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Abstract: The proposed study focuses on the inverse and forward kinematic analysis of a novel
6-DOF parallel manipulator with a circular guide. In comparison with the known schemes of such
manipulators, the structure of the proposed one excludes the collision of carriages when they move
along the circular guide. This is achieved by using cranks (links that provide an unlimited rotational
angle) in the manipulator kinematic chains. In this case, all drives stay fixed on the base. The
kinematic analysis provides analytical relationships between the end-effector coordinates and six
controlled movements in drives (driven coordinates). Examples demonstrate the implementation
of the suggested algorithms. For the inverse kinematics, the solution is found given the position
and orientation of the end-effector. For the forward kinematics, various assembly modes of the
manipulator are obtained for the same given values of the driven coordinates. The study also
discusses how to choose the links lengths to maximize the rotational capabilities of the end-effector
and provides a calculation of such capabilities for the chosen manipulator design.

Keywords: degree-of-freedom; parallel mechanism; manipulator; hexapod with circular guide;
forward and inverse kinematics; MATLAB modeling; CAD modeling; homotopy continuation

1. Introduction

Currently, manipulators designed with a parallel structure are becoming more
widespread in technology. Many different types of these manipulators are known and they
provide exceptional functional properties [1–4]. Herein parallel manipulators equipped
with a circular guide are quite promising for practical application. Their kinematic chains
are supported by movable carriages, which allow chains to switch the position of the
end-effector relative to a fixed link designed as a circular guide [5,6].

A circular guide provides the end-effector with a large rotational angle around the
vertical axis that is quite an important property for many practical applications. In addition,
the design features of manipulators with a circular guide ensure the manipulation of heavy
objects. Due to the possibility of realization of these important functional properties, such
manipulators have become the object of many studies in recent years.

The first parallel manipulator with a circular guide was mentioned in [7] in 1983. This
is a six-degree-of-freedom (6-DOF) manipulator, in which six kinematic chains couple in
pairs at the end-effector (platform). This manipulator provides a full range of motions of
the end-effector with complete rotation around the vertical axis, and it has three additional
mobilities that do not affect the trajectories of the end-effector. The kinematics of this
manipulator and its workspace analysis are presented in [8]. Later, similar kinematic
schemes of 6-DOF parallel manipulators, including exclusively joints with rotational DOFs,
were presented in [9–13].

An advanced scheme of the 6-DOF manipulator with a circular guide [7] is presented
in [14]. A study of its kinematics and working zone analysis is presented in [15]. A similar

Robotics 2021, 10, 31. https://doi.org/10.3390/robotics10010031 https://www.mdpi.com/journal/robotics

https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0003-4071-8407
https://orcid.org/0000-0002-3928-5440
https://doi.org/10.3390/robotics10010031
https://doi.org/10.3390/robotics10010031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/robotics10010031
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/2218-6581/10/1/31?type=check_update&version=4


Robotics 2021, 10, 31 2 of 13

manipulator with kinematic chains having different types of joints, including universal
joints, is presented in [16].

A different structure of the 6-DOF manipulator with a circular guide is proposed in [17,18].
The manipulator designed with three kinematic chains and equipped with prismatic joints,
which allow the manipulator to have large displacement along the vertical axis. A 3-DOF
manipulator with a circular guide is shown in [19]. It was designed on the basis of spherical
kinematic chains. Its principal difference from the spherical manipulator is in increased
rotational angle around the vertical axis. In [20], this manipulator is presented with a
reconfigurable kinematic design that allows changing the size of its working zone. Another
variation of the 3-DOF spherical manipulator with a circular guide proposed in [21]. The
manipulator includes kinematic chains 3-RUS and 1-S. In [22], a manipulator with a circular
guide is presented as a 1-DOF system. The transition from six drives to one is realized
by installing an additional lever mechanism inside the circular guide, which provides
the dependent movement of all carriages from a single drive. All of the above discussed
manipulators with a circular guide, with the exception of the manipulator given in [22],
have drives mounted exclusively on the movable links (carriages). Moreover, the structure
of these manipulators is organized in such a way that the possibility of collision between
the adjacent carriages is not eliminated.

In this regard, the proposed study aims at the designing and analysis of such a
manipulator with a circular guide that provides placement of all drives fixed on the base,
ensures elimination of the possibility of collision between the adjacent carriages while
having a sufficiently large rotation of the end-effector around the vertical axis and providing
six DOFs.

2. Manipulator Architecture

Let us consider the structure and functional features of the proposed 6-DOF manip-
ulator with a circular guide. Figure 1 presents its CAD (computer-aided design) model
(virtual prototype). The model allows not only to fabricate its physical prototype but also
to perform numerical calculations and experiments. The operation of the CAD model
is presented in the movie in Supplementary Materials. The key elements in Figure 1
are: 1—circular guide (fixed link); 2—drive; 3—crank; 4—slide block; 5—swinging arm;
6—carriage; 7—leg; 8—platform (end-effector). Slide block 4 and swinging arm 5 form a
prismatic joint, swinging arm 5 and carriage 6 form a single link (rigid connection), leg
7 is connected on both sides with carriage 6 and platform 8 by spherical joints. Figure 1
also demonstrates the main constructive assemblies of the manipulator: I—the coupling
of leg 7 and platform 8 through spherical joints; II—the coupling of six swinging arms
5, which converge in the center of circular guide 1 and have a common rotational axis;
III—the coupling of links 1–6.

Figure 1. CAD model (virtual prototype) of the 6-DOF parallel manipulator with a circular guide.
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In each of the six kinematic chains of the manipulator, the input motions pass from
cranks 2 to slide blocks 4 and then to swinging arms 5, turning them at certain angles.
Swinging arms 5 displace carriages 6 along circular guide 1. The motion transmits to legs
7 and then to platform 8. Thus, six independently actuated kinematic chains provide the
change of position and orientation of platform 8.

One can note the following design features of the proposed manipulator:

• all drives stay fixed on the base;
• correctly chosen cranks’ lengths allow eliminating the possibility of collision between

the adjacent carriages;
• sufficiently large rotation of the end-effector around the vertical axis.

3. Kinematic Analysis

Let us consider the solution of the inverse and forward position problems, which
allows to identify the relationships between the end-effector coordinates and the con-
trolled movements in the manipulator drives. In this case, the inverse problem aims at
calculating the driven coordinates for the given end-effector coordinates, and the forward
one aims at determining the position and orientation of the end-effector with known
driven coordinates.

The position of the end-effector can be described by the Cartesian coordinates of
any of its points, for example, its center, point P (Figure 2a). These coordinates can be
represented as vector pP that determines the position of point P relative to global coordinate
system OXYZ. Plane OXY is in the plane of carriages Ki, i = 1 . . . 6, and the center, point O,
corresponds to the intersection point of the circular guide axis with this plane. The end-
effector orientation can be set using rotation matrix RP, which determines the orientation of
local coordinate system PXPYPZP attached to the end-effector relative to global coordinate
system OXYZ.

Figure 2. Toward kinematic analysis of the 6-DOF parallel manipulator with a circular guide: (a) 3D
model; (b) fragment of the circular guide.

Let us represent the driven coordinates of the manipulator as vector q:

q = [q1 q2 q3 q4 q5 q6]
T, (1)

where qi corresponds to the rotational angle of i-th crank, i = 1 . . . 6 (Figure 2b).
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3.1. Inverse Kinematics

The solution of the inverse position problem is to find driven coordinates q for given
vector pP and matrix RP, which describe the end-effector position and orientation. The
algorithm for solving this problem is as following. Coordinates pEi of points Ei (the centers of
spherical joints 7–8), i = 1 . . . 6, relative to global coordinate system OXYZ can be written as:

pEi = pP + RPrEi, (2)

where rEi are the coordinates of points Ei in local coordinate system PXPYPZP.
Coordinates pKi of points Ki (the centers of spherical joints 6–7), i = 1 . . . 6, in global

coordinate system OXYZ can be found in the following way:

pKi =
[

R1 cos(αi+δi) R1 sin(αi+δi) 0
]T, (3)

where R1 is the radius of circular guide 1; αi is the angle between axis OX and line OBi
(Figure 2b); δi is the rotational angle of i-th swinging arm 5.

Let us write the relationship, linking coordinates of points Ei and Ki with length Li of
leg 7:

(pEi − pKi)
2= L2

i , (4)

After substituting Equations (2) and (3) in Equation (4) and carrying out transforma-
tions, the following relation can be obtained:

px
Ei cos(αi+δi) + py

Ei sin(αi+δi) =
p2

Ei + R2
1 − L2

i
2R1

, (5)

where pEi
x and pEi

y are the corresponding components of vector pEi.
Angle δi of swinging arm 5 is an unknown parameter in Equation (5). Let us apply

the tangent half-angle substitution to find this angle:

cos(αi+δi) =
1− t2

i
1 + t2

i
, sin(αi+δi) =

2ti

1 + t2
i

, ti = tan
(
αi + δi

2

)
. (6)

Substituting Equation (6) into Equation (5), after transformations, the following ex-
pression can be obtained:

ait2
i + biti + ci = 0. (7)

Coefficients ai, bi, and ci are known when solving the inverse position problem. In
the general case, quadratic Equation (7) can have two solutions, which can be interpreted
as follows. The motion trajectory of each carriage (point Ki) is a circle. At the same time,
for the given (fixed) coordinates of the end-effector, point Ki must be on the surface of the
sphere with the center at point Ei and radius Li. This sphere generally has two intersection
points with the mentioned circle that corresponds to quadratic Equation (7). The choice of
the specific solution is determined by the design features of the manipulator.

After determining variable ti, angle δi of swinging arm 5 can be found from Equation (6)
written as follows:

δi = 2arctan(ti)− αi. (8)

The angle at apex Ci of triangle OBiCi can be determined using the sine theorem as:

∠OCiBi= arcsin
(

disin δi
li

)
. (9)

where di is the distance between point O and rotational axis Bi of i-th crank (Figure 2b); li is
the length of i-th crank.
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Finally, the rotational angle of the i-th crank, i.e., the value of driven coordinate qi, can
be determined:

qi= δi +∠OCiBi. (10)

Thus, the solution of the inverse position problem has been found. The solution
algorithm is the same for all kinematic chains of the manipulator.

3.2. Forward Kinematics

The solution of the forward position problem for the proposed manipulator is to find
vector pP and rotation matrix RP, which describes the end-effector position and orientation,
for given driven coordinates q. The algorithm for solving this problem is as follows.

Initially, length OCi (i = 1 . . . 6) can be found using the cosine theorem for triangle
OBiCi (Figure 2b):

OCi =
√

d2
i + l2

i + 2dili cos qi. (11)

Next, angle δi of swinging arm 5 can be determined using the sine theorem for the
same triangle:

δi = arcsin
(

li sin qi
OCi

)
. (12)

Then, Equation (3) allows to find coordinates pKi of carriages 6. As a result, a system
of six equations of the form (4) can be written. With Equation (2), this system has twelve
unknown variables: three components of vector pP and nine components of matrix RP.
Since rotation matrix RP is orthogonal, the following additional relations exist [23]:

|u|2= 1, |v|2= 1, u·v = 0, u×v = w, (13)

where u, v, and w are the columns of matrix RP:

RP =
[

u v w
]
. (14)

Thus, six equations of the form (4) and six equations of the form (13) represent a system
of twelve equations with respect to twelve variables. All the equations are second-degree
polynomials. Such a system of equations is inherent for many parallel mechanical systems,
including the classical Gough-Stewart platform [23], and the determination of its solutions
in an explicit form comes with significant computational difficulties. Many authors have
proposed various algorithms for solving these equations based on the methods of dialytic
elimination [24], homotopy continuation [25], Gröbner bases [26], interval analysis [27],
and others [28,29]. The studies above showed that in general (in the case of an arbitrarily
chosen geometry of the manipulator), the system can have 40 different solutions, both
real and complex, and Husty [30] provided an algorithm to form a univariate polynomial
of 40th degree that allows finding all the solutions. Dietmaier also showed that all the
solutions can be the real ones [31]. Any of the approaches above can be applied to solve
the system of equations discussed in this study. The next section will discuss the examples
of solving both position problems.

3.3. Examples of Kinematic Problems’ Solution

Let us consider examples of solving the inverse and forward position problems for the
manipulator with the following parameters, corresponding to the CAD model (Figure 1):
radius of circular guide 1, R1 = 250 mm; length of crank 3, li = 40 mm, i = 1 . . . 6; length of
leg 7, Li = 222 mm, i = 1 . . . 6; distance between points O and Bi, di = 160 mm, i = 1 . . . 6;
angle between axis OX and length OBi, αi = 30◦, 90◦, 150◦, 210◦, 270◦, 330◦; coordinates of
spherical joints 7–8 in local coordinate system PXPYPZP, rEi =

[
R8cosβi R8sinβi 0

]T,
where R8 = 153 mm is the radius of platform 8; βi is the angular placement of joints 7–8,
βi = 7.5◦, 112.5◦, 127.5◦, 232.5◦, 247.5◦, 352.5◦.
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3.3.1. Example of Inverse Position Problem Solution

First, consider an example of solving the inverse position problem for the simplest
case, when point P of the end-effector is located above point O at height 180 mm. Let the
axes of local coordinate system PXPYPZP be aligned with the axes of coordinate system
OXYZ, i.e., rotation matrix RP is identity in this case. As a result of the calculation according
to the above mentioned algorithm, implemented in MATLAB package, the following values
of the driven coordinates were determined:

q =
[

15.3◦ −15.3◦ 15.3◦ −15.3◦ 15.3◦ −15.3◦
]T. (15)

The rotational angles of cranks form two groups with equal values and opposite in
sign: q1 = q3 = q5 = −q2 = −q4 = −q6. As expected, the solution has certain “symmetry”,
which is fully consistent with the “symmetric” geometry and the given configuration of
the manipulator.

3.3.2. Example of Forward Position Problem Solution

Next, consider an example of solving the forward position problem, taking Equation (15)
as the given values of the driven coordinates. This problem was solved by the homotopy
continuation method [32] that implies the following idea. Given the system of equations to
solve in a standard form F(X) = 0, one can form an auxiliary system:

H(X, λ) = (1− λ)G(X) + λF(X) = 0, (16)

where G(X) is a system that has the same number of solutions as F(X), and all these solutions
are known; λ is a scalar parameter, varying from 0 to 1.

When λ = 0, H(X, 0) = G(X), and all the solutions are known. These solutions present
an initial guess to solve a new version of H(X, λ) with slightly increased value of λ using
standard iterative algorithms. The process is repeated until λ = 1, for which H(X, 1) = F(X).
Thus, the starting system G(X) = 0 with known solutions slowly evolves toward the desired
one F(X) = 0.

As mentioned before, system F(X) = 0 for the studied manipulator consists of twelve
second-order degree polynomials with respect to twelve variables. According, to Bezout’s
theorem [33], this system can have a maximum of 212 = 4096 solutions. Given this, one can
form the system G(X) = 0 with the desired number of solutions.

This procedure was realized automatically using Bertini program [34], implemented
in MATLAB package as BertiniLab interface [35]. As a result, 28 different solutions were
obtained: 8 real and 20 complex. These eight real solutions correspond to eight different
assembly modes of the manipulator and are shown in Table 1 and Figure 3. Assembly mode
#3 corresponds to the specified end-effector configuration from the previous example. Note
that half of the assemblies have a symmetrical analog located on the other side of plane OXY.

One should also notice that the number of obtained solutions, 28, is less than 40. The
reason is that the considered manipulator has a “symmetrical” geometry and the example
was performed for “symmetrical” values of the driven coordinates. In the general case, the
number of solutions will be equal to 40.
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Table 1. The Results of Solving the Forward Position Problem.

Solution Number

1 2 3 4

pP, mm

 30.39
−52.63
113.19

  30.39
−52.63
−113.19

  0.00
0.00

180.00

  0.00
0.00
−180.00


RP

 0.88 0.20 −0.42
0.20 0.65 0.73
0.42 −0.73 0.54

  0.88 0.20 0.42
0.20 0.65 −0.73
−0.42 0.73 0.54

  1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 1.00

  1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 1.00


Solution Number

5 6 7 8

pP, mm

 30.39
52.63

113.19

  30.39
52.63
−113.19

  −60.77
0.00

113.19

  −60.77
0.00
−113.19


RP

 0.88 −0.20 −0.42
−0.20 0.65 −0.73
0.42 0.73 0.54

  0.88 −0.20 0.42
−0.20 0.65 0.73
−0.42 −0.73 0.54

  0.54 0.00 0.84
0.00 1.00 0.00
−0.84 0.00 0.54

  0.54 0.00 −0.84
0.00 1.00 0.00
0.84 0.00 0.54


Notice: the data are presented accurate to two decimals.

 

2 

 
 
 
 

 

Figure 3. Eight different assembly modes of the manipulator, obtained in solving the forward position
problem for the values of driven coordinates indicated in Equation (15); dashed line indicates the
circular guide; the yellow triangle indicates the end-effector; red, green, and blue lines correspond to
XP, YP, and ZP axes of system PXPYPZP, respectively; red dot represents point P.
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4. Geometrical Analysis
4.1. Calculation of Crank Lengths

As mentioned in Section 2, the correctly chosen cranks lengths allow eliminating the
possibility of collision between the adjacent carriages. Let us address this problem in detail.
Let’s consider the symmetrical geometry of the manipulator as in the previous examples:
all the cranks have length l and their rotational axes are located evenly on a circle with
radius d. Suppose that the carriages have angular width γ, and the distance between the
adjacent carriages when they are in extreme positions is ∆ (Figure 4). In this configuration,
each crank is perpendicular to the corresponding swinging arm. Each of the arms rotate on
its maximum angle δmax, so:

sin δmax = l/d. (17)

 

2 

 
 
 
 

 

Figure 4. Position of the horizontal kinematic chains when carriages are in the extreme positions
(angle between crank and swinging arm is 90◦).

On the other hand, according to Figure 4:

2
(
δmax +

γ

2

)
+ ∆ = π/3. (18)

Combining Equations (17) and (18), one can find the crank length:

l = d sin
(
π

6
− ∆ + γ

2

)
. (19)

The equation above allows finding the crank length for the specified gap ∆ between
the carriages. For example, for d = 160 mm as in Section 3.3, γ = 10◦, and ∆ = 0 (extreme
case), the crank length will be l = 67.6 mm.

4.2. Calculation of Maximum Rotational Angle of the Platform

The key feature of manipulators with a circular guide is the ability to provide large
rotational angles around the vertical axis. Let us calculate these angles for the proposed
manipulator in the following way.

For simplicity, suppose that the platform’s plane is parallel to the base one, and the
platform’s center stays above the center of the base. For the proposed manipulator, these
assumptions can be written as:

pP =

 0
0
z

, RP =

 cosϕ − sinϕ 1
sinϕ cosϕ 0

0 0 0

, (20)
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where z is the height of the platform above the base;ϕ is the rotational angle of the platform
around the vertical axis.

In addition, suppose that the platform’s spherical joints are placed on radius R8 with
angular coordinates βi as in the previous examples, i.e., rEi =

[
R8cosβi R8sinβi 0

]T,
i = 1 . . . 6. With these assumptions, Equation (5) can be transformed to the following form:

R8 cos(ϕ+ βi − αi − δi) =
z2 + R2

8 + R2
1 − L2

i
2R1

. (21)

The equation above allows to express angle ϕ:

ϕ = δi + αi − βi ± arccos

(
z2 + R2

8 + R2
1 − L2

i
2R1R8

)
. (22)

The choice of the sign is determined by the design features of the kinematic chains.
Equation (22) can be used to estimate the maximum value of angle ϕ permitted by each
of the six chains. Given the manipulator geometry, this value mainly depends on the
maximum rotational angles δimax of the swinging arm, and platform’s height z:

ϕimax = δimax + αi − βi ± arccos

(
z2 + R2

8 + R2
1 − L2

i
2R1R8

)
. (23)

The value of δimax can be found using Equation (17). Since each of the kinematic
chains can permit different values of maximum rotational angle ϕimax, one has to choose
the minimum one over all kinematic chains:

ϕmax = mini=1 ... 6(ϕimax). (24)

A similar procedure can be used to find the minimum value of angle ϕ concerning
the minimum rotational angle δimin of the swinging arm:

ϕimin = δimin + αi − βi ± arccos

(
z2 + R2

8 + R2
1 − L2

i
2R1R8

)
, (25)

and
ϕmin = maxi=1 ... 6(ϕimin). (26)

The proposed procedure has been modeled in MATLAB for the manipulator with
the same parameters as above, except crank length, which was set to 67.6 mm. Figure 5
demonstrates the dependence of angles ϕmin and ϕmax on the platform’s center coordinate
z, which varies between 120 and 200 mm. Due to the symmetrical geometry of the manipu-
lator, ϕmin = −ϕmax. For smaller values of coordinate z, ϕmin becomes greater than ϕmax,
and these configurations are not acceptable. For higher values of coordinate z, there are
no values of ϕmin and ϕmax since the manipulator cannot be in those configurations. The
maximum value of ϕmax is equal to 25◦ for coordinate z near 185 mm.

The extreme values of angle ϕ are smaller than the ones for the classical Gough-
Stewart platform that can reach about 60◦ [36,37]. However, with Equations (23)–(26), one
can formulate an optimization problem to find mechanism geometry that will maximize
the range of rotation. Another solution is to change the manipulator structure and use
two circular guides: one of them is inside the other (as in [38]) or stacked over it. Each
guide will support only three carriages increasing their driving range and, therefore, the
rotational capabilities of the platform.
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Figure 5. Maximum and minimum values of rotational angle ϕ around the vertical axis depending
on platform height z; red line indicates ϕmax, blue line indicates ϕmin.

Figure 6 presents such a variation of the proposed design with two circular guides.
The swinging arms can rotate at higher angles leading to the increased value of platform
rotational angle ϕ. Here are: 1—inner circular guide (fixed link); 2—outer circular guide
(fixed link); 3—drive; 4—support for drive 3; 5—crank; 6—slide block; 7—swinging arm;
8—carriage; 9—leg; 10—platform (end-effector). The proposed design requires location of
the centers of spherical joints 9–10 according to view I in Figure 6, where each pair of these
joints is on the same radius of the platform. To provide higher rotational angle ϕ, three
kinematic chains of links 5–7 are moved under the circular guides (section A-A in Figure 6).
For the presented design, the maximum value of rotational angle ϕ is about 55◦, which is
comparable to the Gough-Stewart platform.

Figure 6. Variation of the manipulator design with two circular guides that permits higher values of
rotational angle ϕ.

Both proposed designs in Figures 1 and 6 can be further optimized to enhance the
rotational capabilities of the platform, not only in one particular configuration but over
the whole working area. This topic is beyond the current study but presents interest for
future research.
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5. Conclusions

This study has presented a novel version of the 6-DoF manipulator with a circular
guide. The proposed manipulator has such design advantages as having all drives fixed on
the base, sufficiently large rotation of the end-effector around the vertical axis, and using
cranks as the driving links (as an alternative to carriages) placed within the circular guide.
The manipulator can find an application for positioning different elements and objects
in space.

The study has presented algorithms for solving the inverse and forward kinematics.
The former one has a closed-form solution. First, the position of upper and lower spherical
joints, as well as carriages, is determined based on the given end-effector coordinates,
second, the rotational angles of cranks (driven coordinates) are calculated. The solution of
the forward kinematics has been determined using the homotopy continuation method.
According to the example, 28 different solutions have been found (8 real and 20 complex)
for the same values of the driven coordinates. Eight assembly modes have been obtained
according to the eight real solutions. The study has also presented methods for calculation
of the rotational capabilities of the platform and for selection of link lengths. It has been
found that the platform can rotate from −25◦ to +25◦ around the vertical axis with respect
to the chosen manipulator design. However, these values can be increased by different
design variations. The study has presented another manipulator design with two circular
guides, which allows significantly increasing the rotational angle around the vertical axis.
In this design, the angle can vary from −55◦ to +55◦, which is comparable to the one of the
Gough-Stewart platform.

The work has studied design variations of the manipulator with symmetrical geometry
and performed analysis when the platform is parallel to the base and is located right above
its center. The techniques proposed in the study can be expanded for other cases too. The
kinematic analysis of the manipulator performed in this work can serve as a basis for the
further analysis of velocities and accelerations, as well as workspace analysis and optimal
design. In addition, the singularities that can affect the shape and size of the workspace of
the manipulator are of special interest.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-658
1/10/1/31/s1, Movie of the CAD model (virtual prototype) operation.
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