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Abstract: In this paper, we present an update to the ellipsoid profile algorithm (EP), a simple
technique for the measurement of the globularity of protein structures without the calculation of
molecular surfaces. The globularity property is understood in this context as the ability of the
molecule to fill a minimum volume enclosing ellipsoid (MVEE) that approximates its assumed
globular shape. The more of the interior of this ellipsoid is occupied by the atoms of the protein,
the better are its globularity metrics. These metrics are derived from the comparison of the volume
of the voxelized representation of the atoms and the volume of all voxels that can fit inside that
ellipsoid (a uniform unit Å cube lattice). The so-called ellipsoid profile shows how the globularity
changes with the distance from the center. Two of its values, the so-called ellipsoid indexes, are used
to classify the structure as globular, semi-globular or non-globular. Here, we enhance the workflow
of the EP algorithm via an improved outlier detection subroutine based on principal component
analysis. It is capable of robust distinguishing between the dense parts of the molecules and, for
example, disordered chain fragments fully exposed to the solvent. The PCA-based method replaces
the current approach based on kernel density estimation. The improved EP algorithm was tested
on 2124 representatives of domain superfamilies from SCOP 2.08. The second part of this work is
dedicated to the survey of globularity of 3594 representatives of biological assemblies from molecules
currently deposited in the PDB and analyzed by the 3DComplex database (monomers and complexes
up to 60 chains).

Keywords: bioinformatics; biological assembly; bounding ellipsoid; globularity; kernel density;
nearest neighbor search; protein complex; protein domain; principal component analysis

1. Introduction

Molecular simulations are crucial in silico tools for the investigation of the structure
and function of biological systems. Protein molecules perform critical roles in those systems.
Problems with their activity, for instance caused by misfolding or abnormal aggregation,
can lead to detrimental or fatal states of a person’s health [1]. These ongoing challenges
stimulate scientists to look for new drugs, but also for early detection and prediction
models. One of the biggest recent advances is AlphaFold [2,3], a robust and accurate
machine learning package for protein structure prediction. AlphaFold2 outperformed its
competition in 2020 during the 14th iteration of the CASP initiative [4].

Molecular mechanics (MM) is a computer simulation technique in which atoms of a
protein (or another molecule) are represented by rigid balls connected by springs, which
represent the bonds [1,5]. The state of the system can be then described through the
potential energy function of atomic coordinates. The commonly used MM force fields
invoke the potential energy equation as a sum of bonded and non-bonded terms. Each term
has its own functional form. The non-bonded potentials (e.g., electrostatic, van der Waals
and hydrogen bond interactions) are typically calculated on the basis of pairs of atoms
unless some form of coarse-grained approximation is employed [6,7]. These potentials
express that part of the total potential energy that is not already covered by the bonded
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terms (e.g., bond stretching, bending and torsional rotations). Together with a set of
parameters and other factors specific to the force field, they localize the current state of the
system—also known as its snapshot [5]—on the folding landscape [8]. This mapping acts
as a guide for the atoms of the molecule, allowing them to move toward the (still reachable)
conformations corresponding to the local energy minima. It is a method of optimization
that finds its use in structural refinement and relaxation, but also in the prediction of the
native tertiary (i.e., folding) and quaternary (i.e., docking) structure of proteins [9].

In molecular dynamics (MD), Newton’s equations of motion are integrated to allow
the static MM ball and spring models to fluctuate [1], producing a trajectory (i.e., a history
of changes of the atomic coordinates during the specified time period) that gives an insight
into the kinetics and thermodynamics of the simulated system [5].

One of the properties to consider during the computer modeling of proteins is
their relationship with the surrounding aqueous environment that affects them (and vice
versa) [10–13]. Hence, to accurately address the biological problems involving those
molecules, one must be capable to somehow represent the solvent in the simulation [14]. In
other words, a water model is needed. There are two types of such models: explicit and
implicit. Explicit solvation puts the protein in a box filled with discrete H2O molecules.
It provides the highest allowed accuracy at the expense of highest computation time (i.e.,
the computer can spend more time on the motion of water than on the motion of the
protein [14]). Conversely, in the implicit solvation the aqueous environment is defined as a
uniform, infinite, high-dielectric medium that surrounds the low-dielectric solute. Implicit
models can be orders of magnitude faster to compute (i.e., they have no H2O molecules to
track), but as stronger approximations, they come at the cost of a reduced accuracy with
respect to the explicit water representation [14]. Nevertheless, the advantages of implicit
solvation have brought many models [15]. Solvent effects are embedded in the popular
approaches via solvation free energy of the protein, in which the non-polar contribution
(i.e., the perturbation in the continuous structure of water) is a function of SASA, the
solvent-accessible surface area [1,14,15]. The practicality of this method comes from the
fact that it can be readily incorporated in the force field energy equations.

The solvation free energy of a realistic biomolecule is “( . . . ) some complex function
of molecular conformation ( . . . )” [14]. It can be understood as the need to look at the
protein–water relationship also from the perspective of the whole tertiary/quaternary
structure (or its relevant parts, e.g., domains) to obtain another view of the specificity of
the associated biological activities [16]. Fuzzy oil drop (FOD) [17–19], our in-house model
of the density of hydrophobicity, tries to fulfill this purpose. It differs from the SASA-based
models in its approximation of the shape of the proteins with an ellipsoid (also known as
the drop) that separates the solute from the implicit solvent. The size of this ellipsoid is
used to gauge the expected hydrophobicity of the residues via the 3D Gaussian function.
It is highest in the center and decrements toward zero near and beyond the surface. This
“theoretical” distribution of hydrophobicity (T) is put against its “observed” counterpart
(O), which is derived from the residue–residue hydrophobic interactions. The strength of
those interactions is modeled via Michael Levitt’s sigmoid function [20]. Comparison of
the T and O distributions can uncover residues responsible for hydrophobic core stability
or instability, for instance due to their involvement in protein–protein or protein–ligand
interactions [21]. On the other hand, the metrics of the FOD model do not translate to
atomistic energy terms and cannot be directly introduced into the common force fields.

This paper is focused on the characteristic feature of the FOD model—the ellipsoid.
Or, more precisely, the ellipsoidal approximation of the shape of proteins. The theory of
the FOD model assumes that its input structure is globular and has folded in accordance
with the hydrophobic effect—that its hydrophobic residues are in the core, isolated from
the solvent by a sheath of their polar counterparts. Proteins that do not conform to this
scheme, such as those with non-globular conformations or with too much exposition of
hydrophobicity on their surface, are pronounced by the FOD model as devoid of a stable
hydrophobic core. When measuring the magnitude of this accordance/discordance, it is
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useful to know if the input structure is actually globular. It is also possible that some of
its fragments may cause issues with the ellipsoidal representation, skewing its metrics of
hydrophobicity. Knowing this is particularly crucial during mass scale calculation when the
manual inspection of hundreds or thousands of proteins is impractical. However, because
the FOD model does not natively track the globularity property, a different tool is needed,
like another in-house algorithm—the ellipsoid profile [22].

Ellipsoid profile (EP) is a simple method for the quantitative measurement of the
globularity of proteins. The globularity property is understood in its context as the ability
of the input structure to occupy a minimum volume enclosing ellipsoid (MVEE) [23] fit
to it. The EP algorithm converts atoms of the protein into disjointed voxels (i.e., non-
intersecting 1 Å3 cubes) and compares them with all disjointed voxels that can fill that
MVEE (also known as the grid—a uniform 1 Å3 cube lattice). Each voxel is weighted by
its corresponding value of the ellipsoid equation to account for the uneven shape of the
molecular surface without actually calculating that surface (just like it is not calculated in the
FOD model). The structure can be then classified as globular, semi-globular or non-globular.
This workflow is readily applicable to any kind of protein and even non-protein input.

The baseline EP algorithm [22] is recalled in Section 2.3. The binding of the protein in
an MVEE and the calculation of the globularity metrics (ellipsoid indexes and profiles) is
preceded by an optional outlier detection subroutine. When enabled, it looks for residues
that protrude from the main body of the protein, for example in the form of disordered
chain fragments fully exposed to the solvent. Only the non-outlier residues (also known as
the guides) are then passed to the MVEE algorithm. The current method of their selection
is based on kernel density estimation (KDE) [24,25]. The detection subroutine additionally
forestalls some of the local features of the molecular surface of the protein (e.g., exposed
side chains) from negatively affecting the ellipsoid bounding, resulting in a tighter, more
befitting representation that is closer to what a human would use to describe the overall
globularity of the analyzed structure on the basis of its visual inspection.

We noticed, however, that the KDE-based approach can sometimes run into trouble
with the detection and proper isolation of outlier residues that gather in small clusters. We
have recently [26] introduced to the FOD algorithm an alternative method of bounding
the protein in the drop that proficiently handles the exposed, low-density regions of
the structure, making this process less sensitive to their presence. It utilizes principal
component analysis (PCA) [27] in tandem with outlier detection based on confidence
ellipsoid [28]. Since it works well for FOD, we decided to try it in the context of the analysis
of structural globularity too. A new, enhanced with PCA version of the EP algorithm is
described in Section 3.1 and tested on six example proteins in Section 3.2.

The baseline EP algorithm was previously [22] applied to the representatives of
2124 protein domain superfamilies from a modified ASTRAL compendium [29,30] of
the SCOP database [31,32] (Section 2.1). The performance of the modified EP algorithm
from Section 3.1 was tested on the same structural dataset using the original, KDE-based
output as a reference. The results are presented and discussed in Section 3.3.

The second part of this contribution is dedicated to the initial survey of the landscape
of the EP-based globularity of the protein biomolecules. These biomolecules were under-
stood here as the manually assigned (i.e., not automatically matched by software) biological
assemblies from structures currently deposited in the Protein Data Bank (PDB) [33,34]. Just
like domains are structurally independent parts of proteins with their own hydrophobic
cores [35] (although that is only one their defining concepts [36]), these assemblies corre-
spond to the functionally relevant forms of those proteins [37,38]. Thus, they are of special
scientific interest and constitute a well-founded input for the EP algorithm. Their analysis
complements the results for the ASTRAL domain representative subset.

The instructions for how to extract a non-redundant set of biomolecules from the PDB
in terms of the structure (i.e., the property that matters to the EP algorithm) is given in
the first part of Section 3.4. We based their selection on the data from the 3DComplex 6.0
database [39,40], domain fingerprints at the SCOP superfamily level and the quality of
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the model (i.e., resolution and the number of errors in the crystallographic experiment).
One can think of this collection as an analogue to the ASTRAL compendium only from the
perspective of the quaternary structure. Monomers and complexes up to 60 chains were
included in it, resulting in 3594 representatives of a total of 136,608 biological assemblies.
The analysis of their globularity is conducted in the second part of Section 3.4.

2. Materials and Methods
2.1. The Protein Database

A total of 5481 PDB files downloaded from the Protein Data Bank (PDB) [33,34] were
processed during this research. They were split into two groups of 1901 and 3577 structures,
respectively. The total number of inputs for the EP algorithm was 5718.

2.1.1. The 2124 Representatives of Domain Superfamilies

The group of 1901 PDB structures contained the representatives of 2124 SCOP domain
superfamilies used in the testing of the improved version of the EP algorithm. This collec-
tion was previously [22] compiled as a small modification of the domain superfamily repre-
sentative subset from the ASTRAL compendium [29,30] released along SCOP 2.08 [31,32]
(2.08 was the latest stable version of SCOP as of December 2022). The complete changelog
can be found in ref. [22]. In short, we omitted the 7 multi-chain genetic domains, replaced
43 structures marked as obsolete by the PDB and added 66 representatives of the coiled
coil domain superfamilies (i.e., the members of SCOP class h). No other PDB entry from
this collection was marked as obsolete since last year.

It should be mentioned here that, by accident, the genetic domain d1aik.1 [41] from
SCOP family h.3.2.1 was previously [22] included in the database as the representative of
the virus ectodomain superfamily. In hindsight, it should have been replaced with another
h.3.2.1 domain only with both chains annotated as one (n.b., each consisting of a single
helix), but because it had no negative impact on a global scale, it was kept to facilitate a
simple comparison with the former results (i.e., 1:1 in terms of PDB codes). These former
results can be found in the Supplementary Materials of ref. [22].

The average crystallographic resolution in this set was 1.75 Å (σ = 0.62 Å). A total of
159 structures were obtained via solution NMR. In their case, only the first conformer in
the ensemble was used in this study (it also applied to the proteins from Section 2.1.3).

2.1.2. The 3594 Representatives of Biological Assemblies

The group of 3577 PDB structures contained the 3594 manually assigned biological
assemblies used for the expansion of the EP-based survey of the globularity from do-
mains to entire proteins. These assemblies represent (or are believed to represent) the
functionally relevant forms of proteins that can be encountered in vivo. Monomers and
complexes up to 60 chains comprised this set. Redundancy was avoided through the
application of two criteria. The first criterion allowed only one biological assembly with
a given domain fingerprint at the SCOP superfamily level. These custom fingerprints
were compiled from SCOP 2.08 updated on the 21 September 2022. The second criterion
allowed only one representative of each quaternary structure (QS) family cluster in the
3DComplex 6.0 database [39] (6.0 was the latest stable version of 3DComplex as of De-
cember 2022). Assemblies with complex symmetry assigned by the PDB determined or
suspected by 3DComplex maintainers to be incorrect were discarded. Cluster information
was extracted from file NRX_0_5_topo_label_clusters.txt (i.e., the QS family clusters in the
bottom-up hierarchy) downloaded from the 3DComplex website [40].

The average crystallographic resolution in this set was 2 Å (σ = 0.56 Å). All structures
were obtained via X-ray diffraction since 3DComplex does not process NMR models.

2.1.3. The 6 Example Proteins

Lastly, some example proteins from refs. [22,26] made another appearance. They are
included in the modified domain superfamily representative subset (Section 2.1.1) and were
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again used to illustrate various combinations of the input and output of the EP algorithm,
primarily in Sections 3.1 and 3.2. Their basic information is given in Table 1 and their 3D
renders are shown in Supplemental File S1—Figures S1–S6, while their relevant features
are described below.

Table 1. The 6 proteins used to illustrate the various inputs and outputs of the EP algorithm.

PDB
Code Molecule Source Organism Chain

Length
SCOP

Domain(s)
Quaternary
Structure Resolution Ref.

1IS9 Endoglucanase A Clostridium thermocellum 363 aa! a.102.1.2 monomer 1.03 Å [41]

3BPD Uncharacterized
Protein Archaeoglobus fulgidus 100 aa! d.58.61.1 homo-7-mer 2.80 Å [42]

4B0H dUTPase YncF Bacillus subtilis 144 aa! b.85.4.0 homo-3-mer 1.18 Å [43]

1IIE HLA-DR Invariant
Chain Homo sapiens 75 aa a.109.1.1 homo-3-mer NMR (1/20) [44]

2KKW Alpha Synuclein Homo sapiens 140 aa h.7.1.1 monomer NMR (1/34) [45]

1DIV Ribosomal Protein L9 Bacillus stearothermophilus 149 aa d.99.1.1
d.100.1.1 homo-2-mer 2.60 Å [46]

Exclamation mark in the chain length column informs that the number of residues available in the PDB structure
is lower than the length of the sequence listed in the SEQRES records. Quaternary structure column presents the
stoichiometry of the biological assembly (all 4 complexes have cyclic symmetry). “1/n” in the resolution column refers
to the fact that only NMR conformer 1 out of the total of n conformers deposited in the PDB file was used in this study.

• Endoglucanase A (PDB code: 1IS9), is a round, relatively large monomer. Use of the
outlier residue detection methods should minimally affect its globularity metrics.

• Uncharacterized Protein (PDB code: 3BPD) is a toroidal homoheptamer. It can be
easily put inside a bounding ellipsoid but also has a large cavity in its middle. The
presence of this cavity should be decipherable from the globularity metrics.

• dUTPase YncF (PDB code: 4B0H) is a homotrimer with long, disordered C-terminal
regions at M119–K144. They protrude from the monomers, but in the complex they
wrap around the neighbor chains to secure the entire globular motif.

• HLA-DR Invariant Chain (PDB code: 1IIE) is another homotrimer with disordered
fragments of the chains (S181–K192 regions at the C-termini) stretching away from the
highly globular center of the mass of the molecule. This central “ball” is dense only in
the complex—the monomers have a relatively loose tertiary structure.

• Alpha Synuclein (PDB code: 2KKW) is the biologically active (micelle-bound) form
of Alpha Synuclein. It is a non-globular chain with a very loose tertiary structure. Its
disordered C-terminal region at G101–A140 freely bends out of the plane formed by
the two alpha helices that constitute the main body of the molecule.

• Ribosomal Protein L9 (PDB code: 1DIV) is the only multi-domain protein (M1–Q55
and R56–K149) in this group. Its homodimer, shaped like the letter Y, is non-globular.

2.2. The Structure Reference Terminology

For brevity, from now on, the structures from the PDB are referred to in this paper by
their PDB codes rather than by their names, e.g., 1IS9 instead of Endoglucanase A.

If only PDB code is mentioned, it refers to the entire content of this PDB file, for
example, to the monomer of 2KKW, to the trimer of 1IIE and to all 14 chains in 3BPD. A
specific chain is pointed to by the XXXX:Y notation, where XXXX is the PDB code and Y is
the chain identifier. Thus, 4B0H:B means chain B from 4B0H. The two alternative notations
for multiple chains are XXXX:(Y+Z) and XXXX:(Y–Z). 1DIV:(A+B) and 1DIV:(A–B) are
therefore the explicit labels for the 1DIV dimer and 3BPD:(A–G) denotes the 7 chains that
constitute the first of the two identical biological assemblies in 3BPD.

The term “complex” should be understood in the context of this work as a reference
to a portion or the entirety of the quaternary structure of given protein that is connected
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by inter-chain non-bonded contacts. 1DIV is a complex of two chains. It is possible that
non-protein molecules (ligands, etc.) were involved in those complexes, but their presence
was ignored during this experiment. Likewise, no protein–nucleic complexes were included
in the final forms of the input databases described in Section 2.1.

2.3. The Ellipsoid Profile Algorithm

This is a description of the initial version of the ellipsoid profile (EP) algorithm [22].
It is presented here to further establish its main concepts, share additional explanations
and add a minor enhancement—the new labels for the classes of globularity. The various
subroutines that appear in the computational workflow of the EP algorithm (MVEE, convex
hull, kernel density estimation and nearest neighbor search) are more thoroughly described
in ref. [22]. It is assumed here that the reader is familiar with them. Apart from MVEE,
none of them require special tuning for the protein content.

2.3.1. Preparation of the Structure

The EP algorithm requires a set of atomic coordinates and their vdW radii to operate,
just like the methods that determine the solvent-accessible surface areas. These coordinates
typically originate from PDB structure files. As such, they first need to be freed from
artifacts. The application should remove all H2O molecules and alternative atom locations
other than the most often occupied (n.b., in case of identical values of occupancy, the
rotamer with lowest ID, usually A, can be selected). The MODRES records from the PDB
header should be then parsed to differentiate the ligands and the modified polymer residues
and to match those residues with their standard parents, e.g., MSE with MET.

In the next step the user selects the actual input of the algorithm—the interesting part
of the loaded protein structure. It can be any collection of residues (including non-protein),
but it is usually a domain, chain or complex. Missing atoms are permitted.

Lastly, each selected residue is paired with its effective atom. An effective atom is a
pseudo atom located at the average position of all atoms except hydrogen.

2.3.2. Minimum Volume Enclosing Ellipsoid

The effective atoms of the selected part of the molecule are subsequently bound in a
minimum volume enclosing ellipsoid (MVEE). They are used instead of the actual atoms of
the protein for a specific reason. As a coarse-grained representation of the residues, they
are slightly shifted toward the backbone (i.e., away from the end of the sidechains). Passing
them to the MVEE algorithm results in compacter fittings that are less afflicted by the local
features of the molecular surface. Put differently, the effective atoms allow the generation
of ellipsoids that are—in our opinion—closer to those parts of the structure which a human
would use to describe its globularity. Because the MVEE algorithm treats all its input
points equally, when the actual atoms are used, those small outliers (such as the protruding
sidechains) increase the size of the output ellipsoid, making it larger and emptier than
necessary instead of tightly enveloping the molecule. The ellipsoid radii length difference
(effective atoms vs. actual atoms) can reach up to 3 Å. It is a consequence of the application
of the convex hull algorithm (see next paragraph), which is needed as MVEE is a relatively
CPU-intensive procedure. We believe that sacrificing some of the external detail is a better
choice than the misrepresentation of the entire molecule. However, it does not mean that a
lot of the actual atoms of the protein are excluded from the bounding ellipsoid and do not
participate in the subsequent measurement of globularity. In fact, there are usually only
a few of them left outside (with respect to the total number of input atoms), giving yet
another argument in favor of the use of effective atoms.

We employ two methods of reduction of the calculation time of MVEE. First is the
aforementioned passing of the convex hull of the effective atoms as its input. The second
is the use of ε = 0.01. ε is the convergence cutoff parameter for the (1 + ε)-approximation
of the true MVEE that is actually calculated here. The convex hull saves a lot of time (by
orders of magnitude) at a negligible loss of accuracy. ε = 0.01 balances well in time and
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space for the EP algorithm (so to speak). In comparison with the calculation at ε = 0.001,
the radii of the output ellipsoid can differ by ≈0.5 Å, but are obtained faster by another
order of magnitude (e.g., in 0.005 s instead of 0.05 s on an average laptop computer) with
only a tiny difference in the globularity metrics. We see it as a worthy trade-off.

2.3.3. Detection of Outlier Residues

Before the effective atoms are encased in the MVEE, an additional step may be per-
formed at user’s discretion—the detection of structural outliers. This subroutine discovers
residues that are strongly protruding from the dense, “main” body of the molecule. The
disordered chain termini of 1IIE are the prime example of this phenomenon. If not omitted
from the MVEE input, these “global outliers” can significantly increase the size of the
output ellipsoid (more than the aforementioned “local outliers”), resulting in even more
skewed metrics of globularity. In the EP algorithm, a protein shaped like a “ball with a
tail” is considered globular, just only in the “ball” part. Thus, this subroutine checks for the
presence of such a “tail” and allows the user to keep it or skip it.

The current approach to the outlier finding is based on KDE (kernel density estimation)
with a Gaussian kernel and automated bandwidth selection. The less neighbors an effective
atom has in its spatial vicinity, the lower is the kernel density assigned to its position in
space. Effective atoms with density below a certain threshold are assumed to be outliers.
We use the term “guides” for the rest. Guides comprise the final input for the MVEE
algorithm—they “guide” it toward better structural approximations. If this step is omitted,
all effective atoms are considered guides. It should also be stressed here that the outlier
effective atoms (and the actual atoms of residues they represent) are not removed from the
analyzed structure. Some of them may (and they often do) end up inside the final ellipsoid
and are processed along the guides at the later stages of the EP algorithm.

The strength of this procedure is controlled by the parameter m with a default value
of 3 (chosen empirically; m = 0 means no detection). It denotes the number of medians
of the kernel density profile. The first median (m = 1) is the median of all its values, the
second median (m = 2) is the median of all its values below the first median, and so on.
The last median is the threshold to isolate the outliers from the guides. This means that
some residues in every structure will always be taken as outliers. In globular proteins (e.g.,
in 1IS9) they are usually distributed on the surface. At m = 3, it strengthens the resistance
of the ellipsoid bounding procedure against the small external details of the structure and
does not let the MVEE algorithm carve too much into it. In non-globular proteins (with
a relatively low kernel density, e.g., in 2KKW), it results in the isolation of some residues,
mostly located near the chain termini. Put differently, with no significant outliers present,
this detection method can be considered stable in terms of ellipsoid size and globularity
metrics. However, when such outliers exist (e.g., in 1IIE) and are detected and isolated, the
ellipsoid is shrunk, and the metrics of globularity are altered accordingly.

2.3.4. Alignment of the Molecule

The MVEE algorithm returns a quadric form of the bounding ellipsoid, consisting of
its center vector c and a symmetric, positive-definite matrix M. Performing singular value
decomposition (SVD) of M yields a rotation matrix and inverse squares of lengths of radii
of the ellipsoid. The input datasets (i.e., the effective and actual atoms of the protein) can
be now brought to the origin by moving c to [0,0,0]. They are then rotated in alignment
with the coordinate system. It results in the placement of the radii of the ellipsoid on the
three principal axes. It is now possible to operate with its simpler, standard equation.

Given point p = [px,py,pz] and an axis-aligned ellipsoid centered at the origin with radii
with lengths r = [rx,ry,rz], the value of the standard ellipsoid equation, ee(p,r), is:

ee(p, r) =
(

px

rx

)2
+

(
py

ry

)2
+

(
pz

rz

)2
(1)
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ee(p,r) = 0 when p = [0,0,0], ee(p,r) < 1 when p is inside the ellipsoid, ee(p,r) = 1 when p
is on the surface of the ellipsoid and ee(p,r) > 1 when p is outside the ellipsoid. This concept
and the MVEE algorithm generalize to any number of dimensions.

Lengths of the radii of the now-aligned bounding ellipsoid are rounded to nearest
integers and increased by 1 Å. For example, if rx was 34.6 Å, it would be rounded to 35 Å
and increased to 36 Å. Note that this 1 Å increase is not performed in the modified version
of the EP algorithm (Section 3.1). The radii are needed in the next step (generation of the
grid, Section 2.3.5), but at this moment the first two globularity metrics of the EP algorithm
can be derived from them: V and T. V is the ellipsoid volume coefficient:

V(r) =
rx · ry · rz

1000
(2)

It is a simple way to join the three radii lengths under one value for size comparison
purposes. T, on the other hand, is the ellipsoid radii length triangle inequality coefficient:

T(r) = max
(

rx

ry + rz
;

ry

rx + rz
;

rz

rx + ry

)
(3)

When T < 1, e.g., for r = [10,8,6], the protein fits inside a typical triaxial ellipsoid. Its
MVEE is a sphere when T = 0.5 (rx = ry = rz). However, when T ≥ 2, e.g., for r = [20,5,5], the
molecule is elongated in one dimension, warning about its potentially non-globular structure.
The other metrics of the EP algorithm should then be handled with care (i.e., a single helix,
such as that in 1AIK:C, may be deemed globular in its sense). There are, however, only a small
number of such cases—we found 100 among the 2124 domains [22]. Unsurprisingly, nearly
half of them were in the coiled coil SCOP class, h. Caution is also advised when processing
small structures, i.e., below 75 residues or where min (rx,ry,rz) < 10.

2.3.5. Generation of the Grid

The grid is a rectangular lattice, a set of non-intersecting voxels (1 Å × 1 Å × 1 Å cubes)
with centers placed at the integer coordinates. They completely fill the interior of the bound-
ing ellipsoid, which is that part of space where Equation (1) is below 1. For example, if
r = [40,30,20] (after Section 2.3.4), the grid should contain 100,227 unit Å voxels.

The grid acts as the reference for its subset—for the voxels that represent the actual
atoms of the protein. Together, they facilitate an estimation of how much of the ellipsoid is
occupied by the molecule. The voxelization happens in the next step (Section 2.3.6).

δ = 1 is the default grid density and voxel size (δ × δ × δ), but one can experiment
with other values too. Lower density, e.g., δ = 2, means quicker voxelization and lower
RAM consumption at the expense of reduced precision of the measurement of globularity.
Conversely, higher density, e.g., δ = 0.5, offers better resolution for smaller structures
(peptides, etc.). In any case, one must remember to place the centers of the voxels at the
multiples of δ (and to round the radii of the ellipsoid to the multiples of δ before that).

2.3.6. Voxelization of the Protein

The protein is voxelized by finding all voxels from the grid with their centers within
the range of the vdW radii of the actual atoms. It is actually the most time consuming part
of the computational pipeline of the EP algorithm. Hence, a fast nearest neighbor search is
needed. We employ one based on the k-d tree structure [47].

NACCESS [48] is the default source of vdW radii definitions in the EP algorithm. They
were obtained from the repository of the dr_sasa program [49,50], where they are stored in
(residue, atom) pairs. Table 2 from ref. [22] presents our default radii for keys not found in
this mapping. In particular, the EP algorithm assumes 1 Å for all instances of hydrogen
but ignores them by default. There is a small bias caused by this omission, but it does not
significantly impact the measurement of globularity on a large scale.
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An example visualization of the generation of the grid, voxelization of the atoms and
preparation for the calculation of globularity metrics of 1IS9 is shown in Figure 1.
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2.3.7. Ellipsoid Indexes

The grid and its subset, the voxelized protein, are the basis of the main metric of the
EP algorithm, the ellipsoid index, EI. Let r = [rx,ry,rz] be the radii of the bounding ellipsoid
(after Section 2.3.4), 0 ≤ i ≤ 1 be a user-controlled parameter, Gi = {g1 . . . gn} be a subset of
the grid for which the value of Equation (1) is lower than or equal to i, and Hi = {h1 . . . hm}
be the protein voxels (m ≤ n; Hi is the subset of Gi) for which the value of Equation (1) is
also lower than or equal to i. The ellipsoid index at i, EIi, is then calculated as:

EIi

(
Gi, Hi, r

)
=

m−∑m
j=1 ee

(
hj, r

)
n−∑n

j=1 ee
(

gj, r
) (4)

This calculation involves all voxels located in the sense of Equation (1) between the
origin (i = 0) and i, inclusive. Because Hi is the subset of Gi, EI can attain values from 0
(no protein voxels present, Hi ≡ Ø) to 1 (the protein captures all voxels, Hi ≡ Gi).

Elements of Gi and Hi are weighted in Equation (4) by their corresponding values
of 1-Equation (1). This causes voxels located further away from the origin to have lower
impacts on the value of the index. There are two reasons for that. First, at the higher values
of i (e.g., i ≥ 0.7), the contribution of voxels near the center of the ellipsoid is not dominated
by the contribution of voxels located toward the surface of the ellipsoid. Secondly, it
accounts for the fact that even the most globular proteins cannot be perfectly bound in
an ellipsoid. There are always some gaps between their atoms and the surface of this
shape. Without the weights, these gaps (even the relatively small ones) may cause a sharp
drop of the value of EI for i ≥ 0.7, misrepresenting the status of the external parts of the
structure. This phenomenon is less significant for non-globular proteins since their indexes
are already low due to the low filling of the volume of their bounding ellipsoids.
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2.3.8. Ellipsoid Profile

The ellipsoid profile, EP, is the distribution of the values of EIi for all i = [0 . . . 1].
Discrete steps of 0.01, yielding 100 data points (i on X axis, EIi on Y axis), provide a
satisfactory default resolution. EP displays how the globularity of the protein changes
from the center to the surface of its bounding ellipsoid. The higher its values are, the more
globular the input protein appears to be. A typical profile decreases as i goes past 0.3.

Ellipsoid profiles for the proteins from Table 1 are plotted in Section 3.2.

2.3.9. Globularity Classes

Two empirically chosen ellipsoid indexes, EI0.3 and EI1.0, facilitate the standard EP-
based classification and comparison of proteins in terms of globularity. The first gauges the
status of their interior, while the second gauges the status of the entire molecules:

• the protein appears non-globular (class N) when EI0.3 < 0.3 or EI1.0 < 0.3;
• the protein appears semi-globular (class S) when 0.3 ≤ EI0.3 < 0.5 and EI1.0 ≥ 0.3;
• the protein appears globular (class G) when EI0.3 ≥ 0.5 and EI1.0 ≥ 0.3;
• the protein appears highly globular (class H) when EI0.3 ≥ 0.5 and EI1.0 ≥ 0.5;
• the protein appears unusual (class U, supplemental) when EI0.3 ≤ EI1.0;
• the protein appears elongated (class E, supplemental) when T ≥ 2;

The above labels of globularity classes are formally introduced in this paper. Class H
is the subclass of class G. Members of classes U and E may belong to any other class.

A semi-globular protein (class S) fits well inside the ellipsoid as a whole but does not
possess enough atoms to fill its center to attain EI0.3 ≥ 0.5. It may also signal the opposite—
the center of the molecule is filled up with atoms, but their numbers quickly diminish with
distance to origin, causing too few of them to reach the surface of the ellipsoid (but still
enough for EI1.0 ≥ 0.3). The semi-globular status can likewise be caused by cavities in the
structure which are not severe enough to assign the protein to class N.

Unusual proteins exhibit EI0.3 ≤ EI1.0. It is a rare situation that becomes progressively
more anomalous with the growing difference between the indexes. If a structure is also
non-globular, there is a good chance that there is a void in the center of its bounding
ellipsoid, that most of its atoms or even entire chains are located toward the surface of this
shape. The protein may resemble a sphere, cylinder or torus, just like 3BPD:(A–G) does. So
far, we have not encountered a molecule with EI0.3 ≥ 0.5 and EI1.0 < 0.3.

Proteins can be compared by scattering them on an EI0.3 × EI1.0 map. Since axes
of this map are normalized, closeness to the [1,1] corner denotes high globularity, while
the distance to this point marks an opposite status. Low globularity is signaled by either
index, but they typically change in unison, as corroborated by the EI0.3 vs. EI1.0 correlation
coefficients for the SCOP superfamily representatives measured close to 0.9 [22].

Ellipsoid index maps for the proteins from Table 1 are plotted in Section 3.2.

2.3.10. Areas under the Profile

The last metric of the EP algorithm is the area under the ellipsoid profile. It is calculated
as an a/b fraction and can attain values from 0 to 1. a is the area under the EP between two
values of i (inclusive, measured using the trapezoidal rule) and b is the absolute difference
between those two values of i. This metric estimates how high the profile is running in the
i × EI space within the bounds of the specified i range.

Two standard areas are defined. The first is calculated for i = [0 . . . 0.1] and is written
as |EP|0.0–0.1 or |EP|0.1 in short. The second is calculated for i = [0.1 . . . 1.0] and is written
as |EP|0.1–1.0 or |EP|1.0 in short. Because the shorter forms of those labels are ambiguous,
it is recommended to use them only to refer to the standard areas.

The split into two zones of area calculation is motivated by the chaotic behavior of
EP at i ≤ 0.1. Depending on whether the atoms of the protein capture the central voxel at
[0,0,0], the profile will start from [0,0] or [0,1] in the i × EI space. Globularity is promoted
by |EP|0.1 ≥ 0.5 (i.e., the profile should raise if it started from [0,0] and should not fall too
much if it started from [0,1]), while |EP|0.1 < 0.1 hints at the presence of a void in the center
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of the ellipsoid. On the other hand, |EP|1.0 is a convenient way to represent the EI0.1 . . . EI1.0
series with one value. If |EP|1.0 < 0.3, the protein is probably non-globular. If |EP|1.0 ≥ 0.5,
the protein is probably globular, maybe even highly globular. However, because it is only an
approximation, it is considered a secondary metric to the ellipsoid indexes.

2.4. Tools and Websites

Three-dimensional images of the proteins were rendered with PyMOL [51,52] and
PyVista [53]. PyVista is a streamlined Python interface to the Visualization Toolkit (VTK) [54].
Charts were plotted using the Matplotlib library [55]. Our software modules employ the
state-of-the-art open-source Python libraries for scientific computation [56,57]. Online
access to the ellipsoid profile algorithm, the fuzzy oil drop algorithm and related bioinfor-
matics tools is possible at the http://fod.cm-uj.krakow.pl web server.

3. Results and Discussion

The Results section is split into two parts. In the first part (Sections 3.1–3.3) we describe
an enhanced structural outlier detection subroutine for the ellipsoid profile algorithm and
discuss the outcome of its application to the 2124 SCOP domain representatives at the
superfamily level (i.e., the modified ASTRAL 2.08 subset—see Section 2.1). In the second
part (Section 3.4) we first share instructions for how to extract a non-redundant set of
representatives of the biological assemblies from the PDB, after which we study how the
improved EP algorithm handles the 3594 of them.

3.1. The Improved Ellipsoid Profile Algorithm

We have recently [26] introduced to the calculation pipeline of the fuzzy oil drop
(FOD) model an alternative approach to the alignment of the input protein with the axes of
the coordinate system. Such alignment procedure is needed to properly assign values of
theoretical hydrophobicity to the residues via 3D Gaussian function. Our modification is
based on principal component analysis (PCA) and the confidence ellipsoid method.

3.1.1. The Principal Component Analysis

PCA [58,59] is a simple yet powerful technique that solves the eigenvector/eigenvalue
problem to find an optimal linear transformation of its input dataset (n samples—observations,
each described by d numeric variables—properties) to a new system where the mean is zero
and the variance of all variables, now uncorrelated, is maximized [60]. If we treat those
variables as Cartesian coordinates, PCA turns into an optimizer that fits a d-dimensional
ellipsoid to a cloud of points by minimizing their orthogonal distance to its axes [27]. This,
in particular, allows alignment of those points with the principal axes of the coordinate
system in decreasing order of variance (highest on X axis, then on Y axis, etc.). PCA is
efficiently calculated via SVD. It works in any number of dimensions.

3.1.2. The Confidence Ellipsoid

The variables (e.g., the coordinates) of the input samples (e.g., the effective atoms)
aligned via PCA are independent—they have zero covariance. Assuming that they are
normally distributed, Equation (1) can be turned into a sum of squares of normalized
variables. To attain that, [rx,ry,rz] need to be set to [σx,σy,σz], the standard deviations in
each dimension. The values of Equation (1) should then follow the χ2 distribution with
d = 3 degrees of freedom [28]. This concept generalizes to any number of dimensions. Here
it opens the possibility to estimate the size of an ellipsoid fit via PCA to a protein [26].

The size of an axis-aligned confidence ellipsoid that splits the observations (points)
into internal (model) and external (outliers) subsets can be inferred from [σx,σy,σz] and a
scaling coefficient s. The value of s depends on the confidence level P (0 < P < 1) selected by

http://fod.cm-uj.krakow.pl
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the user. Increasing the value of P increases the probability for each point to fall inside the
confidence ellipsoid [28]. Point [x,y,z] lies on its surface when:(

x
σx

)2
+

(
y
σy

)2
+

(
z
σz

)2
= s = χ2

(P,3) (5)

To solve for the lengths of the radii of this ellipsoid, one should use [x,0,0], [0,y,0] and
[0,0,z] in the above equation, resulting in x = σx

√
s, y = σy

√
s and z = σz

√
s. It is needed

because PCA returns only the direction vectors of the radii (i.e., the principal components).
It also means that the outcome depends on P. The choice of its value may be non-trivial.

3.1.3. The FOD–PCA Algorithm

The altered workflow of the FOD algorithm was named FOD–PCA [26]. In ref. [26]
we deemed it optimal for the purpose of alignment of the molecule, as in comparison to
the baseline FOD model, it is faster, achieves a diagonal covariance matrix of the effective
atoms and automatically aligns them with respect to structural symmetry, absolving the
user from supervising this procedure (the baseline approach may require manual input of
the main axis of symmetry). EP and FOD share the definition of an effective atom. FOD
uses effective atoms to represent residues in space in a coarse-grained manner.

Once the effective atoms of the protein have been aligned (i.e., translated to the origin
and rotated), the size of the drop must be calculated. The drop of the FOD model is an
axis-aligned ellipsoid that encompasses the input structure. The lengths of its radii, each
divided by three (i.e., the three sigma rule), yield the standard deviation parameters for the
3D Gaussian function, which, in turn, is used to calculate the theoretical hydrophobicity
(i.e., the T distribution). In the baseline FOD algorithm these radii are obtained from the
coordinates of the effective atoms located furthest away from origin in each dimension. In
the FOD–PCA modification they are obtained from the same coordinates but also from the
lengths of the radii of a confidence ellipsoid fit to the effective atoms at P = 0.75 (those radii
are finally extended in both FOD versions by 9 Å, but that is irrelevant here). Owing to
FOD-PCA, the bounding of the protein in the drop becomes less susceptible to structural
outliers and more closely connected to the distribution of all effective atoms, the property
that is eventually encoded in the T distribution. It is also possible to employ the PCA-
based alignment together with the baseline drop size selection method. The service at
http://fod.cm-uj.krakow.pl website allows that.

One may notice that the above workflow is similar to what the EP algorithm tries to
achieve. In fact, it shares a common goal with the FOD model to some extent. The difference
is that the EP algorithm can be more decisive in terms of the ellipsoidal representation of
the molecule, whereas a subtle balance needs to be maintained with the size of the drop of
the FOD model due to the strong dependence of theoretical hydrophobicity on it. The FOD-
PCA modification is not aiming to throw all outlying, exposed to the solvent fragments of
the chain out of the drop, but to reduce their influence on its size. It is particularly useful
when those fragments are small or otherwise should not be removed a priori by hand.
An additional subroutine, enabled at user’s discretion, would be needed to remove any
problematic outliers or report their existence for manual handling.

3.1.4. The Problem with the Kernel Density

We realized that in the context of the measurement of the globularity of proteins,
the PCA and confidence ellipsoid tandem can be a powerful ally for the outlier handling
subroutine of the EP algorithm. Recalling Section 2.3, there are three goals to achieve here:

1 decrease susceptibility of the MVEE to the features of protein’s molecular surface;
2 isolate significant outliers from the guides in structures where outliers are present;
3 do not significantly impact the EP algorithm’s metrics if outliers are not present.

We also discovered that the current approach based on medians of kernel density
runs into trouble on some occasions at the second point above. For example, a cluster of

http://fod.cm-uj.krakow.pl
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effective atoms at the end of an exposed chain fragment can prevent some of them from
being classified as outliers, leaving them “disconnected” from the rest of the molecule.
Offsetting it by decreasing the value of m can cause too much of the protein to be isolated.
Perhaps an alternative method for the selection of the low density regions in the structure
could fix this, but since PCA and confidence ellipsoid work well for the FOD algorithm, we
decided to give them a try in the context of the measurement of globularity too, checking
how capable they are as a potential replacement for the KDE-based workflow.

3.1.5. The PCA-Based Outlier Detection Subroutine

While experimenting with various values of P in Equation (5) we came to the conclu-
sion that there is no universal confidence level that is robust against the many shapes of
protein structures. A P that is low enough to capture all outliers (such as the aforemen-
tioned clusters at the end of a chain) may also be low enough to carve too much into the
molecule. Conversely, a P that is high enough to not carve too much into the molecule
may also fail to capture even the most evident outliers. Naturally, the same applies to the
KDE-based approach and its m parameter. However, because PCA is fast (i.e., much faster
than KDE, permitting its application even to the actual atoms of the protein), we tried an
iterative approach which involves running it a few times and trimming the guide effective
atom set with each step toward the dense “main” portion of the structure.

At the beginning, all effective atoms are considered guides and there are no outliers.
In each round (i.e., in each loop iteration), the current set of guides is aligned with the axes
of the coordinate system via PCA and its outliers are isolated via Equation (5). This process
repeats until either all rounds have passed or all guides have stayed inside the confidence
ellipsoid (i.e., no change). Its visualization for 4B0H:B is shown in Figure 2.
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lone guide effective atom below the bottom arc of the MVEE on Figure 2c can be marked 
as an outlier. However, it results in the decrease in ry by 2 Å and a small change in the 
globularity metrics. Setting r = 0, just like setting m = 0 in the KDE-based method, bypasses 
the outlier detection subroutine, sending all effective atoms as guides to the MVEE algo-
rithm. P ≥ 1 can be treated like r = 0 since it denotes an infinite confidence ellipsoid. 

Figure 2. Three rounds of structural outlier detection in 4B0H:B based on the PCA plus confidence
ellipsoid tandem using r = 3 (number of rounds) and P = 0.9 (confidence level). Markers denote the
143 effective atoms orthogonally projected onto the XY plane (diamonds—outliers, circles—guides).
The guides would be used in the bounding of this chain in the MVEE (i.e., the blue ellipse) if the
detection subroutine terminated at a given round. In each round, the algorithm isolates more outliers
from the guides: (a) 13 outliers vs. 130 guides (r = 1), (b) 27 vs. 116 (r = 2), (c) 32 vs. 111 (r = 3).

We chose r for the label of the round number parameter and found 3 to be its good
default value. Users are encouraged to experiment with it. For instance, at r = 4 that lone
guide effective atom below the bottom arc of the MVEE on Figure 2c can be marked as an
outlier. However, it results in the decrease in ry by 2 Å and a small change in the globularity
metrics. Setting r = 0, just like setting m = 0 in the KDE-based method, bypasses the outlier
detection subroutine, sending all effective atoms as guides to the MVEE algorithm. P ≥ 1
can be treated like r = 0 since it denotes an infinite confidence ellipsoid.
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The recommended value of P is 0.9 (s ≈ 6.251,
√

s ≈ 4.108). On the basis of the results
of the bounding of structures from Table 1 (n.b., their visualization in the style of Figure 2
for r = 3 and r = 0 is shown in Supplemental File S2—Figures S7–S12), 0.9 appears to be
a dependable default level of confidence. It isolates the outliers in a predictable manner
and may finish the procedure before r is reached. For example, it permits at most four
iterations with 4B0H:B and at most three with 3BPD:(A–G). Using r as a safeguard is still
needed, as in some cases the guide set may keep shrinking. It happens in 1DIV, which is
reduced by P = 0.9 and r = ∞ (i.e., no limit) to the complex of the C-terminal domains. This
coincidentally provides another hint about the non-globular structure of this protein.

Because of the median-based threshold of the kernel density, the KDE-based EP
algorithm always marks some of the effective atoms as outliers (≈12.5% at m = 3; whether
they fall in or out of the MVEE is a different story), while the shape of the protein influences
their location: from convergence in the outlier regions (e.g., as in 1IIE) to scattering on the
surface (e.g., as in 1IS9). Conversely, the PCA-based approach seems to use more guides
in globular proteins, e.g., 354/358 vs. 313/358 in 1IS9. To balance that, we opted to not
increase the rounded MVEE radii by δ with it (compare this with Section 2.3.4).

If one finds r = 3 too strong, using r = 1 or r = 2 is a viable alternative to it.

3.2. Improved Ellipsoid Profile of the Example Proteins

The EP algorithm enhanced with the PCA-based outlier detection was administered
to the selected fragments of the six proteins from Table 1. Their metrics of globularity are
presented in Table 2 (r = 3) and Table 3 (r = 0). The visualization of their bounding and
voxelization is shown in Supplemental File S3—Figures S13–S18, while the corresponding
measurements taken with the KDE-based method are given in Tables 3 and 4 of ref. [22].

Table 2. Globularity metrics of proteins from Table 1 with outlier detection (r = 3).

PDB
Code

Selected
Chains

Effective Atoms Bounding Ellipsoid Ellipsoid Index Ellipsoid Profile Globularity
ClassesAll Guide rx ry rz V T EI0.3 EI1.0 |EP|0.1 |EP|1.0

1IS9 A 358 354 27 24 23 14.9 0.57 0.589 0.561 0.541 0.590 G and H

3BPD A–G 638 612 39 39 23 35.0 0.63 0.207 0.344 0.000 0.275 N and U

4B0H B 143 111 24 19 13 5.9 0.75 0.597 0.498 0.526 0.560 G

1IIE A–C 225 198 22 22 18 8.7 0.55 0.713 0.592 0.781 0.662 G and H

2KKW A 140 119 62 23 19 27.1 1.48 0.086 0.084 0.107 0.087 N

1DIV A+B 298 244 45 35 22 34.6 0.79 0.300 0.198 0.493 0.261 N

Selected chains column denotes chains from the structure with given PDB code that were passed as the input to
the EP algorithm. All is the number of all effective atoms, equal to the number of input residues, whereas guide is
the number of guide effective atoms. rx, ry, rz are the lengths of the radii of the bounding ellipsoid. Underlined
values and class labels promote the globular status.

Table 3. Globularity metrics of proteins from Table 1 without outlier detection (r = 0).

PDB
Code

Selected
Chains

Effective Atoms Bounding Ellipsoid Ellipsoid Index Ellipsoid Profile Globularity
ClassesAll Guide rx ry rz V T EI0.3 EI1.0 |EP|0.1 |EP|1.0

1IS9 A 358 358 29 25 22 15.9 0.62 0.593 0.541 0.587 0.581 G and H

3BPD A–G 638 638 40 39 29 45.2 0.59 0.176 0.297 0.002 0.237 N and U

4B0H B 143 143 34 26 21 18.6 0.72 0.214 0.197 0.177 0.210 N!

1IIE A–C 225 225 44 44 22 42.6 0.67 0.387 0.189 0.413 0.295 N!

2KKW A 140 140 60 42 22 55.4 0.94 0.031 0.047 0.004 0.039 N and U!

1DIV A+B 298 298 50 50 23 57.5 0.69 0.227 0.149 0.462 0.200 N

Meaning of the symbols is retained from Table 2. At r = 0 all effective atoms are the guides. Exclamation mark in
the globularity classes column denotes globularity status change versus Table 2. Underlined values and class
labels promote the globular status.



Biomolecules 2023, 13, 385 15 of 28

3BPD:(A–G) is one of the two identical biological assemblies from 3BPD. Together with
1IS9 it represents proteins that can be easily put in an ellipsoid and do not possess significant
outliers. 4B0H:B and 1IIE exhibit such outliers. The first is a chain, the second is a trimer.
Chains B and C are longer than chain A in 4B0H, but chain A is included in the official
ASTRAL superfamily representative subset, which made us analyze it previously [22]. The
KDE-based outlier detection has trouble with the isolation of the entire “arm” in chains B
and C. Lastly, 2KKW and 1DIV are two non-globular proteins with no disordered chain
fragments but with a spread/loose conformation that puts them in class N.

From now on in this and the next subsection, “PCA” is used as the shorthand for the
improved EP algorithm utilizing the new, PCA-based outlier detection, whereas “KDE”
denotes the original EP algorithm that employs the KDE-based outlier detection.

The lengths of the radii of the bounding ellipsoid were similar in proteins without
outliers: 27 × 24 × 23 (V = 14.9) with PCA vs. 28 × 24 × 22 (V = 14.8) with KDE for 1IS9
and 39 × 39 × 23 (V = 35) with PCA vs. 41 × 40 × 21 (V = 34.4) with KDE for 3BPD:(A–G).
Their ellipsoid indexes were likewise constant in terms of classification, 1IS9 stayed in
class H and 3BPD:(A–G) stayed in classes N and U, but their values dropped with PCA by
0.02 ≈ 0.04. The value of |EP|1.0 for 3BPD:(A–G) also went below 30%, which is a more
befitting reflection of its non-globular status. Membership of class U, |EP|0.1 ≈ 0 and a
high EI1.0–EI0.3 difference strongly hint about the toroidal shape of this molecule.

The situation changed with the presence of actual outliers: 24 × 19 × 13 (V = 5.9)
with PCA vs. 33 × 24 × 19 (V = 15) with KDE for 4B0H:B and 22 × 22 × 18 (V = 8.7) with
PCA vs. 23 × 23 × 22 (V = 11.6) with KDE for 1IIE. A stronger reduction of the size of the
ellipsoid by PCA is noticeable in 4B0H:B, for which KDE at m = 3 yielded the following
metrics of globularity: EI0.3 = 0.284, EI1.0 = 0.247, |EP|0.1 = 0.485 and |EP|1.0 = 0.277. This
high difference was caused by the aforementioned outlier detection issues in this chain. The
PCA-based version of the EP algorithm is not encumbered by them. On the other hand, both
methods produced comparable globularity metrics and identical globularity classification
(class H) for 1IIE. They correctly removed all three disordered chain fragments.

Reduction of the lengths of the ellipsoid radii was also observed in the non-globular
molecules: 62 × 23 × 19 (V = 27.1) with PCA vs. 61 × 36 × 22 (V = 48.3) with KDE for
2KKW and 45 × 35 × 22 (V = 34.6) with PCA vs. 51 × 45 × 20 (V = 45.9) with KDE for
1DIV. When a protein such as the Alpha Synuclein has virtually no tertiary structure, its
residues exhibit a relatively low kernel density (lowest in the unstructured regions). Thus,
the KDE-based approach marked just a few residues near the C-terminus of 2KKW as
outliers. On the other hand, PCA isolated about half of that region. The ellipsoid indexes
correctly stayed below 0.1 (0.02 ≈ 0.04 PCA vs. KDE difference). It can be explained by the
fact that in the NMR conformer 1 of 2KKW, the C-terminal region is perpendicular to the
plane formed by the two helices that constitute the main body of this protein (M1–L100).
This stimulates PCA to work toward marking it wholly as an outlier. In fact, using r = ∞
reduces the guide effective atom set to the D2–Q99 region (48 × 23 × 8, V = 8.8), but it
remains non-globular (|EP|1.0 = 0.148) due to the space between the helices. Interestingly,
the M1–L100 region is what one would send to the FOD algorithm for hydrophobic core
analysis. The treatment of about half of the M1–Q55 domains of 1DIV as outliers by PCA
resulted in a noticeable increase in EI0.3 versus KDE by ≈0.09 and a small reduction of
EI1.0 by ≈0.03. The protein remained seen as non-globular. As mentioned previously,
P = 0.9 and r = ∞ leave only its R56–K149 domain complex as the guide set. This complex
is also highly globular (EI0.3 = 0.511, EI1.0 = 0.529). However, also interestingly, at r = 3
the entire molecule is bound in the MVEE in a way that follows its cyclic symmetry more
closely than during bounding at r = 0 (Figure S12 in Supplemental File S2).

The ellipsoid profiles and indexes of the example proteins calculated with the PCA-
based EP algorithm are presented in Figure 3. The corresponding data from its KDE-based
counterpart are plotted in Figures 5 and 6 of ref. [22]. In both approaches 3BPD:(A–G) is
located in the rare zone within classes N and U where EI0.3 < 0.3 and EI1.0 ≥ 0.3.
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Figure 3. Ellipsoid profiles (a) and ellipsoid indexes (a,b) of proteins from Table 1 calculated with
the PCA-based outlier detection on (r = 3, solid lines, circle markers) and off (r = 0, dashed lines,
square markers). Coordinates of markers on (b) corresponds to Y axis values of matching markers
on (a). The proteins are labeled here by their PDB codes, but the fragments actually passed to the
EP algorithm are the same as in Table 2. The red dashed line on (b) identifies structures exhibiting
EI0.3 < 0.3 and EI1.0 ≥ 0.3. The green dashed line is the boundary of class H. Structures above the
grey dashed diagonal are in class U. The colored backgrounds act as visual cues for the classification
of globularity: red—class N, orange—class S, green—class G. The white zone on (a) is for |EI|0.1.

The ellipsoid index difference between PCA and KDE without outlier detection (i.e.,
at r = 0 and m = 0) was measured in the second significant digits. It was largest in 1IS9 and
3BPD:(A–G), where EI0.3 dropped by ≈0.02 and EI1.0 raised by ≈0.01. It is the effect of the
shortened ellipsoid radii (i.e., no extension by δ). 1IS9 also became the only structure in
this set with all its metrics suggesting (high) globularity at both r = 3 and r = 0. Previously,
3BPD:(A–G) had EI1.0 slightly above 0.3—now it was a bit below it. The requirement
that a structure that does not possess significant outlier fragments should exhibit similar
globularity metrics regardless of the use of outlier detection is maintained by PCA.

The |EI|1.0 difference (Tables 2 and 3) was 0.009 for 1IS9, 0.038 for 3BPD:(A–G), 0.35 for
4B0H:B, 0.367 for 1IIE, 0.048 for 2KKW and 0.061 for 1DIV. Area loss higher than 30% seems
to signal the presence of the outliers. However, since they are strongly protruding here, 15%
could be enough to capture their less outstanding variants. The globularity classification
should also change due to the enlargement of bounding ellipsoid. It happened to 4B0H:B
and 1IIE—they were demoted from class G at r = 3 to class N at r = 0.

Lastly, the analysis of the dynamics of the profile may unveil additional information
about the protein. For instance, 1DIV experienced a sharp drop of its EP near i = 0.1 at both
r = 3 and r = 0. It was caused by the helix that connects the two domains in each chain and
the spread conformation of the complex of those chains.

3.3. Improved Ellipsoid Profile of the Domain Superfamilies

To validate the performance of the improved EP algorithm on a large scale, we applied it
to the 2124 protein domain superfamily representatives from the modified SCOP 2.08 ASTRAL
compendium (Section 2.1). We replicated our previous experiment [22]. The improved EP
algorithm was run twice on each domain, with outlier detection (r = 3) and without it (r = 0).
The results were again split between the eight SCOP classes (a–h). They are visualized via
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EI0.3 × EI1.0 maps (i.e., in the form of Figure 3b) in Supplemental File S4—Figures S19–S26,
while the summary of the globularity metrics is given in Table 4 (r = 3) and Table 5 (r = 0). The
values of those metrics for all individual domains are stored in Supplemental Files S5 (r = 3)
and S6 (r = 0) in tab-separated textual table format.

Table 4. Statistical summary of the results of the application of the improved EP algorithm to the
2124 SCOP domain superfamily representatives with outlier detection (r = 3).

Domains Effective Guides V EI0.3 EI1.0 |EP|0.1 |EP|1.0 Globularity Classes

cl cf sf µ σ µ σ µ σ µ σ µ σ µ σ µ σ N S G H U E

a 290 519 134 90 93% 5% 6.3 5.3 0.55 0.11 0.49 0.09 0.52 0.17 0.53 0.10 23 73 423 309 43 21

b 179 374 162 101 93% 5% 7.3 5.7 0.58 0.07 0.51 0.06 0.54 0.14 0.56 0.06 9 20 345 265 15 2

c 147 246 233 105 95% 4% 10.6 5.9 0.58 0.05 0.51 0.05 0.59 0.10 0.55 0.05 2 10 234 168 5 0

d 395 577 141 78 93% 5% 6.4 4.5 0.57 0.07 0.50 0.07 0.56 0.13 0.55 0.07 18 34 525 376 10 5

e 73 73 360 204 92% 5% 20.3 16.7 0.51 0.10 0.44 0.08 0.51 0.15 0.48 0.09 5 16 52 17 3 0

f 69 130 176 144 88% 6% 9.2 8.9 0.54 0.18 0.46 0.14 0.53 0.24 0.51 0.16 16 33 81 42 14 40

g 98 139 61 31 93% 5% 2.4 2.0 0.60 0.12 0.53 0.11 0.62 0.20 0.57 0.11 4 15 120 98 10 3

h 6 66 105 83 89% 7% 7.2 14.1 0.56 0.23 0.48 0.17 0.53 0.28 0.53 0.20 10 12 44 31 8 56

all 1257 2124 157 113 93% 5% 7.4 7.2 0.57 0.10 0.50 0.09 0.55 0.16 0.54 0.09 87 213 1824 1306 108 127

cl—SCOP domain class; cf—number of unique common folds in this class; sf—number of unique superfamilies in
this class; N, S, G, H, U, E—globularity classes; µ—average; σ—standard deviation.

Table 5. Statistical summary of the results of the application of the improved EP algorithm to the
2124 SCOP domain superfamily representatives without outlier detection (r = 0).

Domains Effective Guides V EI0.3 EI1.0 |EP|0.1 |EP|1.0 Globularity Classes

cl cf sf µ σ 100% µ σ µ σ µ σ µ σ µ σ N S G H U E

a 290 519 134 90 100% 9.5 8.7 0.51 0.13 0.41 0.11 0.51 0.19 0.47 0.12 78 106 335 117 37 13

b 179 374 162 101 100% 11.1 10.8 0.54 0.10 0.43 0.09 0.54 0.15 0.50 0.10 43 31 300 76 8 1

c 147 246 233 105 100% 14.4 8.9 0.55 0.08 0.44 0.07 0.57 0.12 0.51 0.07 10 39 197 56 2 0

d 395 577 141 78 100% 9.5 9.8 0.53 0.11 0.43 0.09 0.55 0.15 0.49 0.10 71 64 442 130 9 2

e 73 73 360 204 100% 31.4 29.4 0.46 0.11 0.36 0.09 0.48 0.15 0.42 0.10 21 21 31 0 3 0

f 69 130 176 144 100% 15.6 15.2 0.43 0.18 0.35 0.13 0.43 0.25 0.40 0.15 46 35 49 13 21 30

g 98 139 61 31 100% 3.7 3.4 0.55 0.14 0.46 0.12 0.59 0.20 0.51 0.13 18 19 102 57 5 0

h 6 66 105 83 100% 12.3 18.8 0.44 0.23 0.37 0.18 0.42 0.30 0.41 0.21 28 11 27 17 19 46

all 1257 2124 157 113 100% 11.2 12.3 0.52 0.13 0.42 0.11 0.53 0.18 0.48 0.12 315 326 1483 466 104 92

Meaning of the symbols is retained from Table 4. At r = 0 all effective atoms are the guides.

Figures 4 and 5 facilitate a visual comparison of the values of three metrics of the EP
algorithm: number of guide effective atoms, V coefficient and |EP|1.0. Figure 4 is for r = 3
and m = 3 (i.e., PCA vs. KDE), while Figure 5 is for r = 3 and r = 0 (i.e., PCA vs. PCA).

It is confirmed that the EP algorithm enhanced with PCA produced a higher number of
guides, ≈93% on average (σ ≈ 5%) in this database, while its KDE-based version delivered
a stable≈88% at m = 3 (Figure 4a). However, it is not a universal rule, as PCA employed less
guides than KDE 308 times. It can be primarily attributed to the stronger outlier detection.
Two SCOP classes with the lowest guide averages were f and h, the membrane and coiled
coil proteins. The difference between PCA and KDE in terms of number of guides in the
entire database ranged from −51 to 62, ≈8 on average (σ ≈ 10.5).

The bounding ellipsoids produced with PCA were generally smaller than those ob-
tained with KDE (Figure 4b). Their average V coefficient for all domains was measured at
7.4 (σ = 7.2), whereas the same average for KDE was equal to 9.6 (σ = 10.4). It should be
noted, however, that V can rapidly change even with small changes to the ellipsoid radii
lengths. For instance, it is 32.6 for 34 × 32 × 30 and 35.8 for 35 × 34 × 31.
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decreasing order of the value of the metrics for r = 3.

The two tall peaks in the middle of Figures 4b and 5b (marked by pink circles) are
domains h.4.11.1 (Chemotaxis phosphatase CheZ), represented by chain Z from the protein
with PDB code 1KMI [61], and a.137.10.1 (Stathmin), represented by chain E from the
protein with PDB code 3RYC [62]. Both are made of long helices and feature a ≈90◦ bent at
the end of the chain. 1KMI:Z has over 30 residues not found during the crystallographic
experiment, while 3RYC:E has two beta strands at the N-terminus. KDE had trouble with
handling those parts. PCA swiftly isolated them from the rest of the chain.

The PCA-based and KDE-based versions of the EP algorithm returned similar globu-
larity metrics with outlier detection turned on (Figure 4c). The average value of |EP|1.0
was 0.54 (σ = 0.09) with PCA and 0.53 (σ = 0.11) with KDE. It was less than 0.5 in class e
with PCA and in classes e and f with KDE. The conclusion that domains of SCOP generally
fit well inside the effective atom MVEEs remains. The average values of EI0.3 and EI1.0 were
higher or equal to 0.5 and 0.4, respectively, with both approaches for every SCOP class.
PCA even achieved an overall EI1.0 average of 0.5 (it was 0.47 with KDE). The average
index difference between the two methods for all domains was 0.0 (σ = 0.05) for EI0.3 and
0.03 (σ = 0.05) for EI1.0. It ranged from -0.01 to 0.07 for the individual SCOP classes.

While the overall value shift of the ellipsoid indexes was not significant, it was appar-
ently enough for PCA to put 1824 domains in class G, with 1306 of them also in class H,
whereas KDE did that to 1735 (class G) and 965 (class H) domains, respectively. For classes S
and N these numbers were equal to 213 vs. 211 and 87 vs. 178 (PCA vs. KDE). The two
approaches agreed 942 (H), 1709 (G), 117 (S) and 85 (N) times. These results, in particular
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for classes N and H, suggest that the PCA-based method leans toward higher globularity
scores. However, only 17 of the 364 domains switched to class H from classes other than
G. It happened due to improved outlier handling, for example in the c.106.1.0 domain
(SurE-like), which was represented by chain A from the protein with PDB code 2WQK [63].
The other domains had EI1.0 right below 0.5, which allowed them to leap over this boundary.
An Oncogene products domain (SCOP code b.63.1.1) from the structure with PDB code
1A1X [64] is a good example of this phenomenon. Its EI1.0 increased from 0.468 with KDE
to 0.523 with PCA. Improvements to the outlier detection process were also corroborated
by the halving of the number of members of class N.

There was no significant discrepancy between PCA and KDE with outlier detection
turned off. The V coefficients became larger but remained in similar distance from each
other (µ = 11.2 and σ = 12.3 with PCA vs. µ = 13.1 and σ = 13.6 with KDE). The average
differences between pairs of globularity metrics (e.g., EI0.3 with PCA vs. EI0.3 with KDE)
ranged from -0.02 to 0.03 for every SCOP class (σ ≤ 0.4). It was caused by the abandonment
of the extension of the ellipsoid radii by δ. The classification of the domains was also found
to follow the schema described in the last paragraph: 466 (PCA) vs. 312 (KDE) in class H
(311 agreements), 1483 vs. 1520 in class G (1477), 326 vs. 247 in class S (244) and 315 vs.
357 in class N (314). Only this time, the class change happened only to domains that were
close to the class boundary. For instance, the 43 of them that fell from class G to class S had
average EI0.3 at m = 0 equal to 0.508 (σ = 0.006), and the 39 that ascended from class N to
class S had average EI1.0 at m = 0 equal to 0.294 (σ = 0.005). Such proteins can be thought as
having “fluid” globularity classification—prone to be easily changed.

When outlier detection was enabled, the numbers of atypical results increased with
PCA from 79 to 108 in class U (63 common) and from 100 to 127 in class E (98 common).
Disabling it changed these numbers to 69, 104 and 69 for class U and to 80, 92 and 80 for
class E. However, to join class U, a structure only needs to exhibit EI0.3 ≤ EI1.0, so it may
fluctuate in and out of this class if it is located near the EI0.3 = EI1.0 diagonal on the map.

There is only one last pair of results left to compare: r = 3 vs. r = 0 (m = 3 vs. m = 0 was
conducted in ref. [22]). The number of guides (Figure 5a) was already analyzed. Skipping
the outlier detection step increased V by 3.8 on average (σ = 6.3, Figure 5b), the most
in class e (µ = 11.1, σ = 13.9). It also decreased EI0.3 (µ = −0.05, σ = 0.07), the most in
classes f and h (µ ≈ −0.11, σ ≈ 0.11). The average and standard deviation of the overall
EI1.0 difference were equal to -0.08 and 0.06, respectively. The highest shifts were again
observed in classes f and h (µ ≈ −0.11, σ ≈ 0.09). r = 0 caused |EP|1.0 to drop on average
by 0.06 (σ ≈ 0.06, Figure 5c). In total, 466 domains belonging to class H at r = 3 remained
there at r = 0, 1475 remained in class G, 85 remained in class S, 86 remained in class N,
69 remained in class U and 89 remained in class E.

Lastly, we estimated the number of domains that may possess significantly outlying
fragments. Following the criteria from Section 3.2, switching from r = 3 to r = 0 should
change the globularity class to worse (G to S, G to N or S to N) and the |EP|1.0 difference
should reach 15% or more. It happened to 186 domains, the most in classes d (48) and
a (41), the least in e (8) and g (11). However, when expressed as a fraction of the number of
domains in those classes, f and h became the leaders, both at ≈21% (27/130 and 14/66).
65 domains shifted from class G to class S, 37 shifted from S to N and 84 shifted from G to N.
The last number is the most probable count of domains with significant outliers. 2WQK:A
fits perfectly in this scheme with its domain-swapped chain fragments.

3.4. Improved Ellipsoid Profile of the Biological Assemblies

After the successful application of the improved EP algorithm to the SCOP domain
superfamily representatives, we decided to step up the challenge and use it in the survey
of the landscape of globularity of the proteins, but at the quaternary structure level. Since
SCOP does not maintain this kind of information, a new dataset had to be constructed.
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3.4.1. Creation of the Database

An imposing majority of protein structures deposited in the PDB was obtained via
X-ray diffraction [65]. The experiment produces crystallographic interfaces that must be
distinguished from the biologically relevant interfaces. Put differently, some asymmetric
units must be joined into biological assemblies, and some biological assemblies must
be extracted from asymmetric units. Some biological assemblies are also equal to the
asymmetric units. In any case, it is a non-trivial task and many computer methods were
developed to handle it [37,38]. One such tool, PISA (protein interfaces, surfaces and
assemblies) [66] is employed by the PDB for automated quaternary structure matching.

A biological assembly is the largest functional form of a protein (i.e., its quaternary
structure) that was captured during the experiment [37,38]. As of today, all PDB structures
should have at least one such assembly (“biomolecule”) defined and each of their chains
should be assigned to at least one of the biomolecules. When depositors perform this
assignment themselves, it appears in the REMARK 350 records of the PDB file under
“author determined biological unit” along with any additional hits from PISA (“software
determined quaternary structure”). Symmetry operators needed to rebuild the assembly
from the asymmetric units are provided in the same location. If there is no need to do that,
the transformation is simply an identity matrix with a zero translation vector.

The quaternary structures denoted by the biological assemblies from the PDB files
constitute a reasonable target group for the EP algorithm, but the validation of the correct-
ness of their annotation was beyond the scope of this paper. It was also necessary to avoid
duplicates and to be able to somehow classify and cluster those assemblies. Hence, we
decided to consult an established resource, the 3DComplex database [39,40]. It performs all
the above tasks with manual curation—it validates, classifies and clusters the biological
assemblies from the PDB in terms of their structure and sequence. Contrary to its name, it
also processes monomeric proteins. All data are available to the public.

3DComplex stores its biological assemblies in a forest. The complexes are encoded
and clustered at the top of the hierarchy via graphs of non-bonded chain contacts (“QS
topology”). They are also assigned to symmetry classes (C2, D3, etc.). The clusters are split
on the next level on the basis of domain superfamily architecture (“QS family”). The trees
divide further down with increasing levels of uniqueness of the sequence.

We chose to work with the clusters at the QS family level. They are diverse enough
and possess a low probability for inter-cluster structural similarities. The corresponding
file NRX_0_5_topo_label_clusters.txt from the 3DComplex website (version 6, bottom-up
hierarchy) defined 11,582 such clusters containing 167,079 assemblies. Each cluster had a
representative chosen by 3DComplex on the basis of its crystallographic resolution.

We decided to add another criterion to the choice of cluster representatives. In addition
to good resolution, the assemblies should also possess a low number of model errors, un-
derstood here as the missing (i.e., unresolved) or unreliable (i.e., zero occupancy) residues.
This information is stored in the PDB files in REMARK 465 and 475 records. We devised
the following formula to combine these factors into one scoring function:

R2 +

(
E = ∑c

i=1
mi + ui√

li

)2
(6)

The representative of a cluster had to have the lowest score in that cluster—it had to
be closest to [0,0] in the R × E space. Symbols in this equation have the following meaning:

• R and E are the crystallographic resolution and error coefficient, respectively;
• mi is the number of residues in REMARK 465 for the i-th chain in the assembly;
• ui is the number of residues in REMARK 475 for the i-th chain in the assembly;
• li is the length of the sequence (SEQRES records) of the i-th chain in the assembly;
• c is the total number of chains in the reconstructed assembly (i.e., after the application

of all required symmetry operators from REMARK 350, between 1 and 60).
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√
l permitted penalization of errors in both small and large assemblies, keeping

those errors relevant along R, while squares of the summation terms discouraged E from
dominating the resolution. Together, they allowed us to avoid the low quality models.

However, before the above selection was made, assemblies determined only by the
software (e.g., by PISA) or involving nucleic acids were discarded. To promote the high
accuracy of complex symmetry information, assemblies still unprocessed by 3DComplex
(i.e., with “?” in the corrected_sym column), known or suspected to be erroneous (i.e., with
“YES”/“PROBYES” in the pdb_error column) were also removed. For the same reason, we
chose to omit the 5207 possibly problematic structures for which 3Dcomplex corrected the
PDB’s symmetry class or the number of subunits.

Additionally, before the application of Equation (6), custom SCOP domain fingerprints
were compiled for all assemblies (see next paragraph). Those with chains without at least
one SCOP entry or which contained domains from SCOP classes i, j or k were removed.
Class l (terminal artifacts) was permitted but not included in the fingerprints. It was
performed as a precaution against structural duplicates and had the largest impact on
the size of the database. For this reason, it also affected the selection of assembly cluster
representatives via Equation (6). When representatives of multiple clusters had an identical
domain fingerprint at the SCOP superfamily level, their clusters were merged into one
cluster, which was then represented by its member that had the lowest value of Equation (6).
There were 330 such clashes involving a total of 793 assemblies.

The assembly fingerprints were written in the following way: (d.99.1.1,d.100.1.1)*2.
This one corresponds to 1DIV, where each chain (*2) is composed of two domains from
d.99.1.1 and d.100.1.1 families. (d.99.1,d.100.1)*2 was its fingerprint at the superfamily
level. Domain family codes were stored in order of sequence and multi-segment domains
(e.g., spanning residues 1−100 and 200−300) were only captured the first time they were
encountered. (a.26.1.2)*2+(b.1.1.1,b.1.1.2)*1 is an example of a fingerprint of a heterotrimer
where two chains that are identical in the sense of SCOP domain families form a complex
with a third chain that is composed of two other domains. Because this encoding had
to be invariant to chain ID, the order of terms between the + signs did not matter, hence
(a.26.1.2)*2+(b.1.1.1,b.1.1.2)*1 equaled (b.1.1.1,b.1.1.2)*1+(a.26.1.2)*2.

3594 biological assemblies from 3577 PDB structures comprised the final database.
They represented a total of 136,608 biological assemblies from the PDB. A total of 638 clus-
ters had only one member. The average values of R, E and of the square root of Equation (6)
were 2 (σ = 0.56), 1.77 (σ = 3.93) and 3.08 (σ = 3.66), respectively. E was zero (i.e., no missing
or unreliable residues) in 842 assemblies.

3.4.2. Analysis of the Database

The biological assemblies from the database were divided into subsets depending on
their symmetry class, number of chains, domain stoichiometry (i.e., whether all chains
had the same domain fingerprint at the family level), and the number of domains in the
chains (i.e., whether there was one domain in all chains or more than one domain in some
of the chains). The number of possible subsets was high, but because some of them would
have less than 10 members, only relevant splits were made. This resulted in the creation of
following 15 assembly groups (characters in parentheses denote their labels):

• asymmetric—monomers with one (A1o) or many domains (A1m), dimers (A2), trimers (A3)
and complexes of four or more chains (A4+);

• cyclic—homomers with C2 symmetry and one (C2o=) or many domains (C2m=),
heteromers with C2 symmetry and one (C2o 6=) or many domains (C2m 6=), complexes
with C3 symmetry (C3) and complexes with C4 or higher order symmetries (C4+);

• dihedral—complexes with D2 (D2), D3 (D3) and D4 or higher order symmetries (D4+);
• complexes with either tetrahedral, octahedral or icosahedral symmetries (TOI).

One must remember that the above homomer/heteromer classification (i.e., the “=”
and “ 6=” signs) refers to the domain fingerprints, not the sequence of the chains.
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The improved EP algorithm was run twice on each assembly: with outlier detection
(r = 3) and without it (r = 0). Visualization of the results via EI0.3 × EI1.0 maps (i.e., in the
form of Figure 3b) is available in Supplemental File S7—Figures S27–S41, while the summary
of the globularity metrics is given in Table 6 (r = 3) and Table 7 (r = 0). The values of those
metrics for all individual assemblies are in Supplemental Files S8 (r = 3) and S9 (r = 0).

Table 6. Statistical summary of the results of the application of the improved EP algorithm to the
3594 representatives of the biological assemblies from the PDB with outlier detection (r = 3).

Assemblies Effective Guides V EI0.3 EI1.0 |EP|0.1 |EP|1.0 Globularity Classes

Group Count µ σ µ σ µ σ µ σ µ σ µ σ µ σ N S G H U E

A1o 657 187 119 95% 4% 8.6 7.1 0.58 0.06 0.51 0.06 0.56 0.13 0.56 0.06 8 43 606 464 17 7

A1m 527 416 223 93% 4% 23.4 15.7 0.52 0.08 0.45 0.07 0.51 0.15 0.49 0.07 17 132 378 101 17 13

A2 352 445 227 93% 4% 25.7 17.2 0.52 0.07 0.44 0.06 0.53 0.13 0.49 0.07 10 92 250 51 4 4

A3 169 607 285 92% 3% 36.9 21.5 0.49 0.06 0.41 0.05 0.48 0.13 0.46 0.05 5 95 69 3 2 2

A4+ 103 1589 1597 92% 4% 133.8 244.1 0.42 0.10 0.35 0.07 0.37 0.19 0.39 0.09 27 54 22 0 10 0

C2o= 537 392 324 94% 4% 21.5 23.6 0.53 0.08 0.46 0.06 0.46 0.15 0.51 0.07 14 115 408 164 19 2

C2m= 328 784 401 93% 4% 48.2 28.2 0.48 0.07 0.41 0.06 0.43 0.15 0.45 0.07 19 148 161 10 12 4

C2o 6= 83 807 408 92% 4% 48.0 25.0 0.49 0.07 0.41 0.05 0.42 0.16 0.46 0.06 2 40 41 2 4 0

C2m 6= 81 1449 1001 91% 5% 102.2 79.5 0.43 0.08 0.36 0.07 0.36 0.18 0.41 0.08 15 47 19 2 5 2

C3 184 799 586 94% 5% 50.4 42.8 0.49 0.09 0.41 0.07 0.34 0.17 0.46 0.08 17 68 99 18 17 3

C4+ 109 1256 918 96% 4% 87.7 78.2 0.40 0.12 0.39 0.07 0.16 0.16 0.40 0.09 27 55 27 7 48 0

D2 224 1172 736 95% 4% 75.5 58.3 0.47 0.08 0.41 0.06 0.28 0.16 0.45 0.07 12 115 97 12 29 1

D3 134 1772 1001 97% 3% 121.9 80.9 0.43 0.10 0.39 0.06 0.16 0.13 0.41 0.08 21 77 36 9 34 1

D4+ 79 2323 1629 98% 2% 165.6 140.3 0.35 0.12 0.37 0.06 0.05 0.07 0.36 0.08 26 49 4 0 43 0

TOI 27 5080 3546 99% 1% 378.9 331.5 0.23 0.16 0.33 0.08 0.02 0.05 0.28 0.11 18 8 1 0 21 0

all 3594 702 895 94% 4% 45.1 79.6 0.51 0.10 0.44 0.08 0.44 0.19 0.48 0.09 238 1138 2218 843 282 39

Meaning of the symbols is retained from Table 4. Count is the number of assemblies in given group.

Table 7. Statistical summary of the results of the application of the improved EP algorithm to the
3594 representatives of the biological assemblies from the PDB without outlier detection (r = 0).

Assemblies Effective Guides V EI0.3 EI1.0 |EP|0.1 |EP|1.0 Globularity Classes

Group Count µ σ 100% µ σ µ σ µ σ µ σ µ σ N S G H U E

A1o 657 187 119 100% 11.8 10.3 0.55 0.08 0.45 0.08 0.56 0.13 0.51 0.08 29 85 543 184 10 3

A1m 527 416 223 100% 34.4 25.7 0.48 0.10 0.37 0.08 0.48 0.16 0.44 0.09 84 169 274 15 10 10

A2 352 445 227 100% 39.0 28.9 0.48 0.09 0.36 0.07 0.51 0.14 0.43 0.08 77 96 179 4 5 1

A3 169 607 285 100% 56.4 38.2 0.44 0.07 0.33 0.06 0.47 0.14 0.39 0.06 41 93 35 0 1 0

A4+ 103 1589 1597 100% 199.0 271.3 0.37 0.11 0.28 0.07 0.35 0.18 0.33 0.09 52 44 7 0 6 0

C2o= 537 392 324 100% 30.5 34.4 0.50 0.10 0.40 0.08 0.45 0.15 0.46 0.09 75 127 335 43 17 3

C2m= 328 784 401 100% 70.8 42.9 0.44 0.09 0.34 0.07 0.41 0.15 0.40 0.07 93 148 87 2 8 4

C2o 6= 83 807 408 100% 71.9 39.5 0.44 0.08 0.34 0.06 0.43 0.16 0.40 0.07 20 41 22 0 3 0

C2m 6= 81 1449 1001 100% 170.8 146.4 0.39 0.10 0.28 0.08 0.35 0.18 0.34 0.09 49 20 12 1 1 1

C3 184 799 586 100% 71.1 64.8 0.46 0.10 0.36 0.08 0.34 0.17 0.41 0.09 49 60 75 6 14 3

C4+ 109 1256 918 100% 107.7 93.5 0.38 0.12 0.35 0.08 0.16 0.16 0.36 0.10 42 47 20 4 39 0

D2 224 1172 736 100% 100.1 78.7 0.46 0.08 0.36 0.07 0.29 0.16 0.42 0.07 51 95 78 2 12 0

D3 134 1772 1001 100% 148.4 103.7 0.43 0.10 0.36 0.07 0.18 0.14 0.40 0.08 32 70 32 4 24 0

D4+ 79 2323 1629 100% 186.2 156.3 0.35 0.12 0.36 0.07 0.06 0.08 0.35 0.08 31 44 4 0 41 0

TOI 27 5080 3546 100% 390.6 329.4 0.23 0.16 0.33 0.08 0.03 0.05 0.28 0.11 16 10 1 0 19 0

all 3594 702 895 100% 61.6 95.0 0.47 0.11 0.37 0.09 0.43 0.19 0.43 0.10 741 1149 1704 265 210 25

Meaning of the symbols is retained from Table 6. At r = 0 all effective atoms are the guides.
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Figure 6 displays comparisons of three metrics of the EP algorithm: number of guide
effective atoms, V and |EP|1.0. These charts look similar to the charts from Figure 5.
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The number of common PDB codes between the structures containing the biological
assemblies from this database and the structures containing the representatives of SCOP
domain superfamilies was 854, which is 40.2% of 2124 and 23.8% of 3594, respectively.

Asymmetric biological assemblies constituted 50.3% of the database. In total, 65.5%
of them were monomeric and 55.5% of those monomers had only one domain. The next
28.6% of the database was occupied by complexes exhibiting the C2 symmetry. A total of
84.1% of them had fingerprint-wise homomeric chains (i.e., groups C2o= and C2m=) and
62.1% of those homomers had one domain in their chains (i.e., group C2o=). Structures
with dihedral symmetries were in the minority (12.2%) and only 27 molecules possessed
either the tetrahedral, octahedral or icosahedral symmetries (i.e., the members of the TOI
group). 60 chains comprised each of the four largest complexes in the database.

The EP algorithm employed on average 94% (σ = 4%) of the residues as guides for
the bounding ellipsoid subroutine. Their numbers increased with the numbers of residues
in the symmetric proteins, reaching 99% in TOI, 98% in D4+ and 97% in D3. This is
understandable—the more regular the structure is, the less outliers are found in it by PCA.

The single-domain monomers (A1o) were the smallest proteins, showing an average
value of the V coefficient at r = 3 equal to 8.6 (σ = 7.1), close to the V data in the last row of
Table 4 (µ = 7.4, σ = 7.2). The next group in this sense was C2o= (µ = 21.5, σ = 23.6), compa-
rable with the multi-domain monomers (A1m, µ = 23.4, σ = 15.7). Conversely, the largest
asymmetric complexes (A4+) were the third group bound in the largest MVEEs (µ = 133.8,
σ = 244.1) after TOI and D4+ (n.b., they were even the second largest at r = 0). With seven
chains on average (σ = 6.7), they also exhibited many visually diverse conformations.

While the average values of EI0.3 and EI1.0 for all domain superfamily representatives
together reached 0.5 at r = 3 (0.57 and 0.5 to be precise, in the zone of high globularity), only
the single-domain monomers (A1o) attained a similar status (EI0.3 = 0.58, EI1.0 = 0.51). This
corroborates the above observation of the closeness of these sets in terms of the V coefficient.
The average ellipsoid index values of all biological assembly representatives were 0.51 and
0.44. This puts them as a whole in the G class zone, although just barely. The ellipsoid
indexes in the A1m, A2 and C2o= groups were close to each other with their average
|EP|1.0 values between 0.49 and 0.51 (EI0.3 > 0.5, EI1.0 ≈ 0.45). After all, they were mostly
pairs of domains. Groups A3, C2m=, C2o 6=, C3 and D2 had their average EI0.3 between
0.47 and 0.49 and average EI1.0 equal to 0.41 (|EP|1.0 ≈ 0.45). Index similarities were also
discovered between A4+, C2m 6=, C4+ and D3 groups. However, their average EI1.0 were
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below 0.4 (|EP|1.0 ≈ 0.4). Only groups D4+ and TOI were worse in this regard. Both
had average EI0.3 below 0.4. TOI even dropped below 0.3, making it the only intrinsically
non-globular subset here. Both groups also achieved low average values of |EP|0.1 (0.05
and 0.02). This strongly hints at the primary cause of their low ellipsoid indexes.

At r = 3, 61.7% of the biological assemblies was considered globular by the EP al-
gorithm. In total, 74% of them belonged to groups A1o, A1m, A2 and C2o= (A1o alone
constituted 36.9% of this 74%). This is not far away from the percent of the domain super-
family representatives in class G (69.8%). A total of 55% of all highly globular assemblies
originated from group A1o. However, the total percent of members of class H was lower
than among the domains, 23.5% of 3594, down from 61.5% of 2124. Conversely, 31.7% of the
assemblies and 10% of the domains comprised class S. In total, 44.8% of this class originated
from groups A1m, C2o=, C2m= and D2 (over 100 structures in each). On the other hand,
the fractions of the non-globular molecules were comparable: 6.6% of the assemblies versus
4.1% of the domains. Groups A1o, A2, A3 and C2o 6= had less than 11 members in class N
(group C2o 6= had only two, but also two in class H). No row in Table 4 has less numbers
for class G than for the two other main classes combined. Here, only groups A1o, A1m, A2,
C2o= and C3 exhibited this property. As expected after the previous paragraph, groups D4+
and TOI were their opposites, with a total of five globular structures in them. That lone
“green” molecule in group TOI (Figure S41 in Supplemental File S7) is the tetrahedral UbiX
complex (12 × c.34.1.0 domains) with PDB code 4ZAV [67]. Unlike the other members of its
group, it did not feature an overly large void in its center (only a relatively small one, but
detectable due to |EP|0.1 = 0.11), which allowed it to barely pass into class G (EI0.3 = 0.5,
EI1.0 = 0.452). It was also not assigned to class U, whereas 77.8% of TOI was. The percent of
unusual results increased to 7.8% from 5.1% for the domains. In total, 62.1% of those 7.8%
was in groups C4+, D2, D3, D4+ and TOI. With the sole exception of D2, more than 25%
of their members were in class U. Lastly, 6% of the domains were considered elongated
(class E), but this property carried only to 1.1% of the assemblies, 39 to be exact. 20 of them
were in groups A1o and A1m, followed by four in A2 and C2m=.

The results at r = 0 demonstrate how important the outlier detection subroutine is for
the measurement of globularity and how it supports the entire workflow even when no
significant outliers are presents. Compared with results at r = 3, the V coefficient increased
on average by 16.5 (σ = 29.1), followed by an average drop of EI0.3 by 0.03 (σ = 0.05) and of
EI1.0 by 0.06 (σ = 0.04). The average values of EI0.3 and EI1.0 for the entire set of assemblies
stopped at 0.47 (σ = 0.11) and 0.37 (σ = 0.09), respectively. This places them in the S class
zone (n.b., the domain set stayed in class G—Table 5). Groups A4+ and C2m 6= joined
group TOI in being primarily located in class N (EI0.3 ≈ 0.38, EI1.0 ≈ 0.28). The number
of assemblies in class G changed from 2218 to 1704 (1688 stayed there since r = 3). For the
other classes these numbers were as follows: 843 to 265 (265) in class H, 1138 to 1149 (743)
in class S, 238 to 741 (236) in class N, 282 to 210 (195) in class U and 39 to 25 (23) in class E.

With an observed |EP|1.0 difference higher than or equal to 15%, 21 assemblies
dropped from class G to class S, 55 dropped from class G to class N and 31 dropped from
class S to class N. Again, 55 is the number of molecules suspected of having significantly
outlying fragments. 46 of them were in groups A1o, A1m, A2, C2o= and C2m=. Group
A1o witnessed 14 of the 21 switches from class G to class S. One of the examples is the
catalytic core and C-terminal domain of HIV-1 Integrase with PDB code 1EX4 [68] and
domain fingerprint (c.55.3.2,b.34.7.1)*2. Its C-terminal domains are outlying at r = 3. Like
in 1DIV, the helices that link them to the core are also isolated at r = ∞.

4. Conclusions

This paper reports the findings of the continuation of our initial research in the area of
the measurement of globularity of proteins via voxel-based atom representation and the
approximation of their shape via minimum volume enclosing ellipsoids [22]. The tool used
for this measurement is called the ellipsoid profile algorithm (EP) [22].
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The EP algorithm was recalled in Section 2.3 to further establish its main concepts in a
way that should be convenient for programmers. In fact, it can be readily implemented
using functions from the popular computational packages such as NumPy and SciPy. The
brief code of its only “external” subroutine (MVEE) is also available online [69,70]. This
description of the EP algorithm is supported by additional explanations and a minor
addition of the new labels for the classes of globularity (N, S, G, H, U, E).

In Section 3.1, we presented a modified version of the EP algorithm enhanced with an
improved subroutine for the detection of significant structural outliers (e.g., portions of the
chain extended into solvent that can negatively impact the measurement of globularity).
This enhancement is based on principal component analysis (PCA) in tandem with the
confidence ellipsoid method. We recently introduced this idea to the calculation pipeline
of the fuzzy oil drop model (FOD) [26]. It was applied to the EP algorithm with a few
tweaks needed for its context. It replaces the current subroutine based on medians of
kernel density estimation (KDE) as the default outlier detection workflow. PCA quickly
and precisely aligns the input set of effective atoms with the axes of the coordinate system,
while the subsequent confidence ellipsoid splits this set between the outliers and guides
(i.e., the elements of the “main body” of the protein). Size of the confidence ellipsoid (i.e.,
the strength of the outlier detection) is controlled by the confidence level parameter P. Its
suggested default value is 0.9. It seems to be stable and robust against the various kinds
of structures (with and without outliers) when used along r = 3, which is the parameter
controlling the maximum number of detection rounds. When r = 0 the entire detection is
bypassed. Analysis and comparison of globularity metrics at r > 0 and r = 0 informs about
the possibility of structural issues in the input structure, such as the previously mentioned
outlier fragments, elongation or central void, such as that in 3BPD:(A–G).

One may be tempted to run these two techniques in succession, first PCA then KDE,
on the guides returned by PCA. However, to not overdo it, m, the number of kernel density
medians, should be increased from 3 to 4, which eventually does not change much in terms
of the globularity metrics but burdens the CPU with an extra workload. To achieve PCA’s
anti-outlier properties by KDE in tandem with a 1-d confidence ellipsoid, P would need to
be lowered to ≈0.5 (and r set to 1), which causes too much of the molecule to be carved into
from all directions. Owing to two parameters with sensible defaults (one being real-valued),
the new solution can be tweaked for various experiments with finer granularity. However,
we do not completely abandon the KDE-based approach. It can be useful for some proteins
due to its ability to scrutinize their shape from a different perspective. Our web server at
http://fod.cm-uj.krakow.pl retains it as an option.

In Section 3.2 we applied the improved EP algorithm to the six example proteins and
in Section 3.3 we ran it on the 2124 representatives of SCOP domain superfamilies from the
modified ASTRAL compendium, comparing its outcome to the previous (i.e., KDE-based)
results from ref. [22]. It brought a fresh look on the globularity of the majority of structural
types of protein domains and allowed us to reach the above conclusions.

In Section 3.4 we expanded the survey of the landscape of globularity from protein
domains (i.e., at the tertiary structure level) to manually assigned biological assemblies
(i.e., at the quaternary structure level) that were extracted from models deposited in the
PDB. This way, we measured the status of the functional forms of the molecules that can
be found in vivo. The EP algorithm was applied to the 3594 representatives of biological
assemblies with various complex sizes and symmetries, ranging from monomers to sizable
complexes such as Urease. The structures were divided between their symmetry classes
(cyclic, dihedral, etc.) for detailed analysis. The selection, clustering and validation of
the assembly information was performed with the help of the 3DComplex database and
custom SCOP domain fingerprints. The results are in line with the expectations, positively
validating the EP algorithm. They complement the data obtained for the domains.

We believe that the EP algorithm is a useful addition to structural biologists’ and
bioinformaticians’ toolboxes, especially for those interested in checking whether the given
protein is globular or not. It can be applied to any part of the molecule and is aware of the

http://fod.cm-uj.krakow.pl
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unoccupied space within its bounding ellipsoid (MVEE). The use of effective atoms with
the outlier detection allows the EP algorithm to produce tight ellipsoidal representations
of the proteins that are less affected by local features of the molecular surface. Research
aimed at its further improvements and applications will continue.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom13020385/s1. Supplemental File S1 (Figures S1–S6)—cartoon
and surface style renders of the structures from Table 1; Supplemental File S2 (Figures S7–S12)—
visualization of the bounding of the structures from Table 2 in the improved EP algorithm; Sup-
plemental File S3 (Figures S13–S18)—visualization of voxelization of the structures from Table 2 in
the improved EP algorithm; Supplemental File S4 (Figures S19–S26)—ellipsoid index maps of the
representatives of the SCOP domain superfamilies calculated by the improved EP algorithm (size
of the markers gauges the number of residues); Supplemental File S5—globularity metrics of the
representatives of the SCOP domain superfamilies calculated using the improved EP algorithm with
outlier detection; Supplemental File S6—like Supplemental File S5 but without outlier detection;
Supplemental File S7 (Figures S27–S41)—like Supplemental File S4 but for the representatives of the
biological assemblies from the PDB; Supplemental File S8—like Supplemental File S5 but for the
representatives of the biological assemblies from the PDB; Supplemental File S9—like Supplemental
File S8 but without outlier detection.
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