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Abstract: For fast-moving robot systems, the fluctuating dynamic loads transmitted to the supporting
frame can excite the base and cause noise, wear, and fatigue of mechanical components. By reducing
the shaking force completely, the dynamic characteristics of the robot system can be improved.
However, the complete inertial force and inertial moment balancing can only be achieved by adding
extra counterweight and counter-rotation systems, which largely increase the total mass, overall
size, and complexity of robots. In order to avoid these inconveniences, an approach based on the
optimal motion control of the center of mass is applied for the shaking force balancing of the robot
Orthoglide. The application of the “bang–bang” motion profile on the common center of mass allows
a considerable reduction of the acceleration of the total mass center, which results in the reduction
of the shaking force. With the proposed method, the shaking force balancing of the Orthoglide is
carried out, taking into account the varying payload. Note that such a solution by purely mechanical
methods is complex and practically inapplicable for industrial robots. The simulations in ADAMS
software validate the efficiency of the suggested approach.

Keywords: balancing; shaking force; the center of mass; optimal control; “bang–bang” motion profile

1. Introduction

It is known that a mechanical system with an unbalanced shaking force/moment
transmits substantial vibration to the frame. Thus, a primary objective of the balancing is
to cancel or reduce the variable dynamic loads transmitted to the frame and surrounding
structures.

The methods of shaking force balancing can be arranged as follows:

• By adding counterweight in order to keep the total mass center of moving links sta-
tionary [1]. It is obvious that the adding of the counterweights is not desirable because
it leads to the increase of the total mass, of the overall size and of the efforts in joints.
To avoid these drawbacks, the masses of the motors can be used as counterweights [2]
(Figure 1a). Taking into account the complexity of the parallel manipulators, adding
counterweights became not interesting, especially in spatial ones [3] (Figure 1b);

• By adding auxiliary structures. In [4–6], the parallelograms were used as auxil-
iary structures in order to create the balanced manipulators. In [7], the pantograph
(Figure 1c) has been added in order to balance the shaking force of the Delta robot.
Such a solution leads to a decrease in the added masses of counterweights, but the
practical application remains a challenge;
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• By installing elastic components [8,9] (Figure 1d). The addition of elastic elements can
successfully reduce the input torque and dynamic loads in the robot joints. However,
it is less effective in reducing vibrations of the robot’s base;

• By adjustment of kinematic parameters [10] (Figure 1e). The result shows that such
a method is consistently better than the counterweight balancing in terms of the
reduction of the joint forces and the torques in the servomotors, but less efficient for
reduction of the shaking forces;

• Via center of mass acceleration control [11–17]. This approach is based on the optimal
control of the acceleration of the manipulator center of masses. For this purpose,
the “bang–bang” profile was used. The aim of the suggested method consists in
the fact that the manipulator is controlled not by applying end-effector trajectories
but by planning the displacements of the total mass center of moving links. Such a
solution does not allow for complete balancing, but it leads to a significant decrease
in shaking forces. In [17], a substituted point mass (Figure 1f) was found to replace
the common center of mass of the 5R parallel manipulators as a virtual point. In this
case, the motion planning of the substituted point mass can ensure a reduction of the
shaking force.

Robotics 2021, 10, x FOR PEER REVIEW 2 of 14 
 

 

solution leads to a decrease in the added masses of counterweights, but the practical 
application remains a challenge; 

• By installing elastic components [8,9] (Figure 1d). The addition of elastic elements 
can successfully reduce the input torque and dynamic loads in the robot joints. How-
ever, it is less effective in reducing vibrations of the robot’s base; 

• By adjustment of kinematic parameters [10] (Figure 1e). The result shows that such a 
method is consistently better than the counterweight balancing in terms of the reduc-
tion of the joint forces and the torques in the servomotors, but less efficient for reduc-
tion of the shaking forces; 

• Via center of mass acceleration control [11–17]. This approach is based on the optimal 
control of the acceleration of the manipulator center of masses. For this purpose, the 
“bang–bang” profile was used. The aim of the suggested method consists in the fact 
that the manipulator is controlled not by applying end-effector trajectories but by 
planning the displacements of the total mass center of moving links. Such a solution 
does not allow for complete balancing, but it leads to a significant decrease in shaking 
forces. In [17], a substituted point mass (Figure 1f) was found to replace the common 
center of mass of the 5R parallel manipulators as a virtual point. In this case, the mo-
tion planning of the substituted point mass can ensure a reduction of the shaking 
force. 

 

                (a)                                     (b) 

 

                 (c)                                    (d) 

Figure 1. Cont.



Robotics 2021, 10, 30 3 of 13Robotics 2021, 10, x FOR PEER REVIEW 3 of 14 
 

 

 

                 (e)                                    (f) 

Figure 1. (a) Motors used as counterweights [2]; (b) parallel spatial manipulator balanced by add-
ing counterweights [3]; (c) shaking force balancing by adding a pantograph in oder to keep the 
center of mass (CoM) stationary [7]; (d) a combination of a proper distribution of link masses and 
two springs [9]; (e) two-step kinematic parameter adjustment in the adjusting kinematic parame-

ters method [10]; (f) the optimal acceleration control of the substituted center of mass
*S of a 5R 

parallel manipulator [17]. 

This paper deals with the shaking force balancing problem of the Orthoglide [18,19] 
via the last-mentioned approach, taking into consideration the robot structure. The robot 
Orthoglide is a three-degrees-of-freedom parallel manipulator with a regular workspace 
and good compactness. Its three actuators are arranged according to the Cartesian coor-
dinate space. The prototype and architecture of the robot are shown in Figures 2 and 3. 

 
Figure 2. The prototype of the Orthoglide (LS2N). 

Here we point out that this paper is an extended version of a work first published at 
the 29th International Conference on Robotics in Alpe-Adria-Danube Region (RAAD 
2020) [20]. With regard to [20], additional simulation results are presented here, i.e., the 
balancing of shaking force, taking into account the varying payload and its sensitivity 
analysis. The rest of the paper is organized as follows: Section 2 describes the balancing 
approach based on optimal motion planning of the common center of mass; In Section 3, 
the numerical simulations in ADAMS software are conducted to validate the efficiency of 
the proposed balancing approach and the sensitivity to the design variables. In addition, 

Figure 1. (a) Motors used as counterweights [2]; (b) parallel spatial manipulator balanced by adding counterweights [3]; (c)
shaking force balancing by adding a pantograph in oder to keep the center of mass (CoM) stationary [7]; (d) a combination
of a proper distribution of link masses and two springs [9]; (e) two-step kinematic parameter adjustment in the adjusting
kinematic parameters method [10]; (f) the optimal acceleration control of the substituted center of mass S∗ of a 5R parallel
manipulator [17].

This paper deals with the shaking force balancing problem of the Orthoglide [18,19]
via the last-mentioned approach, taking into consideration the robot structure. The robot
Orthoglide is a three-degrees-of-freedom parallel manipulator with a regular workspace
and good compactness. Its three actuators are arranged according to the Cartesian coordi-
nate space. The prototype and architecture of the robot are shown in Figures 2 and 3.
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Figure 2. The prototype of the Orthoglide (LS2N).

Here we point out that this paper is an extended version of a work first published
at the 29th International Conference on Robotics in Alpe-Adria-Danube Region (RAAD
2020) [20]. With regard to [20], additional simulation results are presented here, i.e., the
balancing of shaking force, taking into account the varying payload and its sensitivity
analysis. The rest of the paper is organized as follows: Section 2 describes the balancing
approach based on optimal motion planning of the common center of mass; In Section 3,
the numerical simulations in ADAMS software are conducted to validate the efficiency of
the proposed balancing approach and the sensitivity to the design variables. In addition,
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the sensitivities of the shaking force and output position accuracy to the design variables
of the Orthoglide are analyzed.
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Now, let us consider the shaking force balancing of the Orthoglide.

2. Shaking Force Balancing of the Orthoglide
2.1. Problem Formulation

Let us first consider the kinematic architecture of the Orthoglide (Figure 3a). It consists
of three identical kinematic chains that are formally described as PRPaR, where P, R and
Pa denote the actuated prismatic, revolute, and parallelogram joints, respectively. The
mechanism input is made up of three actuated orthogonal prismatic joints. The output
body is connected to the prismatic joint through a set of three kinematic chains. Inside
each chain, one parallelogram is used and oriented in a manner that the output body is
restricted to translational movements only. The three parallelograms have the same lengths
L = BiCi. The arrangement of the joints in the PRPaR chains was defined to eliminate any
constraint singularity in the Cartesian workspace. Each frame pointis fixed on the i - th
linear axis so that A1 A2 = A1 A3 = A2 A3. The points Bi and Ci are located on the i - th
parallelogram, as is shown in Figure 1. The reference frame is located at the intersection of
the prismatic joint axes and aligns the coordinate axis with them. The details of the design
of the Orthoglide and its optimization can be found in [18,19].

For the Orthoglide geometrical model (see Figure 3b), the inverse kinematic equa-
tions [21] can be drives in a straightforward way as:

ρx = px + sx

√
L2 − p2

y − p2
z

ρy = py + sy
√

L2 − p2
x − p2

z

ρz = pz + sz

√
L2 − p2

x − p2
y

(1)

where sx, sy, sz are the configuration indices that are equal to ±1; The input vector of the
three prismatic joints variables as ρ = (ρx, ρy, ρz) and the output position vector of the
tool center point as p = (px, py, pz). Note that for the Orthoglide robot, a single inverse
kinematic solution is reachable.

The shaking forces Fsh of mechanisms can be written in the form:

Fsh = (m + mpayload)
..
s (2)

where m =
n
∑

i=1
mi is the total mass of the moving links of the manipulator, mpayload is the

mass of the payload and
..
s is the acceleration of the total mass center. In the proceeding of
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29th International Conference on Robotics in Alpe-Adria-Danube Region, the balancing
problem of the Orthoglide was addressed without counting the varying payload mpayload.
As mentioned above, see Section 1, the shaking force balancing via mass redistribution
consists of adding counterweights in order to keep the total mass center of moving links
stationary [22]. In this case,

..
s = 0 for any configuration of the manipulator and, as a result,

the shaking force is canceled. It is obvious that the adding of supplementary masses as
counterweights is not desirable because it leads to the increase of the total mass, of the
overall size of the manipulator, the efforts in joints, the shaking moment and the input
torques. Therefore, in the present study, it is proposed to minimize the shaking force via
reduction of the total mass center acceleration:

max
∣∣..s∣∣→ min

s(t)
(3)

i.e., to apply an optimal control of the total mass center of moving links that allows one to
reduce the maximal value of its acceleration.

For this purpose, let us consider the control of the spatial parallel manipulator Or-
thoglide through the motion planning of its center of mass. To ensure it, let us assume
that the center of mass moves along a straight line between its initial and final positions.
Thus, the motion profile used on this path will define the values of shaking forces. For
the same displacement of the total center of mass S and the displacement time t f , the
maximal value of the acceleration changes following the motion profile [23]: For quantic
polynomial profile, the |amax| = 10S/

√
3t2; For the “bang–bang” profile, |amax| = 4S/t2. It

means the application of the “bang–bang” law theoretically brings about a reduction of
30.7% of the maximal value of the acceleration. Hence, to minimize the maximum value of
the acceleration of the total mass center and, as a result, shaking forces, the “bang–bang”
profile should be used. Thus, by reducing the acceleration of the center of mass of the
Orthoglide, a decrease in its shaking forces is achieved. Therefore, to achieve the shaking
force balancing through the approach described above, it is necessary to consider the
relationship between the input parameters ρ = (ρx, ρy, ρz) and the center of mass positions
P(px, py, pz) of the Orthoglide.

2.2. The Relationship between the Total Center of Mass and the Input Parameters of the Robot

In order to control the manipulator according to the method described above, it is
necessary to establish the relationship between the displacement of the total center of
mass and the input parameters ρ = (ρx, ρy, ρz), i.e., for the given position and the law
of motion of the common center of mass (CoM) of the manipulator determine its input
displacements. Then, by means of the obtained input parameters via forward kinematics,
determine the position of the output axis P(px, py, pz). For this purpose, it is necessary to
establish the relationship between the common center of mass of the manipulator and its
input parameters.

Let us start this issue with the initial and final positions P(px, py, pz) of the plat-
form Pi(xi, yi, zi) and Pf(x f , y f , z f ). So, by inverse kinematics [21], the input angles cor-
responding to these positions will be determined: ρi(ρxi, ρyi, ρzi) and ρf(ρx f , ρy f , ρz f ).
The corresponding values of the common CoM of the manipulator can also be found:
SCoM_i = (xSi, ySi, zSi) and SCoM_f = (xS f , yS f , zS f ). The displacement of the total center of
mass is D(dx, dy, dz) = SCoM_f − SCoM_i. Subsequently, a straight line connecting the initial
and final positions of the comment center mass of the manipulator can be established,
and its motion planning by “bang–bang” profile with the time interval t f can be ensured:
SCoM = S(t), i.e.,

S(t) =

 SCoM_i + 2( t
t f
)

2D, (0 ≤ t ≤ t f
2 )

SCoM_i +
[
−1 + 4( t

t f
)− 2( t

t f
)

2
]
D, (

t f
2 ≤ t ≤ t f )

(4)
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Let us now consider the relationship between SCoM = [x(t), y(t), z(t)] and the input
displacement ρ = (ρx, ρy, ρz).

The common CoM of the manipulator can be expressed as:

SCoM =
∑n

i=1 rimi + rPmpayload

M
(5)

where i is the number of the moving link (i = 1, . . . , n), SCoM is the coordinate vector of
the total mass center of the manipulator, ri is the coordinate vector of the linkage i, mi is the
mass of the linkage i; rP is the coordinate vector of the payload, mpayload is the mass of the

payload; M =
n
∑

i=1
mi + mpayload is the total mass of the Orthoglide including the payload.

In the developed prototype, the slider of the prismatic joint is designed as the body AB,
where A is not on the three axes but has an offset named l. At the same time, C1 = C2 =
C3 = P. Thus, the coordinates of the joints along the X, Y and Z axes are the followings:

X-axis: C1 = (px, py, pz); B1 = (ρx, 0, 0); A1 = (ρx, 0, 0).
Y-axis: C2 = (px, py, pz); B2 = (0, ρy, 0); A2 = (0, ρy, 0).
Z-axis: C3 = (px, py, pz); B3 = (0, 0, ρz); A3 = (0, 0, ρz).

The mass centers of the parallelograms i can be written as:
[

xBi +
rBiCi
lBiCi

(xCi + xBi ), yBi+

rBiCi
lBiCi

(yCi + yBi ), zBi +
rBiCi
lBiCi

(zCi + zBi )
]
, and their masses are mBiCi. The masses center of the

three actuated links is:
[
xBi , yBi , zBi

]
, the masses of input links are denoted as mAiBi. The

coordinates of the mass center of the joint of the end-effector P are [px, py, pz], and its mass
is mP.

With the masses of the corresponding links, the expressions of the total center of mass
of the moving links of the Orthoglide can be expressed as:

Sx =

[
ρx(mB1C1(1−

rB1C1
lB1C1

)+mA1B1)+(∑3
i=1

mBiCirBiCi
lBiCi

+mP+mpayload)px

]
M

Sy =

[
ρy(mB2C2(1−

rB2C2
lB2C2

)+mA2B2)+(∑3
i=1

mBiCirBiCi
lBiCi

+mP+mpayload)py

]
M

Sz =

[
ρz(mB3C3(1−

rB3C3
lB3C3

)+mA3B3)+(∑3
i=1

mBiCirBiCi
lBiCi

+mP+mpayload)pz

]
M

(6)

where M =
3
∑

i=1
(mAiBi +mBiCi)+mP +mpayload is the total mass of the moving components;

lBiCi is the length of the longer side of the three parallelograms; rBiCi represents the distance
between the joint Bi and the mass center of parallelograms.

According to the proposed method, the displacement of the total center of mass should
follow “bang–bang” motion profile S(t), i.e.,

x(t) =

 xSi + 2( t
t f
)

2dx, (0 ≤ t ≤ t f
2 )

xSi +
[
−1 + 4( t

t f
)− 2( t

t f
)

2
]
dx, (

t f
2 ≤ t ≤ t f )

y(t) =

 ySi + 2( t
t f
)

2dy, (0 ≤ t ≤ t f
2 )

ySi +
[
−1 + 4( t

t f
)− 2( t

t f
)

2
]
dy, (

t f
2 ≤ t ≤ t f )

z(t) =

 zSi + 2( t
t f
)

2dz, (0 ≤ t ≤ t f
2 )

zSi +
[
−1 + 4( t

t f
)− 2( t

t f
)

2
]
dz, (

t f
2 ≤ t ≤ t f )

(7)

Note that the output parameters (px, py, pz) of the manipulator Orthoglide can be
expressed with the functions, including the input parameters (ρx, ρy, ρz) via direct kine-
matics [21]. Thus, Equation (6) becomes a group of three equations expressed with three
unknowns (ρx, ρy, ρz), and it has a unique solution. Finally, the time-varying input displace-
ments of the actuated prismatic joints can be obtained in order to ensure the displacement
of the CoM.
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3. Illustrative Example via CAD Model

To validate the proposed method, numerical simulations are conducted in ADAMS
software. We created a CAD model and carried out the simulations by applying the follow-
ing parameters of the Orthoglide [24], which correspond to the geometrical parameters of
the prototype developed in LS2N (Figure 2). The detailed geometric parameters follow.
The lengths of the longer side of the three parallelograms are lB1C1 = lB2C2 = lB3C3 =
0.31 m, the distances between the joint Bi and the mass center of the parallelograms are
rB1C1 = rB2C2 = rB3C3 = 0.155 m, the configuration indices of the current mechanism are
sx = sy = sz = 1. The masses of sliders are mBiCi = 0.396 kg (i = 1, 2, 3), the masses of
the parallelograms are mAiBi = 0.248 kg (i = 1, 2, 3), and the mass of the revolute joint P
is mP = 0.1 kg. The trajectory of the output axis P of the platform is given by its initial
position Pi with the coordinates: xi = 0, yi = 0, zi = 0 and the final position Pf with the
coordinates: x f = −0.1 m, y f = 0.07 m, z f = −0.11 m. The corresponding input displace-
ments are determined via inverse kinematics:ρxi = 0.31 m, ρx f = 0.18 m, ρyi = 0.31 m,
ρy f = 0.34 m, ρzi = 0.31 m, ρz f = 0.17 m. The coordinates of the common CoM of the
manipulator for two positions were found: xSi = 0.04 m, ySi = 0.04 m, zSi = 0.04 m,
xS f = −0.04 m, yS f = 0.09 m, zS f = −0.05 m. The traveling time of this trajectory is
t f = 0.1 s, the designed acceleration of the center of mass is acom = 38.7 m/s2.

3.1. Balancing of the Orthoglide without Taking into Account the Payload

The traditional control strategy is based on the trajectory and motion planning of
the end-effector. In the application of the pick-and-place robot, the displacement of the
end-effector is defined as a straight line and parameterized with a motion profile such as a
quantic polynomial profile. With the proposed approach in this paper, the trajectory of the
end-effector is not defined, but the trajectory of the CoM. Then, the “bang–bang” motion
profile is applied to the trajectory of the CoM. Thus, in this section, three studied cases are
designed in order to see the efficiency of the proposed method:

• Case 1: defining the displacement of the end-effector of the unbalanced manipulator
as a straight line and parameterized with “fifth-order polynomial” profile;

• Case 2: defining the displacement of the end-effector of the unbalanced manipulator
as a straight line and parameterized with “bang–bang” profile;

• Case 3: the generation of the displacement of the manipulator center of mass as a
straight line and parameterized with the “bang–bang” profile.

By comparing cases 1 and 2, we can see the necessity of using “bang–bang” law; by
comparing cases 2 and 3, the advantage of CoM motion planning become obvious; in
comparison of cases 1 and 3, the difference between the traditional control method and
proposed one becomes evident.

The simulation results (Figure 4) show that, compared to the traditional control
technique (case 1), the shaking force was reduced up to 33.2% by applying the “bang–bang”
law to the CoM (case 3) without carrying a payload. Employing the “bang–bang” motion
on the end-effector (case 2) reduces the shaking force by 24.9%.

Compared to the increase of the shaking moment of the balancing method based on
adding counterweights, the shaking moment (see in Figure 5) has a reduction of 33.6%
with the approach based on the motion planning of the CoM (case 3). The method that
defines the motion of the end-effector with “bang–bang” (case 2) motion profile reduces
the shaking moment by 23.8%.

The curves of case 3 are nearly straight lines and have largely reduced the maximal
value of the shaking force and shaking moment, which is benefiting from the proposed
balancing technique. Obviously, the motion control of the CoM of the Orthoglide is
more efficient.

Another advantage of this method is its simplicity and versatility. In the case of
changing trajectory, it is just necessary to provide the initial and final coordinates of
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the end-effector, calculate the input parameters according to the proposed method and
implemented them in the manipulator control system.
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3.2. Balancing of the Orthoglide While Taking into Account the Payload

With the balancing method by adding counterweights, once the payload is changed,
the mass redistribution needs to be redone, which brings about the complexity of the
balancing process.

However, the proposed approach by optimal motion planning of the CoM is still
efficient, taking into account the varying payload because the motion planning can be
conducted without modifying the robot components and configuration. In view of the
payload capacity of the Orthoglide (5 kg), Tables 1 and 2 demonstrate the shaking force and
shaking moment for three cases when the Orthoglide is carrying a payload. The variations
and reduction ratio of the shaking force and the shaking moment taking into account the
payloads are, respectively, presented in Tables 1 and 2.
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Table 1. The shaking force and its reduction of the Orthoglide while carrying a payload.

Mass of Payload/kg
Shaking Force 1/Newton ·m Reduction 2/%

Case 1 Case 2 Case 3 Case 2 Case 3

0 117.99 88.56 78.86 24.9 33.2
1 212.08 152.82 144.57 27.9 31.8
2 306.73 218.08 210.55 28.9 31.3
3 401.55 283.65 276.31 29.3 31.2
4 496.43 349.36 342.22 29.6 31.1
5 591.35 415.14 408.14 29.8 30.9

1 the maximum value of the shaking force during the movement. 2 the reduction ratio of shaking force is calculated
by Case 2−Case 1

Case 1 and Case 3−Case 1
Case 1 .

Table 2. The shaking moment and its reduction of the Orthoglide while carrying a payload.

Mass of Payload/kg
Shaking Moment 1/Newton ·m Reduction 2/%

Case 1 Case 2 Case 3 Case 2 Case 3

0 38.19 29.11 25.35 23.8 33.6
1 64.11 47.18 43.66 26.4 31.9
2 90.08 65.25 61.82 27.6 31.4
3 116.06 83.33 79.93 28.2 31.1
4 142.03 101.40 98.02 28.6 31.0
5 168.01 119.47 116.09 28.9 30.9

1 the maximum value of the shaking moment during the movement. 2 the reduction ratio of shaking moment is
calculated by Case 2−Case 1

Case 1 and Case 3−Case 1
Case 1 .

As is shown in Table 1, the shaking force of the Orthoglide was reduced up to 33.2%.
Following the increase of the payload, the reduction ratio is approaching the theoretical
value of 30.7%. Thus, we have the conclusion that, with the proposed balancing approach,
a minimum reduction (30.7%) of the shaking force can be achieved. Compared to case 3,
case 2 has a minimum reduction of the shaking force of 24.9%.

It should be noted that the purpose of these simulations was not an illustration of
the decrease in the shaking moment. However, it was considered useful to give the
simulation results, which show that a decrease in shaking force is accompanied by a
decrease in shaking moment. It can be considered a further advantage of the suggested
balancing solution.

3.3. Sensitivity Analysis of the Shaking Force and Shaking Moment

In the current industry, manufacturing errors are unavoidable and should be consid-
ered during the design process in order to ensure high accuracy of achieved results. With
the proposed balancing strategy, the mass of the payload is one of the design variables,
which can largely influence the final values of shaking forces and shaking moments acting
on the frame. During the balancing process, if a mass error exists, the balancing condition
can be different.

The shaking force of the Orthoglide shown in Equation (2) can also be written as the
sum of the inertial forces of all the moving components:

Fsh = M
..
rS =

6

∑
i

mi
..
rSi + (mP + mpayload)

..
rP (8)

Thus, the substituted mass center of the Orthoglide can be expressed as:

Fsh = M′..rP +
3

∑
i=1

[
mAiBi + (1− rBiCi

lBiCi
)mBiCi

]
..
rAiBi (9)
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where the accelerations of the links are:

..
rP =

[ ..
px,

..
py,

..
pz

]
..
rA1B1 =

[ ..
ρx, 0, 0

]
..
rA2B2 =

[
0,

..
ρy, 0

]
..
rA3B3 =

[
0, 0,

..
ρz
] (10)

the replaced point mass on P is:

M′ = rB1C1

lB1C1
mB1C1 +

rB2C2

lB2C2
mB2C2 +

rB3C3

lB3C3
mB3C1 + mP + mpayload (11)

where ri is the distance between joints Bi and the mass center of the link BiCi. (See in
Figure 6).
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Thus, the sensitivities of the shaking force to the design variables (The mass and
length parameters of the links) of the Orthoglide can be obtained as follows:

∂Fsh

∂mBiCi
=

rBiCi
lBiCi

..
rP + (1− rBiCi

lBiCi
)

..
rAiBi (i = 1, 2, 3) (12)

∂Fsh

∂mAiBi
=

..
rAiBi (i = 1, 2, 3) (13)

∂Fsh

∂mpayload
=

..
rP (14)

∂Fsh

∂lBiCi
=

mBiCirBiCi
l2

BiCi
(

..
rAiBi −

..
rP) (i = 1, 2, 3) (15)

∂Fsh

∂rBiCi
=

mBiCi
lBiCi

(
..
rP −

..
rAiBi) (i = 1, 2, 3) (16)

From the equations presented above (12–16), it is obvious that the sensitivities of the
shaking force to the design variables depend on the acceleration of the end-effector

..
rP and

input sliders
..
rAiBi(i = 1, 2, 3), which are nonlinear and time-varying, and the values of the

variables themselves.
To illustrate the sensitivities of the shaking force balancing approach proposed in

this article, an error of 10% of the design variables’ value is applied during the balancing
process. Then a series of simulations are conducted in ADAMS software. It should be
noted that each simulation includes only one variable with an error, in order to identify the
input parameters which make the largest contribution to the shaking force errors. Here,
the payload mpayload is 1 kg. The trajectory of the output axis P of the platform is given by
its initial position Pi with the coordinates: xi = 0, yi = 0, zi = 0 and the final position Pf
with the coordinates: x f = −0.1 m, y f = 0.07 m, z f = −0.11 m. The traveling time of this
trajectory is t f = 0.1 s, the designed acceleration of the center of mass is acom = 38.7 m/s2.
In addition, taking into account that the Orthoglide has three identical kinematic chains,
only one arm’s design variables one observed. We declare that the error of the mass of
link AB is denoted as ∆mBC, the mass error of the payload carried by the end-effector is
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denoted as ∆mpayload, the length error of link AB is denoted as ∆lBC and the position error
of the mass center of link AB is denoted as ∆rBC.

As we can see from Table 3, not only the error of shaking force is presented while the
length error lBC exists, but also the output coordinates errors of the end-effector. The latter
is very important because it decides the output accuracy and reliability of the mechanism.
Thus, the manufacturing accuracy, design tolerances and clearances, etc., should be proper
in order to ensure output accuracy.

Table 3. The errors of shaking force and end-effector position taking into account the errors.

Input Errors Output Errors

∆mBC
/kg

∆mpayload
/kg

∆lBC
/mm

∆rBC
/mm

∆mAB
/kg |∆Fsh|/N |∆xP|/mm |∆yP|/mm |∆zP|/mm

0.04 0 0 0 0 0.077 0 0 0
0 0.1 0 0 0 0.187 0 0 0
0 0 31 0 0 2.887 37.296 6.048 11.824
0 0 0 16 0 0.025 0 0 0
0 0 0 0 0.02 0.202 0 0 0

∆Fsh is the difference of the shaking force. ∆xP, ∆yP, ∆zP are the output coordinates errors of the end-effector P.

The simulation results in Tables 4 and 5 show the sensitivities of shaking force and
output position. Table 4 shows that the quality of the proposed shaking force balancing
approach is relatively sensitive to the mass of the prismatic slider mAB. However, the mass
of the slider does not influence the accuracy of the output positions. As we can see from
Tables 4 and 5, both shaking force and positions of the end-effector are not very sensitive to
the design variables mBC, mpayload, lBC, rBC, which means the proposed balancing solution
has good stability under manufacturing errors (10%).

Table 4. The sensitivities of the shaking force to the design variables mBC, mP, rBC.

| ∂Fsh

∂mAB
| | ∂Fsh

∂mBC
| | ∂Fsh

∂mpayload
| | ∂Fsh

∂rBC
|

10.105 1.930 1.874 1.581

Table 5. The sensitivities of the shaking force and output position to the design variables lBC.

| ∂Fsh

∂lBC
| | ∂xP

∂lBC
| | ∂yP

∂lBC
| | ∂zP

∂lBC
|

0.093 1.203 0.195 0.381

4. Conclusions

It is known that the shaking force balancing by counterweights mounted on the
moving links is more appropriate for serial and planar parallel manipulators. It is much
more difficult for parallel spatial manipulators. Therefore, in this paper, an alternative
method based on optimal acceleration control of the common CoM is applied for shaking
forces minimization of the Orthoglide robot. The suggested balancing technique consists
in the fact that the Orthoglide is controlled not by applying platform trajectories but by
motion planning of the total mass center of moving links. The trajectories of the total
mass center of the manipulator are defined as straight lines and are parameterized with a
“bang–bang” profile. Such a control approach allows the reduction of the maximum value
of the center of mass and consequently the shaking force. The numerical simulations show
the efficiency of the proposed solution.

Then, the sensitivities of the shaking force while applying the proposed balancing
strategy to the design variables of the Orthoglide were analyzed. It is shown that the errors
of the shaking force are acceptable.

Now, future works concern the experimental validation of the suggested balancing
technique via tests that will be carried out on the prototype of the Orthoglide developed in
LS2N (Figure 2).
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