress affecting Cx46 and Cx50 can lead to
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alterations in GJCs’ properties and may contribute to cataract formation [83,84]. These
two cases exemplify the role of GJCs in physiological conditions, which is the exchange
of metabolites and signaling molecules for the correct cell functioning and ultimately the
tissue, as well as the organ. Alterations in this communication are usually associated with
diseases or, in extreme cases, cell death.

In addition to the canonical functions of Cxs in forming hemichannels and GJCs, it is
crucial to acknowledge that Cxs can also exert cellular effects in a channel-independent
manner. Cxs have the ability to physically interact with several proteins. Based on the
available data, nowadays it is possible to suggest two types of protein–protein interaction
mechanisms involving Cxs. The first mechanism involves interactions that encompass the
entire Cx protein, allowing it to mainly interact with proteins located near or within the
plasma membrane. The second mechanism involves protein–protein interactions between
the Cx-free C-terminal and various cytoplasmic proteins. This type of interaction presents
an exciting topic of research and opens up new possibilities for understanding additional
cellular functions mediated by Cxs.

As illustrative examples of the first proposed mechanism, Cx43 has been found to
interact with β-catenin at the plasma membrane of cardiomyocytes [85]. This interaction
involves the Cx43 C-terminal and is inhibited by a Src-mediated Cx43 phosphorylation at
Y265 and Y313 [86]. Interestingly, this interaction plays an important role in sequestering
β-catenin at the plasma membrane, resulting in a reduction in Wnt/β-catenin signaling
pathway strength [85]. Another significant instance involves the interaction between Cx43
and ZO-1, which is mediated by the Cx43 C-terminal and the second PDZ domain of
ZO-1 [87,88]. Notably, this protein–protein interaction appears to be regulated during
the cell cycle in a rat kidney cell line (NRK) [88] and plays a pivotal role in controlling
Cx43 GJC formation [89]. Furthermore, building upon this knowledge, a mimetic peptide
called aCT-1 has been developed, which mimics the specific segment responsible for the
interaction between Cx43 and ZO-1. This peptide has shown promising applications in skin
wound healing [31,90], where its potential to modulate cellular interactions and signaling
pathways holds great therapeutic value. On the other hand, Cxs have been detected in the
mitochondria of various cell types, such as cardiomyocytes [91], mice vascular endothelial
cells [92], and rat retinal endothelial cells [93]. Notably, mass spectrometry analyses of mice
cardiomyocyte mitochondria have uncovered intriguing interactions between Cx43 and
apoptosis-inducing factor (AIF) as well as the β-subunit of the electron transfer protein
(ETFB) [94]. These findings strongly suggest that Cx43-mediated protein–protein interac-
tions are not confined to specific cell membranes but can be observed in different cellular
contexts. The presence of Cxs within mitochondria adds another layer of complexity to
their functional roles beyond their well-established involvement in cell-to-cell communi-
cation. Understanding the significance of these protein interactions in the mitochondrial
compartment could offer novel insights into mitochondrial function, cellular signaling, and
cell fate regulation.

Regarding the second proposed mechanism, compelling evidence has demonstrated
that the Cx C-terminal region can be transcribed independently from the rest of the
Cxs [95,96], facilitated by an mRNA internal ribosome entry site (IRES) [97]. This unique
C-terminal peptide demonstrates the ability to establish its own protein interactions [98,99].
In this context, the free C-terminal region of Cx43 has been shown to increase the migratory
capacity of glioma cells via its interaction with the actin cytoskeleton [100]. Conversely,
expression of the Cx43 C-terminal in U2OS (an osteosarcoma cell line) and HeLa cells were
found to decrease their rate of cell division [101,102], potentially via its interaction with
S-phase kinase-associated protein 2 (Skp2) [101]. Similarly, a peptide derived from the
Cx43 C-terminal (TAT-Cx43 266-283) has been demonstrated to reduce the cancer stem cell
(CSC) phenotype by inhibiting c-Src in patient-derived glioma models [103,104] and in vivo
mouse models [104]. Moreover, a peptide encompassing the Cx43 C-terminal (285–363)
interacts with Akt within its pleckstrin homology (PH) domain, leading to the inhibition
of Akt’s function [105]. Additionally, the Cx C-terminal also plays a role in regulating the
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expression of various proteins [106], including N-cadherin [107] and p53 [108], as well as
certain miRNAs [108]. The suggested mechanism by which the Cx C-terminal region exerts
its transcriptional regulation is via its localization within the cell nucleus [109,110], where
it can modulate the activity of nuclear proteins [111,112]. In the case of Cx43 C-terminal, it
is proposed to act directly as a transcription factor [107].

These findings highlight the multifaceted nature of the Cx C-terminal region, ex-
tending beyond its traditional role in Cx-mediated communication. Understanding the
diverse protein interactions and transcriptional regulatory functions of the Cx C-terminal
region provides valuable insights into the broader cellular mechanisms orchestrated by
Cxs. Further investigations in this area hold significant potential for uncovering novel
therapeutic targets and strategies for various diseases and conditions associated with Con-
nexin dysfunction. For more details on Cx-based protein–protein interaction, see previous
reviews [20,98,112].

3. Cx46 in Cancer

In the 1950s, the idea that Connexins (Cxs) might influence the cell division rate was
introduced [113]. Early observations indicated that the downregulation of Cx32 and Cx43,
along with the loss of GJC-mediated communication, correlated with neoplastic activity in
the liver and brain [114–116]. However, as research has progressed, it has become evident
that the role of Cxs in cancer is far more complex, with some Cxs exhibiting pro-tumorigenic
effects while others demonstrate anti-tumorigenic properties [117,118]. Despite numerous
studies that have associated the expression of specific Cxs with changes in cancer cell
characteristics, such as cell division rate, cell migration, and the CSC phenotype [118,119],
only a limited number of these investigations have successfully identified the molecular
mechanisms underlying the involvement of Cxs in cancer. Understanding the precise
molecular mechanisms through which Cxs impact tumorigenesis may offer crucial insights
into the development of targeted therapeutic approaches and potential biomarkers for
various types of cancer.

Similar to many other Cxs, Cx46 has the ability to form both functional GJCs and
hemichannels. In the case of Cx46-mediated GJCs, they exhibit a conductance ranging
from 148 to 192 pS when studied in N2A cells, and they display sub-conductances in the
range of 10 to 60 pS [120,121]. In contrast, when considering hemichannels formed by
Cx46, recordings indicate a conductance of approximately 250–300 pS [122–124] with a
sub-conductance of about 40 pS [122]. Regarding their ionic permeabilities, Cx46 hemichan-
nels show a preference for cations over anions [124]. In terms of the permeability to larger
molecules, Cx46 expressed in Xenopus oocytes was shown to allow the passage of car-
boxyfluorescein, Lucifer Yellow, and Ethidium [125], whereas Cx46 expressed in HeLa
cells has demonstrated permeability to DAPI [126]. Additionally, Cx46-based GJCs appear
to facilitate the flux of the antioxidant molecule GSH (glutathione) between lens cells,
indicating a role in the transport of this vital cellular component [82]. In summary, it is
evident that Cx46-based channels share several characteristics with channels formed by
other connexins, highlighting the versatility and commonalities in Cx channel behavior
across various contexts.

For many years, the attention on Cx46 was only focused on its role in physiological and
pathological phenomena in the eye lens [33,79,84]. However, since the 2000s, the study of
its possible role in cancer progression began. These studies involved animal models of lung
and bone cancer, which revealed a significant decrease in both Cx46 mRNA and protein
levels [127,128]. These findings strongly suggested that Cx46 may have a potential anti-
cancer role. However, in 2010, a groundbreaking article was published, associating Cx46
with human cancer [129]. This study demonstrated a significant increase in Cx46 levels, as
measured by Western blot and immunohistochemistry in samples of human infiltrating
breast carcinoma [129]. Furthermore, in a mouse xenograft model, the injection of siRNA
against Cx46 inhibited the growth of the MCF-7 human breast cancer cell line [129] and
the Y79 human retinoblastoma cell line [130]. Interestingly, Cx46 is expressed in the lens, a
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hypoxic tissue characterized by its limited blood irrigation. This shared hypoxic condition
between the lens and certain solid tumors, such as breast cancer, led to the initial hypothesis
that Cx46 might function as a protective factor against hypoxia. To test this hypothesis,
Banerjee et al. overexpressed Cx43GFP and Cx46GFP in N2A cells (a mouse neuroblastoma
cell line that does not express any type of Cx) and subjected these cells to 1% oxygen
(hypoxia). After 24 h in this condition, approximately 90% of the N2A wild-type and N2A
cells transfected with Cx43GFP died, while the percentage was only 50% in cells transfected
with Cx46GFP [129].

As previously mentioned, Cx46 has been implicated in promoting tumor growth in
xenograft models [129,130]. Interestingly, only CSCs have the unique ability to initiate
tumor growth in xenograft models [131,132], which suggests a potential link between Cx46
and the CSC phenotype. Supporting this idea, studies have exclusively identified Cx46
expression in CSCs of human glioblastoma, where it plays a crucial role in self-renewal [133].
Given the limited understanding of the underlying mechanism, our laboratory has been
investigating whether Cx46 enhances the CSC phenotype in other types of cancer cells. Our
research findings indicate that MCF-7 cells expressing Cx46GFP display elevated levels of
Sox2 and Oct4 mRNA, along with the formation of larger tumorspheres and clonogenic
colonies when compared to Cx46-negative MCF-7 cells [134]. These observations strongly
suggest that Cx46 acts as a pro-tumorigenic factor, although the precise mechanism remains
elusive. However, Acuña et al. recently shed some light on this matter by demonstrating
that MCF-7 cells expressing Cx46 release more exosomes containing Cx46 than Cx46-
negative MCF-7 cells [135]. Of greater significance, the Cx46 present on the exosomal
membrane enhances the transfer of critical “information” between the exosome and the
recipient cell. These findings suggest that Cx46-mediated exosomal communication may
play a role in promoting the CSC phenotype and tumorigenic behavior. Additional research
is needed to fully understand the molecular mechanisms by which Cx46 affects CSC
function and contributes to tumor progression.

4. Unraveling the Mechanisms of Action of Cx46 in Cancer Cells
4.1. The Possible Role for Cx46-GJCs

In general, it is well accepted that Cxs do not form functional GJCs in cancer cells [136]
and that their re-expression and formation of GJCs can reduce cancer cell proliferation and
tumor formation in vivo [137–139]. The most plausible mechanism for this anti-tumoral
effect is allowing the diffusion of second messengers through them [140–142]. For exam-
ple, the cAMP flow through Cx26- and Cx43-GJCs is associated with a decrease in cell
division [143,144]. Similarly, Cx43 expression and GJC formation in lung cancer cells inhibit
the CSC phenotype [145]. However, GJCs are not always associated with anti-tumoral
effects. Thus, Cx43-GJCs expressed in glioma cells increase their invasiveness via the
exchange of miRNAs between glioma cells and astrocytes [146]. In the case of Cx46, its
expression was strongly associated with CSC self-renewal, and propagation in human
glioblastoma [133]. Interestingly, a molecule that inhibits Cx46-GJCs (clofazimine) reduced
the CSC phenotype [147], suggesting an important role of Cx46-GJCs in the maintenance of
CSCs (Figure 2).
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Figure 2. Role of Cx-GJCs in regulating cancer cell aggressiveness. (A) illustrates the relation-
ship between the flow of cyclic adenosine monophosphate (cAMP) via connexin 26 (Cx26) and
connexin 43 (Cx43) gap junction channels (GJCs) and its impact on cell division. (B). shows that the
formation of Cx43 GJCs in lung cancer cells has an inhibitory effect on the Cancer Stem Cell (CSC)
phenotype. (C) However, in glioblastoma, Cx43 GJCs are involved in the increase in glioma cells’
invasiveness capacity by facilitating the exchange of microRNAs (miRNAs) between glioma cells
and astrocytes. Additionally, Cx46 GJC seems to enhance CSC phenotype, however, the mechanism
remains unknown.

4.2. The Possible Role for Cx46 Hemichannels

The role of hemichannels in cancer has been poorly investigated. As previously
mentioned, Cx hemichannels enable the exchange of signaling molecules between the
cytoplasm and the extracellular environment [38,148,149]. For example, Cx43 hemichannels
regulate H9c2 and 3T3 cell proliferation via ATP [150] and NAD+ [151] release. Additionally,
it has been proposed that Cx43 hemichannels can activate Akt in NRK-E52 cells via the
release of ATP [152]. Similarly, only functional Cx37 hemichannels have been found to
suppress cell proliferation in rat insulinoma [153]. Regarding Cx46 hemichannels, their
permeability to biological molecules like ATP has been suggested [154] but has not yet been
proven. Because Cx46 hemichannels are permeable to synthetic molecules with molecular
weight and size comparable to those of the biological molecules listed above [126,155,156],
there is no reason to expect that Cx46 hemichannels are not permeable to them. Therefore,
Cx46 hemichannels could increase the CSC phenotype via the exchange of biological
molecules between the cytoplasm and the extracellular milieu (Figure 3).
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Figure 3. Role of Cx-Hemichannels in cell division regulation via the release of signaling molecule
Release. Cx43 hemichannels are regulators of cell division by allowing the controlled release of
signaling molecules, such as ATP and NAD+. These molecules, upon reaching the extracellular space,
activate specific receptors and initiate signaling cascades, such as those controlled by Akt, which in
turn modulates cell proliferation and impacts tissue homeostasis and development.

4.3. The Possible Role of Cx46 Protein–Protein Interactions

As previously mentioned, Cxs can have intracellular effects that are independent of
their role as channels, mainly via interactions with other proteins [20,112,157–167], and their
C-terminus mediates the vast majority of these Cx–protein interactions [19,157,158,162].
Regarding CSCs, the Cx26 C-terminal interacts with Nanog, promoting CSC renewal
in triple-negative breast cancer cells [164]. Likewise, the accumulation of Cx32 in the
cytoplasm has been shown to enhance CSC renewal in HuH7 hepatoma cells [163], likely via
protein–protein interactions. On the other hand, Cx26, which has been associated with a pro-
tumorigenic role [118] increases PI3K/Akt activity in NSCLC cells in a channel-independent
way [164]. Conversely, Cx43, which, in general, is considered anti-tumorigenic [145,167]
via the interaction of its C-terminal with Akt [106], induces its inhibition [167]. Despite that,
Cx46 can interact with several proteins [168–172], but the potential interaction between
Cx46 and cancer-relevant proteins such as PI3K/Akt has not been investigated.

5. Cx46 in Human Cancer Samples

Unfortunately, only a few studies have investigated the expression of Cx46 in human
breast cancer and its association with patient survival. Remarkably, utilizing fluorescent
microscopy revealed that Cx46 expression in human breast cancer samples is significantly
associated with improved overall survival (OS) for patients [173]. Nevertheless, other
studies have found no significant correlation between Cx46 mRNA levels and patient
OS [174]. Such contradictions between cell culture studies, where the presence of Cx46 is
linked to a more aggressive phenotype of breast cancer cells and the results obtained from
human samples warrant further investigation. A possible explanation for these conflicting
results is that there might not be a direct correlation between Cx46 mRNA and protein
levels. This possibility is supported by the fact that at least in myeloid leukemia cells, there
is no correlation between the mRNA and protein levels for Cx26, Cx32, Cx37, Cx43, and
Cx45 [175]. Additionally, in HUVEC cells exposed to laminar flow, there is an increase
in Cx40 mRNA levels with no significant changes in protein levels [176]. Additionally,
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from our own laboratory experience, we recognize the crucial importance of selecting an
appropriate and validated antibody to ensure reliable and representative results when
Western blot analyses and immunofluorescence studies are performed. Therefore, in-
depth and comprehensive experiments are indispensable to gain a clear understanding
of the significance of Cx46 in breast cancer. By conducting further research, including
larger clinical studies and meticulous examination of Cx46 expression at both the mRNA
and protein levels, we can hope to unravel the complex role of Cx46 in breast cancer
more accurately.

6. Discussion

In the last years, the role of Cx46 in cancer has risen, mostly because results in animal
models and human cell lines point out that this protein could be pro-tumorigenic and,
moreover, it can be a key factor for the enhancement of EMT and CSC in cancer cells.
However, studies correlating human samples of patients with breast cancer suggest that the
presence of Cx46 is linked to better overall survival. Therefore, further studies are needed
to determine whether Cx46 protein levels are associated with a favorable or unfavorable
patient prognosis. Studies correlating the levels of Cx46 mRNA with protein levels could
shed some light and obtain better antibodies to help to determine the real Cx46 protein
levels in human samples.
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