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Abstract: Amyotrophic lateral sclerosis (ALS) that comprises sporadic (sALS) and familial (fALS)
cases, is a devastating neurodegenerative disorder characterized by progressive degeneration of
motor neurons, leading to muscle atrophy and various clinical manifestations. However, the complex
underlying mechanisms affecting this disease are not yet known. On the other hand, there is also no
good prognosis of the disease due to the lack of biomarkers and therapeutic targets. Therefore, in
this study, by means of bioinformatics analysis, sALS-affected muscle tissue was analyzed using the
GEO GSE41414 dataset, identifying 397 differentially expressed genes (DEGs). Functional analysis
revealed 320 up-regulated DEGs associated with muscle development and 77 down-regulated DEGs
linked to energy metabolism. Protein–protein interaction network analysis identified 20 hub genes,
including EIF4A1, HNRNPR and NDUFA4. Furthermore, miRNA target gene networks revealed
17 miRNAs linked to hub genes, with hsa-mir-206, hsa-mir-133b and hsa-mir-100-5p having been
previously implicated in ALS. This study presents new potential biomarkers and therapeutic targets
for ALS by correlating the information obtained with a comprehensive literature review, providing
new potential targets to study their role in ALS.

Keywords: neurodegenerative diseases (NDDs); extracellular/circulating biomarkers; microRNA;
amyotrophic lateral sclerosis (ALS); bioinformatics

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder, char-
acterized by the progressive degeneration of upper and lower motor neurons, resulting
in muscle atrophy and diverse clinical manifestations. The disease exhibits an estimated
prevalence of 4–8 cases per 100,000 individuals across most populations [1]. Alongside
motor neuron degeneration, ALS patients may present cognitive and behavioral impair-
ments, adding to the complexity of the disease [2,3]. The median survival post-symptom
onset typically ranges from 3 to 5 years, although prognostic factors can influence this
timeframe [4].

ALS is broadly classified into sporadic (sALS) and familial (fALS) forms, accounting
for 90–95% and 5–10% of cases, respectively [5]. Presently, only two approved drugs,
edaravone and riluzole, are available for ALS treatment, emphasizing the urgent need for
further therapeutic options [6].

While the precise etiology of ALS remains elusive, genetic factors related to RNA
metabolism, protein homeostasis, DNA damage repair, nucleocytoplasmic transport, ex-
citotoxicity, oxidative stress and axonal transport have been implicated [7–13]. Specific
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mutations have been described in genes such as SOD1, FUS, C9ORF72, ATXN2, OPTN,
VCP, PFN1, MATR3, SETX and UBQLN2 [14–24]. Advancements in whole-genome se-
quencing have led to the discovery of new ALS-associated genes such as LGALSL, FIG4 or
ALS2 [25–27]. Despite these insights, ALS remains a multifactorial disease, which reflects
the difficulty of achieving more effective therapies [28].

Biomarkers can play a pivotal role in ALS research, enabling early diagnosis, prognosis
prediction, treatment evaluation and therapeutic discovery [29]. Bioinformatics, a field
of remarkable progress, has become relevant in the biomarker exploration of various
diseases [30–32]. Previous studies conducted by Lin, Huang, Chen, Ye, Su and Yao [2] have
delved into bioinformatic analyses using gene expression series (GSE) from human spinal
cord motor neuron data. However, human muscle samples, a primary site affected by ALS,
remain largely unexplored. Interestingly, growing evidence suggests alterations in the
neuromuscular junction from the presymptomatic stage. These alterations could indicate
that the degenerations observed in motor neurons could be influenced by pathogenic
alterations in muscles [33].

In this study, we scrutinized the GEO dataset GSE41414 [34] to identify differentially
expressed genes (DEGs) in sALS-affected muscle samples compared to healthy controls.
Subsequently, GO and pathway enrichment analyses shed light on the functions and path-
ways influenced by these DEGs. Furthermore, we constructed protein–protein interaction
networks to pinpoint subnetworks and hub genes. Additionally, miRNA–target gene
networks were developed, offering insights into potential gene interactions in the context
of ALS.

2. Materials and Methods
2.1. Microarray Dataset

An extensive search was conducted within the Gene Expression Omnibus (GEO)
database, a globally accessible public repository established in 2020 to investigate pertinent
gene expression datasets [35]. The search strategy used a combination of specific keywords:
ALS and skeletal muscle (ALS [All Fields] AND skeletal muscle [All Fields]). Stringent
criteria were applied, including a restriction to datasets exclusively associated with Homo
sapiens and categorized under the study type of expression profiling by array. We focused
on samples of skeletal muscle to provide new insights on this tissue that is affected by
the disease.

Among the identified datasets, GSE41414 emerged as the dataset of choice. This
dataset, residing on the Affymetrix Human HG-Focus Target Array platform, encompasses
a comprehensive collection of samples, including seven control and seven sporadic ALS
(sALS) patient specimens (Table S2). All control samples encompass fibers from the deltoid
skeletal muscle. For samples from individuals with sporadic amyotrophic lateral sclerosis
(sALS), three come from the quadriceps skeletal muscle, and four come from the deltoid
skeletal muscle. Both cohorts underwent extensive analysis, and subsequent observation
revealed no discernible differences. Consequently, these groups were combined into a
singular category representing skeletal muscle affected by sporadic amyotrophic lateral
sclerosis (sALS).

2.2. Identification and Analysis of Differentially Expressed Genes (DEGs)

The gene expression data were analyzed using RStudio environment and specific Bio-
conductor packages [36]: affy (v1.78.2), oligo (v1.64.1), GEOquery (v2.68.0), limma (v3.56.2)
and ggplot2 (v3.4.3). Data correction and normalization were initially performed. Subse-
quently, the limma package’s moderated t-test, based on the empirical parametric Bayes
method, identified differentially expressed genes (DEGs) between ALS patient and control
samples. The criteria for DEGs included |logFC| > 0.5 (1.4-fold change) for up-regulated
genes, |logFC| < 0.5 (0.7-fold change) for down-regulated genes and a p-value < 0.05. The
results were visualized using a volcano plot created with ggplot2 packages.
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2.3. Functional and Enrichment Analysis of DEG Pathways

The functional enrichment analysis of up- and down-regulated genes was carried
out using the Bioconductor R package clusterProfiler (v4.8.2) [37] with default statistical
thresholds and OrgDb set to “org.Hs.eg.db”. clusterProfiler is a well-known package for
performing comprehensive functional and pathway enrichment analyses that are needed
for the analysis and visualization of enrichment across numerous organisms. The analysis
specifically focused on Gene Ontology (GO) terms, categorizing them into (1) biolog-
ical processes, (2) molecular functions and (3) cellular components. Significance was
determined with a stringent criterion: GO scores with a p-value < 0.05 were considered
statistically significant.

2.4. Protein–Protein Interaction (PPI) Network Construction and Subnetwork Identification

The STRING online database (https://string-db.org/, accessed on 5 February 2024)
was used to predict and analyze protein–protein interactions of positively and negatively
regulated genes [38]. These interactions were visually represented using Cytoscape soft-
ware (v3.9.1), which allowed modification and visualization of biological networks [39]. In
addition, the MCODE (Molecular Complex Detection) add-on of Cytoscape [40] facilitated
the analysis of densely connected clusters within the networks based on specific criteria
(degree limit = 2, node score limit = 0.2, kernel K = 2 and max. depth = 100). Subsequently,
the highest scoring subnetworks for positively and negatively regulated genes were se-
lected. For further analysis and enrichment, we used Metascape (https://metascape.org,
accessed on 5 February 2024), a user-friendly online bioinformatics portal recognized for
its functional enrichment and interactome analysis capabilities, which ensures meticulous
exploration of the biological processes studied [41].

2.5. Analysis of Hub Genes and PPI Networks

To identify positively regulated and negatively regulated hub genes, the Cytoscape
add-on cytoHubba was used. cytoHubba is capable of performing topological analysis
using 11 methods, among which the most commonly used are degree MCC (maximum
clique centrality) and betweenness [42]. The ten hub genes with the highest degrees were
identified in the PPI networks that were positively and negatively regulated.

2.6. Prediction of miRNAs Targeting Hub Genes

The miRNet database (https://www.mirnet.ca/, accessed on 5 February 2024) served
as a crucial bioinformatics platform for predicting target-gene and miRNA pairs [43]. This
powerful tool integrates data from 14 distinct miRNA databases, including TarBase, miR-
TarBase, miRecords, miRanda, miR2Disease, HMDD, PhenomiR, SM2miR, PharmacomiR,
EpimiR, starBase, TransmiR, ADmiRE and TAM 2.0. Specifically, for this research, miR-
NAs specific to both positively and negatively regulated hub genes were predicted. The
resulting target-gene–miRNA regulatory network was depicted and visually represented
using Cytoscape.

3. Results
3.1. Identification and Analysis of Differentially Expressed Genes (DEGs)

The GSE41414 dataset contained a total of 8793 genes, of which, a total of 397 dif-
ferentially expressed genes (DEGs) were identified. Among these DEGs, there were 320
up-regulated genes and 77 down-regulated genes. These genes were represented in a
volcano plot (Figure 1).

https://string-db.org/
https://metascape.org
https://www.mirnet.ca/
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Figure 1. Volcano plot of differentially expressed genes (DEGs). Red dots represent up-regulated
genes according to p-values < 0.05 and |logFC| > 0.5. Blue dots represent down-regulated genes
according to p-values < 0.05 and |logFC| < 0.5.

3.2. Functional and Enrichment Analysis of DEG Pathways

GO analysis consists of three parts: (1) biological processes (BPs), (2) cellular com-
ponent (CC) and (3) molecular function (MF). In this study, a functional analysis of up-
regulated DEGs and down-regulated DEGs (Figure 2) was performed.
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Figure 2. Gene Ontology (GO) function and pathway enrichment analysis of up-regulated DEGs and
down-regulated DEGs. The top 10 terms for each of the GO analysis categories’ biological processes
(BPs), cellular component (CC) and molecular function (MF) are presented. (a) BPs of up-regulated
DEGs; (b) CC of up-regulated DEGs; (c) MF of up-regulated DEGs; (d) BPs of down-regulated DEGs;
(e) CC of down-regulated DEGs; and (f) MF of down-regulated DEGs.

The analysis revealed that up-regulated DEGs were involved in biological processes
such as muscle structure development, myoblast differentiation and regulation of myoblast
differentiation, among others. In terms of the CC, DEGs were mainly enriched in collagen-
containing extracellular matrix, external encapsulating structure and extracellular matrix.
The molecular functions associated with these DEGs were mainly structural molecule
activity, mRNA binding and extracellular matrix structural constituent.

On the other hand, down-regulated DEGs were involved in biological processes of
generation of precursor metabolites and energy, aerobic respiration, cellular respiration
and oxidative phosphorylation, among others. The most enriched CC terms for these
DEGs were the mitochondrial membrane, mitochondrial protein-containing complex and
inner mitochondrial membrane protein complex. The molecular functions associated with
these DEGs were electron transfer activity, oxidoreduction-driven active transmembrane
transporter activity and primary active transmembrane transporter activity.

3.3. Protein–Protein Interaction (PPI) Network Construction and Subnetwork Identification

The protein–protein interaction network of the 397 DEGs was constructed with
medium confidence using STRING. A PPI network was constructed for the up- and down-
regulated DEGs. The obtained files were subsequently visualized by Cytoscape, and their
possible subnetworks were analyzed with MCODE to investigate the molecular networks
related to these deregulated genes. Up to nine subnetworks were identified for up-regulated
DEGs and three subnetworks for down-regulated DEGs. We selected the subnetworks
with the highest MCODE scores for up- and down-regulated DEGs. The subnetwork of
up-regulated DEGs consisted of 15 genes: EIF4A1, CCT2, ETF1, PABPC1, HNRNPR, EIF3A,
EEF2, HNRNPA1, RPLP0, EEF1A1, RAN, RPL12, CCT6A, RPL15 and CCT3 (Figure 3a). The
subnetwork of down-regulated DEGs consisted of 12 genes: COX5B, COX6A2, NDUFA4,
COX6C, NDUFB4, ATP5MC1, COX8A, NDUFA3, ATP5PF, COX7A1, COX5A and NDUFA6
(Figure 3b).

Finally, these subnetworks were enriched using Metascape. Metascape serves as a user-
friendly online bioinformatics portal, facilitating the expeditious and precise acquisition
of functional enrichment and interactome analysis outcomes from a designated list of
genes of interest. The most enriched pathways for the up-regulated DEG subnetwork
included translation, translation factors and metabolism of RNA (Figure 4). Conversely, the
most enriched pathways for the down-regulated DEG subnetwork comprised the electron
transport chain, oxidative phosphorylation and respiratory electron transport (Figure 5).
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Figure 5. Enrichment analysis of MCODE-clustered subnetwork of down-regulated DEGs by Metascape.

3.4. Identification of Hub Genes

The 10 hub genes of the PPI network of up-regulated DEGs with the highest MCC
(maximum clique centrality) hub according to the cytoHubba complement were EEF1A1,
RPLP0, EEF2, EIF4A1, CCT2, HNRNPR, RPL12, RPL15, HNRNPA1 and PABPC1 (Figure 6a).
On the other hand, the 10 hub genes in the PPI network of down-regulated DEGs with the
highest MCC hub were NDUFA4, COX5B, COX6C, NDUFA3, NDUFB4, COX5A, COX6A2,
NDUFA6, COX8A and ATP5MC1 (Figure 6b).
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By integrating the information from the 20 hub genes identified through PPI network
analysis of both up- and down-regulated DEGs with the results from subnetwork identifi-
cation using MCODE, it was observed that all up- and down-regulated hub genes were
present in their respective highest-scoring subnetworks, which were mentioned in the
previous section. This observation suggests that these 20 hub genes might serve as potential
biomarkers and could lead to the identification of novel targets for amyotrophic lateral
sclerosis (ALS) therapeutics. The hub genes identified as up-regulated were intricately
linked to the maintenance, regeneration and differentiation of muscle tissue, as well as RNA
metabolism. These findings highlighted that the maintenance of the regenerative capacity
of this tissue under neurodegenerative conditions. Conversely, the down-regulated hub
genes were associated with metabolism and oxidative stress, which become altered during
disease progression.

Consequently, a literature review was conducted, limited to studies published within
the last 5 years, to determine whether research has been conducted on each of these
ALS-related genes. Among the hub genes derived from the up-regulated DEGs, no ALS-
related literature was found for the EEF1A1, RPLP0, EEF2, CCT2, RPL12 and RPL15 genes.
However, studies related to ALS were identified for the EIF4A1 [44], HNRNPR [45], HN-
RNPA1 [45,46] and PABPC1 genes [47]. In the case of hub genes obtained from the down-
regulated DEGs, only the NDUFA4 gene was associated with ALS-related studies [48].

Additionally, while no studies directly related to ALS were discovered, other studies re-
lated to other neurological diseases were found in the cases of the EEF1A1 [49], COX5A [50]
and RPL12 and RPL15 genes [51].

3.5. Prediction of miRNAs Targeting Hub Genes

A total of 17 microRNAs (miRNAs) associated with the hub genes were identified
using the miRNet tool, a powerful and comprehensive online tool that integrates more than
14 miRNA databases. The detailed results are presented in Table 1. Several target genes,
including EIF4A1, HNRNPA1 and COX5A, were found to be associated with three or more
miRNAs. Finally, an exhaustive bibliographic review was conducted, limited to studies
published in the last five years, to determine if research had been conducted on each of
the microRNAs (miRNAs) related to amyotrophic lateral sclerosis (ALS). It was found that
some of them, such as hsa-mir-100-5p, hsa-mir-125b-5p, hsa-mir-133a-3p, hsa-miR-206 and
hsa-miR-133b [52–56], are closely associated with ALS. On the other hand, certain miRNAs,
such as hsa-let-7a-5p and hsa-mir-26a-5p, have been linked to neurological diseases other
than ALS [57].

Table 1. List of miRNAs and their target genes. Each miRNA is associated with one or more
target genes.

miRNA miRNA Accession Gene Target Tissue Up/Down

hsa-let-7a-5p MIMAT0000062 EEF2 Muscle Up

hsa-mir-100-5p MIMAT0000098

EEF1A1
RPL15
RPL12

Muscle UpEEF1A1
RPL15
RPL12

hsa-mir-125b-5p MIMAT0000423

EEF1A1

Muscle UpRPLP0
PABPC1

EEF2

hsa-mir-133a-3p MIMAT0000427 EIF4A1 Muscle Up

hsa-mir-133b MIMAT0000770 EIF4A1 Muscle Up

hsa-mir-134-3p MIMAT0026481 RPL12 Muscle Up
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Table 1. Cont.

miRNA miRNA Accession Gene Target Tissue Up/Down

hsa-mir-1-3p MIMAT0000416

HNRNPA1
HNRNPR
EEF1A1
EIF4A1
RPL15
RPL12

Muscle Up

hsa-mir-140-3p MIMAT0004597

RPLP0 HNRNPA1
EIF4A1
EEF2

RPL15

Muscle Up

hsa-mir-193a-5p MIMAT0004614 PABPC1 Muscle Up

hsa-mir-206 MIMAT0000462 HNRNPA1 Muscle Up

hsa-mir-26a-5p MIMAT0000082 EEF2 Muscle Up

hsa-mir-27a-3p MIMAT0000084 PABPC1 HNRNPA1
EEF2 Muscle Up

hsa-let-7a-5p MIMAT0000062 NDUFB4 NDUFA3
COX8A Muscle Down

hsa-mir-100-5p MIMAT0000098 COX5A Muscle Down

hsa-mir-134-5p MIMAT0000447 COX8A Muscle Down

hsa-mir-1-3p MIMAT0000416
NDUFB4 COX6C
NDUFA3 COX5A

NDUFA6
Muscle Down

hsa-mir-26a-5p MIMAT0000082
COX5A
COX5B
COX8A

Muscle Down

4. Discussion

ALS, a devastating neurological disorder, was initially recognized in the 19th century;
however, the fundamental etiology and pathophysiological mechanisms of the disease
remain elusive to this day [58]. Therefore, importance needs to be given to studying
the progression of ALS and developing new therapeutic strategies. ALS is a complex
multifactorial pathophysiology in which numerous molecular and cellular processes appear
to cause the neurodegeneration of ALS [59].

Currently, many computational approaches and high-throughput multi-omics tech-
nologies have been used for the identification of genes and pathways associated with
ALS [31]. Remarkably, the study of multi-omics data (transcriptomics, proteomics and
metabolomics) that aims to investigate new potential biomarkers and therapeutic tar-
gets is becoming key in the study of ALS disease. The original authors of this database,
Bernadini et al. [34], performed a DEG study, as well as a functional study, a principal
component analysis (PCA) and interconnected biological networks. Therefore, our aim
was to introduce a novel approach to use this database with a less restrictive cutoff for
DEG analysis to perform functional and enrichment analyses of DEG pathways. We also
introduced additional protein–protein interaction (PPI) studies to identify subnetworks
and hub genes. These hub genes were then used to predict associated miRNAs.

In this study, after analyzing the gene expression profiles of the patients, we obtained
320 up-regulated genes and 77 down-regulated genes. Compared to the results presented
by the original authors [34], our results aligned with the differences in methodology used.
We applied cut-off criteria of |logFC| > 0.5 for up-regulated genes and |logFC| < 0.5
for down-regulated genes, whereas cut-off criteria of |logFC| > 1 and |logFC| < 1, re-
spectively, were previously used [34]. These variations in cut-off criteria contributed to
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the observed differences in the differentially expressed genes that were identified. The
most significant pathways identified were related to the development of muscle structure
for the up-regulated genes and to the generation of precursor metabolites and energy for
the down-regulated genes. These findings were in accordance with the skeletal muscle
dysfunction that can contribute to progressive muscle weakness in ALS [60]. In addition, it
has also been observed that energy metabolism is altered in human ALS muscle cells, which
correlates with energy metabolism pathways [61], as was also suggested by Bernadini and
coworkers, indicating that the biological processes were mainly related to skeletal muscle
development/contraction and the generation of precursor metabolites and energy [34].

From this group of both up- and down-regulated genes, those genes with the great-
est potential as biomarkers were identified. The relevant up-regulated hub genes were
EEF1A1, RPLP0, EEF2, EIF4A1, CCT2, HNRNPR, RPL12, RPL15, HNRNPA1 and PABPC1.
No ALS-related scientific evidence was found for the RPLP0, EEF2 and CCT2 genes. How-
ever, some studies related to the EIF4A1, HNRNPR, HNRNPA1 and PABPC1 genes were
considered. EIF4A1 has been found to play a role in the formation of stress granules in
motor neurons [44,62]. Elevated expression of HNRNPR and HNRNPA1 together with
a subset of human RNA-binding proteins that bind to the GGGGCC repeat RNA of the
C9orf72 gene, one of the most common causes of ALS, reduces the level of GGGGCC repeat
RNA, leading to the suppression of neurodegeneration. In addition, the involvement of
HNRNPA1 in the different molecular pathways related to ALS neurodegeneration is increas-
ingly being studied, as this protein is thought to play a key role in mRNA transcription,
splicing, stability, transport and translation [46,63]. The PABPC1 gene has been associated
with the UBQLN2 gene, one of the key genes linked to amyotrophic lateral sclerosis (ALS).
Specifically, it has been observed to play a role in regulating stress granule dynamics and
the pathogenesis of ALS [47]. All these genes could be potential targets for conducting
new studies on their gene expression in ALS and investigating the possibility of them
serving as new and potential biomarkers. Finally, although the EEF1A1, RPL12 and RPL15
genes have not been directly linked to ALS, they have been associated with other neuro-
logical diseases, such as Parkinson’s and Alzheimer’s [49,51]. EEF1A1 has demonstrated
involvement in the regulation of genes associated with the neuroinflammatory process in
Parkinson’s disease [49]. Conversely, the RPL12 and RPL15 genes exhibited significant up-
regulation in brain capillary samples obtained from patients diagnosed with Alzheimer’s
disease [51]. Notably, these processes have also been described in ALS, especially those
ones related to neuroinflammation [64,65], identifying them as interesting candidates for
further investigation.

Among the genes that were notably down-regulated (NDUFA4, COX5B, COX6C,
NDUFA3, NDUFB4, COX5A, COX6A2, NDUFA6, COX8A and ATP5MC1), only NDUFA4
has been previously identified in connection with ALS. The NDUFA4 gene is associated
with REEP1 and plays a crucial role in maintaining the integrity of mitochondrial complex
IV. It has been observed that the interaction between NDUFA4 and REEP1 could block
the access of mitochondrial proteases to the proteolysis sites of NDUFA4 [48]. This gene
could be an interesting candidate for study since one of the characteristic pathologies of
ALS is the alteration of mitochondrial bioenergetics. Therefore, it would be interesting to
conduct future studies to explore its role in ALS. Additionally, many studies have already
demonstrated the feasibility of using small molecules to enhance OXPHOS mitochondrial
activity as a novel therapeutic approach in ALS [66]. For the rest of the genes, not much
information is available, but it is known that they are involved in electron transport
processes and ATP syntheses that have been found altered in the ALS pathogenesis [67].

Nowadays, miRNAs provide new avenues for research on diseases. In this study,
combining computational and bioinformatics analysis, a total of 17 miRNAs targeting
hub genes were identified (12 miRNAs for up-regulated genes and 5 miRNAs for down-
regulated genes).

In particular, hsa-mir-100-5p has been associated with neuronal apoptosis in the central
nervous system, contributing to the neurodegeneration of motor neurons [52]. One role
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of hsa-mir-125b-5p is to regulate genes related to DNA repair in ALS associated with the
FUS gene [53]. Regarding hsa-mir-133a-3p, it has been proposed as a potential preclinical
progression biomarker for ALS associated with G376D-TARDBP [55]. Studies have also
suggested hsa-miR-206 and hsa-miR-133b as promising biomarkers for ALS [54,56,68,69].

In relation to the rest of the miRNAs, relevant information has been found related
to other neurological diseases. For example, hsa-let-7a-5p and hsa-mir-26a-5p have been
linked to major depressive disorder [57], and hsa-mir-140-3p has been studied for its poten-
tial role as a diagnostic biomarker for patients with acute ischemic stroke [70]. In general,
this information is valuable to consider, as there is scientific evidence related to this group
of miRNAs. This opens the possibility of new study approaches by combining information
on hub genes and their miRNAs, providing new ideas for potential targets of studying
their role in ALS, such as in the case of hsa-miR-206. Hsa-miR-206 is a miRNA targeting the
HNRNPA1 gene, which, as mentioned earlier, is likely involved in the pathogenesis of ALS.
Additionally, this gene is associated not only with hsa-miR-206 but also with hsa-mir-140-3p
and hsa-mir-27a-3p. Therefore, these two miRNAs could likely play a role in ALS.

5. Conclusions

This study allowed us the opportunity to initiate an exploratory investigation using
skeletal muscle samples to identify potential hub gene and microRNAs (miRNAs) of inter-
est and to analyze their roles in amyotrophic lateral sclerosis (ALS) by using bioinformatics
tools. These computational tools provide the potential for identifying distinct molecular
targets that may exhibit interrelated associations by using data from patients’ samples.
Consequently, we suggested some candidate genes for further scrutiny in future investiga-
tions. This study presented an initial assessment through bioinformatics analyses. A single
gene expression profile from the skeletal muscle samples of sporadic patients was used to
provide new insights on this affected tissue. Therefore, we suggest that the information
obtained in this study can be validated through cellular experiments, high-throughput
analyses, RT-qPCR, next-generation sequencing analyses, animal studies and an even
larger cohort. These validations will provide a better understanding of ALS genetics or
genetic variations among ALS patients, thereby enabling the monitoring of patients in the
clinical practice.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/biom14030377/s1, Table S1: List of Abbreviations; Table S2:
GSE41414 Sample Set Information.

Author Contributions: R.O., P.Z., E.G. and A.C.C. conceived and designed the structure of the
manuscript; E.G. designed the methodology and selected the software; R.O., E.G. and A.C.C. dis-
cussed, analyzed the results and reviewed the manuscript; R.O. and P.Z. enabled resources; E.G.,
R.O., P.Z. and A.C.C. participated in the data curation; E.G. was involved in writing—original draft
preparation and editing; E.G., R.O., P.Z. and A.C.C. participated in visualization; R.O. and A.C.C.
supervised and were involved in project administration; P.Z. and R.O. were involved in funding
acquisition. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Instituto de Salud Carlos III, PI17/00949, and Fondo Eu-
ropeo de Desarrollo Regional (FEDER) “Una manera de hacer Europa” from the European Union,
A19_23R. “LAGENBIO GRUPO INVESTIGACION” was supported by Gobierno de Aragón, Cen-
tro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, grant number
CIBERNED-612-CB18/05/00037. E.G. was supported by “Programa Investigo” from the University
of Zaragoza and Next Generation EU.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data used in this study are publicly available on the gene expression
omnibus (GEO) database and can be accessed through GSE41414.

Conflicts of Interest: The authors declare no conflicts of interest.

https://www.mdpi.com/article/10.3390/biom14030377/s1


Biomolecules 2024, 14, 377 11 of 13

References
1. Longinetti, E.; Fang, F. Epidemiology of Amyotrophic Lateral Sclerosis: An Update of Recent Literature. Curr. Opin. Neurol. 2019,

32, 771–776. [CrossRef]
2. Lin, J.; Huang, P.; Chen, W.; Ye, C.; Su, H.; Yao, X. Key Molecules and Pathways Underlying Sporadic Amyotrophic Lateral

Sclerosis: Integrated Analysis on Gene Expression Profiles of Motor Neurons. Front. Genet. 2020, 11, 578143. [CrossRef]
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