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Abstract: Finasteride (FIN) is the prototypical inhibitor of steroid 5c-reductase (5xR), the enzyme
that catalyzes the rate-limiting step of the conversion of progesterone and testosterone into their main
neuroactive metabolites. FIN is clinically approved for the treatment of benign prostatic hyperplasia and
male baldness; while often well-tolerated, FIN has also been shown to cause or exacerbate psychological
problems in vulnerable subjects. Evidence on the psychological effects of FIN, however, remains
controversial, in view of inconsistent clinical reports. Here, we tested the effects of FIN in a battery
of tests aimed at capturing complementary aspects of mood regulation and stress reactivity in rats.
FIN reduced exploratory, incentive, prosocial, and risk-taking behavior; furthermore, it decreased stress
coping, as revealed by increased immobility in the forced-swim test (FST). This last effect was also
observed in female and orchiectomized male rats, suggesting that the mechanism of action of FIN does not
primarily reflect changes in gonadal steroids. The effects of FIN on FST responses were associated with
a dramatic decrease in corticotropin release hormone (CRH) mRNA and adrenocorticotropic hormone
(ACTH) levels. These results suggest that FIN impairs stress reactivity and reduces behavioral activation
and impulsive behavior by altering the function of the hypothalamus-pituitary—adrenal (HPA) axis.

Keywords: 5x reductase; depression; anxiety; impulsivity; finasteride; HPA axis

1. Introduction

Steroid 5a-reductase (5«R) is the enzyme catalyzing the saturation of the 4,5-double bond of
the A ring of testosterone, progesterone, and deoxycorticosterone, as well as other ketosteroids [1,2].
The products of this metabolic process, 5x-dihydrotestosterone (DHT), 5x-dihydroprogesterone
(DHP), and 5x-dihydrodeoxycorticosterone (DHDOC) are further converted by 3«-hydroxysteroid
oxidoreductase into 5x-androstan-3«, 173-diol (3x-diol), tetrahydroprogesterone (allopregnanolone;
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AP), and tetrahydrodeoxycorticosterone (THDOC), respectively. These neuroactive steroids act as
positive allosteric modulators of GABA 4 receptors [3,4] and play key roles in the orchestration of
reactivity to stress and other environmental stimuli as well as in the pathophysiology of depression
and anxiety [5-9]. In addition, 5xR plays a key role in the degradation of glucocorticoids, such as
corticosterone and cortisol, into their 5x-reduced metabolites [10].

The prototypical 5xR inhibitor, finasteride (FIN; N-(2-methyl-2-propyl)-3-oxo-4-aza-5x-androst-1-
ene-173 carboxamide), was originally approved in the 1990s for the treatment of benign prostatic
hyperplasia and male-pattern baldness [2]. These therapeutic actions reflect the best-characterized
mechanism of action of FIN, namely the reduction of DHT synthesis in plasma and scalp [11,12].
In addition to this effect, FIN impairs the synthesis of other neuroactive steroids, including AP
and 3a-diol [13-15]. Although FIN is generally well-tolerated, post-marketing reports of adverse
psychological events have led to growing concerns about the safety profile of this drug. Several studies
have substantiated that FIN increases the risk for depressive symptoms in a subset of vulnerable
patients [16-18]. In addition, several patients have reported that these psychological complications can
persist even after FIN discontinuation [18-23], prompting some authors to coin the term “post-finasteride
syndrome” (PFS) to define this condition. Altogether, this emerging evidence has led several national
agencies to issue warnings about the potential for depression and other psychological sequelae [22,23].

The pathophysiology of PFS and other psychological complications of FIN remain unclear, in view
of selection bias in many published clinical studies and high nocebo effect, as well as suboptimal safety
information [22,23]. A full characterization of the behavioral effects of FIN is particularly important,
given that preliminary reports have indicated that FIN may also have therapeutic properties for
several neuropsychiatric conditions characterized by poor impulse control and excessive externalizing
manifestations, including Tourette’s syndrome and pathological gambling [2,24,25]. Based on this
background, the present study tested the behavioral effects of FIN in a broad battery of standardized
behavioral tests in rats, in order to assess its effects on complementary aspects of mood regulation,
anxiety, impulse control, and stress reactivity. The latter was further characterized by measuring
plasma adrenocorticotropin (ACTH) levels and corticotropin-releasing hormone (CRH) mRNA in the
paraventricular nucleus (PVN) of the hypothalamus.

2. Materials and Methods

2.1. Animals

The experiments in this study were performed using Long-Evans rats (Charles River Laboratories,
Raleigh, NC, USA) weighing 250-350 g and housed in groups of 34 per cage. Unless stated otherwise
for specific experimental manipulations, rats were kept with ad libitum access to food and water. For all
tests, animals were used only once. Experimental manipulations were carried out in the animals” dark
cycle between 10:00 AM and 06:00 PM. All handling and experimental procedures were performed in
compliance with the National Institute of Health guidelines and approved by the local Institutional
Animal Care and Use Committees. (Protocol 19-05005).

2.2. Drugs

FIN was purchased from Carbosynth Limited (Compton, UK) and suspended in a vehicle (VEH)
solution containing 5% DMSO, 5% Tween80, and 90% sterile saline (SAL; 0.9% NaCl).

2.3. Orchiectomy

Gonadectomy and sham surgeries were performed as previously described [26] under aseptic
conditions, using a combination of ketamine (80 mg/kg; Fort Dodge Animal Health, Fort Dodge, 1A,
USA) and xylazine (10 mg/kg; Bayer Crop. Shawnee Mission, KS, USA) for anesthesia. For both
operations, the sac of the scrotum and underlying tunica were incised; orchiectomy was performed by
bilateral ligation of the vas deferens and removal of the testes. Incisions were sutured closed.



Biomolecules 2019, 9, 749 3of16

2.4. Locomotor Activity

Locomotion was tested in a square force plate actometer, as previously described [27]. The apparatus
consisted of a white load plate (42 x 42 cm) surrounded on all four sides and covered by a clear Plexiglas
box (30 cm tall). Four force transducers placed at the corners of each load plate were sampled 100 times/s,
yielding a 0.01 s temporal resolution, a 0.2 g force resolution, and a 2 mm spatial resolution. Custom
software directed the timing and data-logging processes via a LabMaster interface (Scientific Solutions
Inc., Mentor, OH, USA). Total distance traveled was calculated as the sum of the distances between
coordinates of the location of center of force, recorded every 0.5 s over the recording session. Animals
were placed in the center and their behavior was monitored for 30 min. The test was performed in
complete darkness to avoid potential anxiety-related confounds.

2.5. Defensive Withdrawal

Defensive withdrawal test was performed with two alternative variants of our previously described
protocol [28]. In the first version, adult rats were placed in a small rectangular black Plexiglas chamber
(23 cm height x 15 cm width x 25 cm depth) opened at one end, located 20 cm from the wall of
a cylindrical, stainless-steel, white, open field (124 cm diameter; 56 cm height), placed under bright
light (200 lux), and video-recorded for 15 min. A separate cohort underwent the same procedure,
but was initially placed within the open arena, in a position diametrically opposed to the chamber.
Behavioral analyses were performed by blinded observers. The latency to leave the chamber and the
percentage of time spent in the open field were measured. FIN and its vehicle were administered
45 min before testing.

2.6. Novelty-Induced Hypophagia

Rats were single housed and carried within their cage to a dimly illuminated room (50 lux under
red light) for four consecutive days. After a 30 min acclimation period, they were presented with
a highly palatable food (two cheese puffs made of corn flour, hydrogenated vegetable fat, cheese
powder and salt) [29]. Following this training, a group of animals were transferred to a novel cage
(20 cm X 29 cm x 35.5 cm) and moved to a brightly lit room (500 lux, under white light). The other rats
were maintained in their home cages under habitual light conditions (50 lux, under red light). Animals
in either condition were then treated with either FIN or its vehicle; 45 min after treatment, they were
given two cheese puffs and their behavior was videotaped. The latency to eat and total consumption
were recorded by an observer blinded to treatment.

2.7. Social Interaction

Social interaction was tested as previously described [30]. Male rats were placed in a novel round
aluminum chamber (diameter: 124 cm; height: 56 cm) 45 min after treatment with FIN or its vehicle.
Social interaction was tested against either foreign counterparts or cage mates. Behavior was videotaped,
and the duration of sniffing in the genital, mid-sectional, and facial areas, as well as grooming and
rearing behavior, were measured by an observer blinded to treatment.

2.8. Delay Discounting

Delay discounting procedure was performed with a modification of previously described
protocol [31]. Subjects were 18 male rats, maintained at 85% of their ad libitum weights by restricting
access to food (Teklad Diet 8064, Harlan Laboratories Inc., Indianapolis, IN, USA). Briefly, sessions
occurred in eight identical operant conditioning chambers (Med Associates, St. Albans, VT, USA) fitted
with two retractable levers, cue lights, a houselight, and a pellet dispenser delivering grain-based
pellets (45 mg; Bio-Serv, Frenchtown, NJ, USA). All experimental events were programmed and
recorded using MED-PC IV software. Sessions consisted of 32 trials, divided into four 8 trial blocks.
The beginning of a block was signaled by houselight flashing; when each trial began, the houselight
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was continuously illuminated and either one (forced choice trials) or both (free choice trials) levers
were inserted into the chamber. Each block consisted of two forced choice trials (during which the
rats pressed one of the levers and received the consequence associated with that lever), followed
by six free-choice trials between two alternatives: “Smaller-Sooner” (SS), delivering one pellet at
0 s delay, or “Larger-Later” (LL), delivering three pellets at progressively larger delays. Each trial
lasted 60 s, inclusive of the response period, the delay (during which levers were retracted), and the
intertrial interval (during which levers were retracted). The position of the SS and LL levers was
counterbalanced among subjects. For each session, the four blocks of trials differed by the delay on the
LL choice, presented in increasing order of delay during each session. Training lasted 30 days and
included the following sessions: (1) all trial blocks with 0 s LL delays; (2) trial blocks with 0s, 1s,2s,
and 4 s LL delays; (3) trial blocks with 0's, 1s,10s,20 s LL delays; and (4) trial blocks with 0's, 10s,
20's,40 s LL delays. Rats progressed from each session to the next upon verification of their statistical
stability (i.e., no significant differences across three subsequent sessions) Testing with FIN (25 mg/kg,
IP, 45 min before session) or its vehicle was performed under these conditions over 11 sessions.

2.9. Wire-Beam Bridge Test

Testing was performed on a methodological variant of our wire-beam bridge protocol [32].
The apparatus consisted of two metal platforms (start and end) raised at 130 cm from the floor, placed
100 cm apart, and connected by a horizontal, aluminum wire-beam bridge. The start platform was
limited by a wall to limit movements in any other direction. The bridge (4 cm wide) consisted of two
parallel, 0.1 cm thick beams, connected perpendicularly by 40 crossties (placed 2.5 cm apart), and was
highly flexible with a downward deflection of 2 cm per 100 g load at the center point. Rats were then
placed on the start platform, and the latency to cross as well as the number of bridge crossings were
recorded. Cut-off test time to cross the bridge was set at 10 min.

2.10. Forced-Swim Test

The forced-swim test was performed as previously described [33]. Briefly, rats were tested in clear
Plexiglas cylinders (45.7 X 30 cm in diameter) filled with water to 30 cm. The water temperature was
maintained at 25 °C. Testing lasted 10 min. Environmental light was kept at 300 lux. Animals were
video recorded, and the duration of immobility (s) and the latency to immobility (s) were measured.

2.11. Saccharin Preference

Rats were initially tested for baseline saccharin consumption and preference. They were deprived
of food and water for 15 h prior to the test, starting 1 h before the onset of the dark phase. Each
animal was given access to one pre-weighed bottle containing a 0.1% saccharin solution in tap water.
One hour later, the bottle was removed and weighed again, and food and water were placed back
in the cage. Saccharin consumption tests were repeated every 3 to 4 days for the following 2 weeks.
After stabilization of saccharin consumption, rats were given two bottles, containing a 0.1% saccharin
solution (presented on either the left or the right side of the cage, in counterbalanced order) and water,
respectively, for 4 h. Saccharin preference was assessed as the ratio of saccharin solution/total liquid
consumed by each rat. After saccharin preference reached stability (assessed by <10% variation over
three consecutive sessions), rats were assigned to three groups (matching for preference) to be treated
with FIN (25-50 mg/kg, IP) or its vehicle. Saccharin solution and water consumption was assessed
every 30 min for 4 h.

2.12. Quantification of CRH and ACTH

Plasma ACTH levels and CRH mRNA in the PVN were measured to assess hypothalamus—
pituitary—adrenal (HPA) axis function. Thirty min after FST, rats were decapitated, and brains were
rapidly harvested and frozen in liquid nitrogen. Trunk blood was collected into tubes containing
0.5 mL of 0.3 M EDTA. Plasma aliquots and brains were stored at —80 °C until use. ACTH levels were
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determined by radioimmunoassay as previously described [34,35]. Radioactive %I ACTH (specific
activity: 2200 Ci/mmol) was obtained from Perkin Elmer (Waltham, MA, USA) and DiaSorin (Stillwater,
MN, USA), respectively. The intra-assay coefficient of variation was 2.17 for the ACTH assay. The PVN
was punched out from 300 um thick sections prepared using a cryostat microtome. Total RNA was
isolated using the RNeasy Mini Kit (Qiagen Sciences, Valencia, CA, USA) and preserved in RNAlater®
solution (Life Technologies, Carlsbad, CA, USA) according to the manufactures’” protocol. First strand
cDNA was synthesized using Superscript III Reverse Transcriptase (Life Technologies, Carlsbad, CA,
USA). Real-time PCR amplification was performed using 7500 Real-Time PCR System and SYBR
green PCR master mix (Life Technologies, Carlsbad, CA, USA). All samples were run in triplicate.
The primers were synthesized by Life Technologies (Carlsbad, CA, USA). The forward primer for CRH
was CTGATCCGCATGGGTGAAGA and the reverse primer was CAGCAACACGCGGAAAAAGT.
The mRNA levels were normalized to TATA-box binding protein (TBP) mRNA. ACt was calculated
as the CRH mRNA — TBP mRNA for each sample; AACt was calculated as ACt for the experimental
condition — ACt for the control condition, for CRH.

2.13. Statistical Analyses

Normality and homoscedasticity of data were verified by the Kolmogorov—Smirnov test.
Parametric and non-parametric statistical analyses of behavioral parameters were performed via
one-way ANOVAs or Kruskal-Wallis test. Analyses of delay discounting, saccharin preference, and
CRH/ACTH levels were performed via two-way ANOVAs. All post-hoc analyses were performed via
Tukey’s test. Significance was set at p < 0.05.

3. Results

3.1. FIN Reduced Exploratory and Appetitive Behavior at Doses That Did Not Affect Locomotor Activity

The effects of FIN (10, 25, and 50 mg/kg, IP) were first tested on locomotor behavior under
complete darkness, to test its effects on intrinsic locomotor activity. FIN did not affect the total distance
traveled by rats at any tested dosage (One-way ANOVA, F3 » = 0.18, NS; Figure 1A). To characterize
the effect of FIN on anxiety-related indices, rats were first tested in defensive withdrawal, a paradigm
that captures the propensity of rats to exit a protected small chamber and enter a brightly lit open arena.
FIN (25-50 mg/kg, IP) dose-dependently increased the latency to withdraw from the protected chamber
(one-way ANOVA: F, 35 = 9.018, p < 0.001; post-hoc comparisons: VEH vs. FIN 25, p < 0.001; VEH vs.
FIN 50, p < 0.05, Figure 1B) and the percentage of time spent in the open arena (one-way ANOVA:
F; 35 = 15.71, p < 0.001; post-hoc comparisons: VEH vs. both FIN 25 and FIN 50: p’s < 0.001; Figure 1C).
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Figure 1. Finasteride (FIN) reduced exploratory drive in the defensive withdrawal paradigm. FIN did
not affect locomotor activity in rats tested in an actometer under total darkness; n = 6-7/group (A). In the
defensive withdrawal paradigm, FIN increased the latency to exit from a protected chamber and enter
a brightly lit open arena (B), as well as the percentage of time spent in the arena itself, n = 12/group (C).
However, when animals were first placed in the open arena, FIN increased the latency to enter the
protected chamber (D) and prolonged the percentage of time spent in the open arena n = 8/group (E).
*p < 0.05, ** p < 0.001 in comparison with rats treated with vehicle (VEH). Doses of finasteride are
indicated in mg/kg (IP).
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A reduced proclivity to exit the enclosed chamber may signify either an increased anxiety-like
response or a reduced exploratory drive; thus, to tease out the meaning of the observed behavioral
effects of FIN, we repeated the same test with a second cohort of rats, which were initially placed in
the open arena. In this version of the paradigm, FIN (50 mg/kg, IP) increased the latency to enter the
protected chamber (one-way ANOVA: F; 51 = 4.35, p < 0.05; post-hoc comparisons: VEH vs. FIN 50,
p < 0.05; Figure 1D) and prolonged the percentage of the time spent in the open arena (one-way
ANOVA: Fp 51 = 4.70, p < 0.05; post-hoc comparisons: VEH vs. FIN 50, p < 0.05; Figure 1E). These
results suggest that FIN reduced behavioral activation irrespective of the anxiogenic characteristics of
the environment.

We then tested the effects of FIN in the novelty-induced hypophagia test. FIN-treated rats
displayed an increased latency to consume palatable food in a novel cage (Kruskal-Wallis, H, = 6.65,
p < 0.05; post-hoc comparisons: VEH vs. FIN 50, p < 0.05; Figure 2A) and decreased the amount of food
consumed (One-way ANOVA; F; 53 = 6.98, p < 0.01; post-hoc comparisons: VEH vs. FIN 50, p < 0.01;
Figure 2B). To verify whether the greater food avoidance induced by FIN reflected an actual increase
in contextual neophobia, rather than a generalized reduction in appetitive drive, we used a separate
cohort of rats to test whether FIN also reduced the consumption of the same palatable food in the home
cage. Notably, FIN-treated rats exhibited a marked increase in the latency to consume food (one-way
ANOVA; F; 24 = 3.66, p < 0.05; post-hoc comparisons: VEH vs. FIN 25, p < 0.05; Figure 2C) and reduce
the amount of food consumed (one-way ANOVA; F, 54 = 13.36, p < 0.001; post-hoc comparisons: VEH
vs. FIN 25 and 50, p’s< 0.001; Figure 2D), again supporting the conclusion that FIN reduces incentive
motivation towards rewarding stimuli, rather than increasing anxiety.
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Figure 2. Finasteride (FIN) reduced appetitive motivation in the novelty-induced hypophagia test.
In a novel cage, FIN-treated rats displayed an increased latency to consume palatable food (A) and
reduced amounts of food consumed (B); n = 10-11/group. Similar outcomes, however, were also
observed in home cages; n = 9/group (C,D). * p < 0.05, ** p < 0.01, *** p < 0.001 in comparison with rats
treated with vehicle (VEH). Doses of FIN are indicated in mg/kg (IP).
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3.2. FIN Reduced Sociability in Rats

The effects of FIN on social interaction with foreign rats were examined to verify the impact
of this drug on social anxiety. FIN significantly reduced the duration of genital (one-way ANOVA,
F; 25 = 9.31, p < 0.001; post-hoc comparisons: VEH vs. FIN 25 and 50, p < 0.01; Figure 3A), mid-section
(one-way ANOVA, F; 55 = 46.39, p < 0.001; post-hoc comparisons: VEH vs. FIN 25 and 50, p < 0.001;
Figure 3B), and facial sniffing (one-way ANOVA, F; 75 = 6.49, p < 0.01; post-hoc comparisons: VEH vs.
FIN 25, p < 0.01; VEH vs. FIN 50, p < 0.05; Figure 3C); however, FIN did not affect the latency to the first
social approach (one-way ANOVA, F; 75 = 1.95, NS; Figure 3D). FIN also reduced rearing (one-way
ANOVA, F; 75 = 8.28, p < 0.01; post-hoc comparisons: VEH vs. FIN 25 and 50, p < 0.01; Figure 3E), but
not grooming behavior (one-way ANOVA, F, o5 = 0.38, NS; Figure 3F).
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Figure 3. Finasteride (FIN) reduced social interaction with foreign social counterparts. When encountering
foreign rats, FIN-treated rats exhibited significant reductions in the duration of genital (A), mid-section
(B), and facial sniffing (C), but no changes in the latency to the first social approach, n = 9/10/group (D).
In addition, FIN reduced rearing (E), but not grooming responses (F). * p < 0.05, ** p < 0.01, *** p < 0.001
in comparison to rats treated with vehicle (VEH). Doses of FIN are indicated in mg/kg (IP).

To understand whether the social avoidance observed in FIN-treated rats was related to social
anxiety or to a reduction of prosocial drive, we tested the effects of FIN on social interaction with
familiar rats (weight-matched cage mates).

In this version of the test, both doses of FIN elicited a significant reduction of genital sniffing
(one-way ANOVA, F; 5y = 6.58, p < 0.01; post-hoc comparisons: VEH vs. FIN 25 and 50, p < 0.05,
Figure 4A). Furthermore, the 25 mg/kg dose of FIN reduced mid-section sniffing (one-way ANOVA,
Fj 20 = 5.98, p < 0.01; post-hoc comparisons: VEH vs. FIN 25, p < 0.01; Figure 4B). None of the other
behavioral parameters, however, were affected by FIN, irrespective of the dose (facial sniffing: one-way
ANOVA, F; 59 = 1.19, NS; latency to the first contact: one-way ANOVA, F;59 = 3.29, NS; rearing:
one-way ANOVA, F; 59 = 0.086, NS; grooming: one-way ANOVA, F; 50 = 0.627, NS).
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Figure 4. Finasteride (FIN) reduced social interaction with familiar social counterparts. FIN decreased
the duration of the exploration of genital area (A) and mid-section (B), but not facial areas (C) of cage
mates. Furthermore, FIN had no effect on the latency to the first social approach (D), duration of
rearing behavior (E) and grooming; n = 7-8/group (F). * p < 0.05, ** p < 0.01 in comparison with rats
treated with vehicle (VEH). Doses of FIN are indicated in mg/kg (IP).

3.3. FIN Reduced Impulsivity and Risk-Tnking Responses

We next tested whether FIN affected risk taking and other facets of impulsivity. Ina delay-discounting
paradigm, two-way ANOVA analyses of %LL responses revealed an interaction between FIN and delay
(F3,80 = 4.24, p < 0.05). Post-hoc analyses revealed that FIN induced a shift toward SS reward choices in
correspondence of longer delays (20 and 40 s) (p’s < 0.05; Figure 5A), signifying a reduction in delay
discounting. No omissions of lever presses were observed in any experimental group. FIN also reduced
risk-taking behavior in the suspended wire-beam bridge paradigm, as signified by a longer latency to
cross the bridge (one-way ANOVA, F; 57 =7.90, p < 0.01; p < 0.05 and p < 0.01 for comparisons between
25 mg/kg and 50 mg/kg FIN, respectively: Figure 5B), as well as a reduced distance traveled on the
apparatus (one-way ANOVA, F, o7 = 17.02, p < 0.001; p < 0.05 and p< 0.01; for comparisons between
25 mg/kg and 50 mg/kg FIN, respectively; Figure 5C).
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Figure 5. Finasteride (FIN) decreased impulsive and risk-taking responses. In the delay-discounting
paradigm (A), FIN decreased the discounting rate corresponding to longer delays (20 and 40 s);
n = 11-12/group. In the wire-beam bridge, FIN-treated rats showed longer latency to cross the bridge
(B) and an overall reduction in the distance traveled on the apparatus (C); n = 10/group (C). * p < 0.05,
**p0.01, *** p < 0.001 in comparison with rats treated with vehicle (VEH). Doses of FIN are indicated in

mg/kg (IP).
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3.4. FIN Reduced Saccharin Preference

We then determined whether FIN affected the preference for rewarding stimuli. To this end, the
influence of FIN on behavioral reactivity to a sweet solution was assessed by measuring the preference
for a saccharin (0.1%) solution. Two-way, repeated-measure ANOVA showed a significant effect of
the treatment (Fp28 = 5.120, p < 0.05) and time (F7 195 = 3.24, p < 0.01), as well as their interaction
(F14.196 = 1.73, p = 0.05). A deficit in the expression of saccharin preference was observed in rats treated
with 50 mg/kg FIN between 180 and 240 min after treatment (p’s < 0.05; Figure 6A). Conversely, the
25 mg/kg dose did not significantly affect saccharin preference. No significant effects of FIN were
observed in the total liquid consumption (treatment: F; g = 2.65, NS; time X treatment interaction:
F14,196 =0.98, NS; Figure 6B).
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Figure 6. Finasteride reduced saccharin preference. The 50 mg/kg dose of FIN reduced saccharin
preference in the saccharin preference test (A) without modifying total liquid consumption (B);
n =10-11/group; * p < 0.05, ** p < 0.01 in comparison with rats treated with vehicle (VEH). Doses of
FIN are indicated in mg/kg (IP).

3.5. FIN Reduced Stress Coping Behavior and Suppressed HPA Axis Responses

Finally, we investigated the effects of FIN on acute stress coping. To this end, the effects of different
doses of FIN (10, 25, and 50 mg/kg, IP) were evaluated in the FST. In males, FIN treatment significantly
affected both the duration of immobility (one-way ANOVA; F3 49 = 6.67, p < 0.001; Figure 7A) and the
latency to immobility (one-way ANOVA, F3 49 = 6.28, p < 0.01; Figure 7B). Post-hoc analysis revealed that
FIN 25 and 50 mg/kg increased total immobility (p < 0.05 and p < 0.001 compared to VEH, respectively;
Figure 7A) and decreased the latency to immobility (p < 0.05 and p < 0.01 compared to VEH, respectively;
Figure 7B). To examine whether the effects of FIN on the FST could be reflective of changes in peripheral
levels of testosterone and its derivatives, we then tested the effects of this drug in male orchiectomized
and female rats. In females, FIN 50 increased total immobility (Student’s t-test, p < 0.05; Figure 7C),
although it did not significantly affect the latency to immobility (Figure 7D). The analysis of the effects
of FIN on castrated males revealed that both orchiectomy (two-way ANOVA: Fj 34 = 5.139, p < 0.05;
main effect of orchiectomy) and FIN (50 mg/kg, IP) (Fy 36 = 12.46, p < 0.001) significantly increased
immobility; however, no interaction between these factors was detected (F; 34 = 2.16, NS), indicating
that the depressogenic effects of FIN were not modified by the removal of gonads.

To further understand the mechanisms underlying the effects of FIN (50 mg/kg, IP) on the stress
response, we tested the impact of this drug on CRH transcript levels in the PVN, as well as ACTH plasma
concentrations at 30 min after FST. Two-way ANOVA analyses showed that, in line with previous
results [36], CRH mRINA was increased by stress exposure (main effect of stress: F; 19 = 112.8, p < 0.001)
and decreased by FIN (main effect of treatment: F; 19 = 69.51, p < 0.001). Furthermore, a significant
treatment X stress interaction was found (F; 19 = 75.85, p < 0.001). Post-hoc comparisons revealed that
FIN drastically reduced CRH mRNA levels in both stressed and unstressed rats (p’s < 0.001; Figure 8A).
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Furthermore, no differences in CRH transcript were found between FIN-treated rats, irrespective of
their exposure to FST. The analysis of ACTH plasma levels showed a significant main effect of FIN
(F134 = 70.68, p < 0.001) and FIN X stress interaction (Fy 34 = 7.56, p < 0.01). Post-hoc comparisons
showed that, as previously described, FST stress increased ACTH plasma levels [37] in both FIN-
and vehicle-treated rats (VEH/no stress vs. VEH/stress, p < 0.001; FIN 50/no stress vs. FIN 50/stress,
p < 0.01); however, FIN blunted the ACTH response in the stressed rats (VEH/stress vs. FIN 50/stress,
p < 0.05; Figure 8B).
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Figure 7. Finasteride (FIN) reduced stress coping behavior in the forced-swim test. In male rats,
FIN increased the duration of immobility (A) and reduced the latency to immobility (B); n = 12/group.
In female rats, FIN affected only the duration of immobility (C), but not the latency (D); n = 8-9/group.
The depressogenic effect was not modified by gonadectomy (E); n = 9-11/group (GDX) (E). * p < 0.05,
**p 0.01, ** p < 0.001 in comparison with rats treated with vehicle (VEH); # p < 0.05 in comparison
with FIN (10 mg/kg, IP). Doses of FIN are indicated in mg/kg (IP).

*kk *kk
10 N : 400- = No stress
E : E EZ Post stress
[ i 5
o § ; S 3001 :
(= 1 =
5 & i = |
é i 5 200+ §
1] ' i
S i :
i O '
& = < 1004
24 : '
= : | |
0 I I . I—T zwex 0
VEH FIN

Figure 8. Finasteride (FIN, 50 mg/kg, IP) suppressed hypothalamus—pituitary—adrenal (HPA) axis
responsiveness. (A) FIN completely suppressed the levels of transcript of corticotropin releasing
hormone (CRH) in the paraventricular nucleus (PVN) of the hypothalamus, in rats subjected to
forced-swim stress or non-stressful conditions (1 = 4/group). (B) FIN also reduced plasma ACTH levels
in stressed rats (n = 9-10/group). * p < 0.05, ** p 0.01, *** p < 0.001 for all comparisons indicated by
dotted lines.

4. Discussion

The results of this study showed that, in Long-Evans rats, doses of FIN that did not intrinsically
reduce locomotor activity attenuated the behavioral responses to a wide array of environmental
stimuli, ranging from incentive and rewarding to stressful and aversive. The effects of FIN were first
tested in a battery of conflict-based paradigms, including defensive withdrawal, novelty-induced
hypophagia, and social interaction. These tests were aimed at measuring complementary facets of
anxiety-like behavior as a function of the contrast between the rats’ innate avoidance of potentially
threatening cues (including brightly lit or novel contexts and unfamiliar rats) and their propensity to
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engage in diversive exploration or consume palatable food. Under these experimental settings, FIN
reduced the proclivity to transition from a brightly lit arena to a protected chamber, attenuated the
motivation to eat cheese puffs in a novel cage, and decreased the overall duration of social investigation
of foreign rats. To verify whether these responses reflected an actual enhancement of anxiety, the effects
of FIN were re-tested in alternative versions of the same testing procedures, specifically designed
to assess how behavioral reactivity could be modified by abating the ethological conflict between
approach and avoidance. Our results showed that the avoidance-enhancing properties of FIN were
not substantially modified by these conditions, suggesting that the primary effect of FIN was based
on the reduction of goal-driven behaviors and arousal associated with salient stimuli, irrespective of
the anxiogenic properties of the context and cues. In keeping with this interpretation, FIN reduced
saccharin preference, a well-characterized index to measure reward sensitivity [38], but did not affect
self-grooming, a behavior associated with anxiety and psychological burden secondary to stress [39].
In addition, FIN suppressed sensation-seeking and risk-taking behaviors in the delay discounting and
wire-beam bridge paradigms. These results were reminiscent of preliminary clinical evidence pointing
to a potential therapeutic effect of FIN in neuropsychiatric disorders featuring high impulsivity, such
as problem gambling [25] and Tourette’s syndrome [24,40].

We also found that FIN increased the duration of the FST immobility, a behavioral parameter that
measures of stress coping abilities in rodents [41]. Together with the reduction in saccharin or sucrose
preference, this index has been long regarded as one of the most robust predictors of depression-like
responses in animal models [42]. From this perspective, our findings were consistent with clinical
reports indicating the association of FIN with depressive symptoms, including behavioral apathy
and anhedonia [43]. Our experiments revealed that FIN yielded similar effects on stress reactivity
in both sexes as well as in castrated males. Although FIN is only approved for clinical use in male
patients, FIN is often used in women as a treatment for hirsutism, hair loss, and other hyperandrogenic
conditions [44—47]. Thus, caution should be exercised in recommending FIN therapy in women with
a well-known predisposition to depression and other psychological problems. Furthermore, our
finding that FIN compounded the reduction of stress coping in orchiectomized male rats suggests
that, in hypogonadic men, FIN might exacerbate their depressive symptoms, one of the most common
manifestations observed in this patient group [48].

These findings also suggest that the depressogenic effects of FIN are likely not directly dependent on
variations in peripheral sex hormones, but rather reflect the role of neural mechanisms. In agreement
with this concept, we showed that FIN reversed the activation of the HPA axis (signified by the
enhancement of CRH transcript and ACTH plasma levels) in response to acute FST stress. Several
neurochemical processes may account for this effect. First, FIN blocks the synthesis of THDOC and
other 5a-reduced neurosteroids, which promote CRH synthesis by activating GABAergic neurons in the
PVN [49,50]. Second, FIN increases levels of progesterone, which has been described to exert negative
effects on CRH synthesis in the PVN [51]. Third, by interfering with corticosterone degradation, FIN
may enhance the levels of this hormone and potentiate its effects on the negative feedback regulation
of CRH and ACTH synthesis [52,53].

Although our experiments did not directly assess a causal nexus between the variations in CRH
and ACTH and FIN-associated behavioral changes, this link is in line with the key role of CRH in
the promotion of physiological and behavioral responses to stress [54,55]. In particular, the idea that
an acute reduction in CRH and ACTH levels may result in increased FST immobility has been indirectly
supported by previous reports denoting the negative effects of these hormones on this behavioral
response [56,57]. It is also worth noting that, in addition to its effects on stress response, CRH enables
arousal and behavioral activation, irrespective of stress [58-60].

In addition to the reduction in HPA axis hormones, other mechanisms may be involved in the
effects of FIN. For example, the effects of this drug on the reduction of responses to salient stimuli may
reflect the marked antidopaminergic effects of FIN in the prefrontal cortex and nucleus accumbens,
which have been documented by our previous studies [26,61-63]; indeed, dopaminergic signaling in
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these brain areas is pivotal to allowing for behavioral arousal and salience appraisal [64,65]. Future
studies are needed to understand the involvement of the HPA axis, dopamine pathways, or other
neural mechanisms in the behavioral effects of FIN.

In contrast with our findings, a recent report showed that subchronic, but not acute FIN increased
forced-swim immobility in Wistar rats [66]. A possible explanation for these discrepancies might
depend on specific variations in testing protocols or genetic background of rats, given the different
effects of FIN across different rat strains [62]. Several limitations of our study should be acknowledged.
First, our experiments did not qualify the specific 5&R isoform responsible for the effects of FIN.
In humans, FIN has been shown to act as a potent inhibitor of 5aR type 2 (5aR2; ICs5: 69nM), while
it inhibits type 1 (5xR1) less effectively (ICs9: 360 nM) [67]. However, in rats, FIN acts as a potent
inhibitor of both 5«R1 and 5«¢R2 due to a tetrapeptide sequence encoded by the exon 1 of the rat
gene that confers sensitivity to 5aR1 [68]. Although these two isoenzymes serve similar catalytic
functions, they differ by intracellular and anatomical distribution [69-71]. In the CNS, while 5xR1
immunoreactivity is present in both neurons and glia, the distribution of 5xR2 is limited to some
neurons (such as the pyramidal cells of the cortex) [69,72]. Thus, it is possible that some of our findings
may not be fully translatable into complications observed in humans. Irrespective of these issues,
the possibility that 5aR inactivation may be associated with depression-related outcomes is consistent
with our previous studies documenting that chronic psychosocial stress leads to the downregulation of
both isoforms [73].

Second, most effects reported in this study were limited only to the acute effects of FIN. Nevertheless,
the increase in FST immobility reported in this study was similar to the effects of other regimen of
FIN administration, including sub-chronic administration and after prolonged discontinuation of the
drug [66,74]. Further investigations are warranted to verify whether the impairments in stress caused
by these different regimens are underpinned by similar neurobiological processes.

Finally, our studies did not qualify which changes in steroid profiles are responsible for the
behavioral effects of FIN. It is likely that changes in neurosteroids may be primarily responsible for
these effects; indeed, several clinical trials have shown that AP levels are reduced in the CSF and
plasma of depressed individuals [75] and animal models of chronic stress [76]. Furthermore, AP exerts
anxiolytic and antidepressant properties in animal models and humans [77], and has been recently
approved by FDA for the treatment of post-partum depression [78]. In addition to AP, however, other
3a,5a-reduced neuroactive steroids might participate in the behavioral complications induced by FIN,
including the testosterone metabolites DHT and 3«-diol, which have been shown to exert positive
effects on stress coping and motivation [8,9,79,80].

These limitations notwithstanding, the results of this study qualified the impact of FIN across a broad
range of behavioral domains. Given the emerging evidence on the neuropsychiatric complications of
FIN and its therapeutic potential in Tourette’s syndrome and pathological gambling, our findings may be
critical for the understanding of the neurobehavioral mechanisms underpinning these outcomes and the
development of novel steroid-based treatments that may preserve the therapeutic effects of FIN while
reducing its liability for adverse events.
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