Exploration of the Misfolding Mechanism of Transthyretin Monomer: Insights from Hybrid-Resolution Simulations and Markov Model Model Analysis Shuangyan Zhou¹, Jie Cheng¹, Ting Yang¹, Mingyue Ma¹, Wenying Zhang¹, Shuai Yuan^{1, *}, Glenn V. Lo², Yusheng Dou² ¹ Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China ² Department of Chemistry and Physical Sciences, Nicholls State University, P.O. Box 2022, Thibodaux, Louisiana 70310, USA * Corresponding author E-mail address: yuanshuai@cqupt.edu.cn **Figure S1**. Chapman-Kolmogorov tests of the MSM constructed at lag time of 3 ns with 5 macrostates. **Figure S2**. Probabilities of residues in TTR monomer adopting coil and turn structure for each macrostate. Figure S3. Distribution of radius of gyration (Rg) of macrostates S0 and S4. **Figure S4**. Free energy space of TTR monomer with average location of corresponding macrostates labeled. A and B representing the initial and final states in the transition pathways, respectively.