
robotics

Article

Robot-Assisted Glovebox Teleoperation for Nuclear Industry

Ozan Tokatli * , Pragna Das , Radhika Nath , Luigi Pangione , Alessandro Altobelli † , Guy Burroughes ,
Emil T. Jonasson , Matthew F. Turner and Robert Skilton

����������
�������

Citation: Tokatli, O.; Das, P.; Nath,

R.; Pangione, L.; Altobelli, A.;

Burroughes, G.; Jonasson, E.T.; Turner,

M.F.; Skilton, R. Robot Assisted

Glovebox Teleoperation for Nuclear

Industry. Robotics 2021, 10, 85.

https://doi.org/10.3390/robotics

10030085

Academic Editors: Manuel Giuliani

and Wilfried Lepuschitz

Received: 28 May 2021

Accepted: 29 June 2021

Published: 3 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Remote Applications in Challenging Environments (RACE), United Kingdom Atomic Energy Authority,
Abingdon, Oxforshire OX14 3DB, UK; pragna.das@ukaea.uk (P.D.); radhika.nath@ukaea.uk (R.N.);
luigi.pangione@ukaea.uk (L.P.); alessandro.altobelli@itt.it (A.A.); guy.burroughes@ukaea.uk (G.B.);
emil.jonasson@ukaea.uk (E.T.J.); matthew.turner@ukaea.uk (M.F.T.); rob.skilton@ukaea.uk (R.S.)
* Correspondence: ozan.tokatli@ukaea.uk
† Current address: Humanoid Sensing and Perception, Italian Institute of Technology, 16163 Genova, Italy.

Abstract: The nuclear industry has some of the most extreme environments in the world, with
radiation levels and extremely harsh conditions restraining human access to many facilities. One
method for enabling minimal human exposure to hazards under these conditions is through the
use of gloveboxes that are sealed volumes with controlled access for performing handling. While
gloveboxes allow operators to perform complex handling tasks, they put operators at considerable
risk from breaking the confinement and, historically, serious examples including punctured gloves
leading to lifetime doses have occurred. To date, robotic systems have had relatively little impact on
the industry, even though it is clear that they offer major opportunities for improving productivity
and significantly reducing risks to human health. This work presents the challenges of robotic
and AI solutions for nuclear gloveboxes, and introduces a step forward for bringing cutting-edge
technology to gloveboxes. The problem statement and challenges are highlighted and then an
integrated demonstrator is proposed for robotic handling in nuclear gloveboxes for nuclear material
handling. The proposed approach spans from tele-manipulation to shared autonomy, computer
vision solutions for robotic manipulation to machine learning solutions for condition monitoring.

Keywords: nuclear robotics; teleoperation; machine learning; glovebox

1. Introduction

Robots are indispensable tools for manipulation in challenging environments such as
nuclear applications [1]. Robotics in the nuclear industry can not only ensure the safety
of operators from unsafe levels of radiation but also provide cost-effective solutions for
manipulation, inspection, and maintenance of nuclear sites.

The extreme conditions encountered in the nuclear industry leads to a conservative
attitude towards cutting-edge robotics technology despite the fact that it has a high potential
for solving problems that the industry faces [2]. In order to bridge the gap between state-of-
the-art robotics research and the nuclear industry, the Robotics and AI in Nuclear (RAIN)
Hub was established where various problems encountered on nuclear sites are being
investigated and robotic solutions are being developed [3].

Nuclear gloveboxes are contained environments for the safe handling of hazardous
objects and materials. A glovebox prevents the spread of contamination while handling
nuclear materials or contaminated objects. One of the problems considered in the RAIN
Hub is introducing modern robotics and AI technology into existing gloveboxes and paving
the path for the next generation of glovebox designs. Our approach covers a wide range
of technologies from computer vision to teleoperated robotics, assistive technologies to
machine learning, aiming towards safer and efficient operations with nuclear gloveboxes.

As for all nuclear applications, the safety of the operator using the glovebox is the
primary goal for every operation inside the glovebox. To establish safe operational condi-
tions, operators are equipped with personal protective equipment (PPE) and are required
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to closely follow operational rules. However, glovebox operations do not fully mitigate all
hazards and remain high risk activities for the operators [4].

Using PPE and working in a confined space with additional safety procedures lowers
the manipulation capabilities of the operators [5]. Gloves severely reduce the tactile
feedback from the hands. Moreover, working through glove ports that limits the arm
movements of the operator introduces further challenges during the handling of high risk
objects inside the glovebox. As a result, a simple task such as opening a screw lid of a
container, becomes a strenuous and challenging task for the operator.

Gloveboxes, such as in Figure 1, may be cluttered, dynamic environments, and the
tasks executed within can be complex, numerous, safety-critical, and often one-of-a-kind,
therefore, a stand-alone autonomous robotic system cannot be expected to out-perform a
human operator with the current technology. Moreover, due to safety concerns, human-in-
the-loop solutions are deemed to be more desirable at least in early phases of deployment.

Figure 1. A nuclear glovebox where the access to the interior is through the glove ports. The operator
is wearing the specially designed gloves to protect himself from contamination. Source: Wikimedia
Commons.

Novel technologies in robotics and artificial intelligence can be exploited to increase
the safety in the legacy glovebox or to design new robotic gloveboxes [6–8]; in both
cases, dexterous robotic manipulators, sensors, and control algorithms can avoid direct
contact between the operator and hazardous material. Inside the unstructured environment
of gloveboxes, robots could be controlled by the operator via teleoperation while more
autonomous control strategies could be exploited in more standard tasks. Robot arms
could be profitably used to accomplish operations that today are performed by an operator
in order to reduce the workload and the risks of accident or contamination.

In this paper, the challenges encountered in nuclear applications, particularly nuclear
gloveboxes, is described. Furthermore, this paper is drawing a general framework for bringing
cutting-edge robotics and AI research into legacy gloveboxes. In this framework, autonomous
robotic grasping, collision avoidance, condition monitoring of robotic manipulation systems is
described as the solution for improving the safety and manipulation capability of legacy glove-
boxes. Moreover, supporting the operators during complex task execution using operational
management software is described as part of the general framework.

The following article presents the problem of nuclear glovebox robotics, and an in-
tegrated demonstrator into a proposed robotic handling system for nuclear gloveboxes,
spanning teleoperation to autonomy. The paper is organised as follows. In Section 2.1
nuclear gloveboxes are introduced and the challenges for robotics and AI are presented.
Section 3 presents the previous work on the use of robotics technology in nuclear glove-
boxes. In Section 4, the hardware and the simulator build based on this hardware is
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presented. Section 5 defines the research fields of the project and describes how they
address the challenges. Finally, Section 6 concludes the paper.

2. Challenge Statement
2.1. Glovebox Challenges

The majority of robotic applications that achieve success have structured, known,
open environments where obstructions to motion and sensing is minimal. Moreover,
the operational conditions are expected to be clean and suitable to the mechatronic systems
as to not cause damage to the mechanisms and electronics. On the contrary, the working
conditions inside nuclear gloveboxes are considered to be dirty, dark, dull, dangerous,
and cluttered. Therefore, a thorough understanding of gloveboxes is key for the success of
the robotic solution.

Gloveboxes are broken into six major components, which is illustrated in Figure 2: Hull,
windows, glove ports, posting ports, monitoring equipment, and the glovebox internal.

Figure 2. Sections of a glovebox: (1) Hull, (2) posting in/out port, (3) glove ports, (4) environmental
monitoring/maintenance equipment, (5) glovebox window, and (6) glovebox internals.

2.1.1. Hull

The hull is the primary component of the glovebox that separates the glovebox internal
environment from the external environment. In some glovebox solutions, the hull encloses
a vacuum or a pressurized inert gas to ensure the containment of the radiation hazard.
The hull is often lead lined for improved shielding. Due to the hazards inside the glovebox,
it is imperative that the hull is not damaged or containment breached.

2.1.2. Windows

The windows allow for operators to see within the glovebox. The glass is often doped
with lead to an increase in its nuclear shielding however, over time it is common for this
glass to become yellowed (with lower visibility) and brittle from radiation damage. It
is not uncommon for the glass to become crazed, further weakening the integrity of the
containment, and reducing visibility.
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2.1.3. Glove Ports

These are fixed holes in the hull that allow for the gloves, and hence the operators,
to penetrate the hull. They are normally of a standard fixed dimension (e.g., 11 cm
in radius), and most gloveboxes have multiple ports dotted around the hull to enable
operators to reach anywhere in the glovebox interior. These ports have a fixed method for
replacing them without losing containment and can house ports for non-glove equipment,
such as cable routing. The gloves used by the operators are often thick, heavy, leaded,
and when under pressure require the operator to hook their hands into them with their last
two fingers to stop their hands being forced out. Overall, the glove design significantly
increases the operator safety while sacrificing the dexterity and reducing the manipulation
capability of the operator.

2.1.4. Posting in/out Ports

These ports allow operators to post items in or out of the hull through an airlock,
which maintains the containment. Before posting out the items, it must be ensured that
they are appropriately decontaminated. The posted out items are double bagged and they
are of a limited fixed size.

2.1.5. Environment Monitoring and Maintenance Equipment

This is the equipment for monitoring the glovebox internal environment, maintaining
any containment requirements (e.g., vacuum, temperature), and performing containment
testing (e.g., leak tests).

2.1.6. Glovebox Internals

The glovebox internals include the operational equipment used by the operators. This
is a wide and diverse set of objects, from chemical processing equipment to powered hand
tools (e.g., dremels). Any operation for handling nuclear material/objects is performed
inside the glovebox internal area.

As an example of a nuclear application consider post-operational clean-out operations
(POCO), this requires nuclear gloveboxes that have been in service for decades to be
dismantled and decontaminated from the inside-out, surveying, separating waste and
radio-logical wastes, reducing the size of elements through deconstruction or cutting,
draining liquids from process plant equipment, sweeping, and posting contained elements
out. Beyond this it is common for operators to require additional complex PPE, or other
equipment such as ladders to be able to access gloveboxes, whilst exposing them to a
reduced amount of contamination.

2.2. Challenges of Robots in Gloveboxes

Whilst reducing the amount of time human arms are required in gloves reduces the
risk to operators, new challenges are posed to the robots. POCO shall be used as the
primary use case as it covers a wide range of complex tasks in nuclear gloveboxes.

2.2.1. Mechatronics Challenges

The first mechatronic challenge is how to place the robot into the area. In a new
glovebox they can be built into the internal side of the hull but this causes issues for the
maintenance of the robot, as they then must be maintained in situ. Alternatively, the robot
can access the area through the glovebox ports. This then requires the robot to be able to
fit through the glovebox port, whilst also having a long reach and a payload capability
similar to a human. It is worth noting that this pushes the robots towards an inline joint
configuration, rather than an offset approach such as those used by Universal Robots,
for example.

As part of many of the glovebox operations swarf, grease, and dust is generated,
making them exceptionally dirty. This poses issues for the robots and any mechanism,
where if swarf enters joints it can become very damaging to the mechatronics. Similarly,
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other functionalities can be blocked, such as magnetic grippers being blocked by the
amount of magnetic swarf. A unique challenge in nuclear glove boxes are alpha-emitting
powders (e.g., plutonium). The alpha-emitting powders are highly abrasive, penetrative,
radioactive, and volatile if not managed correctly.

This leads to the consideration of whether the robot should be in the glove or affixed
directly to the port. The environments are filled with dust and detritus, which can damage
joints. Moreover, it is preferred that robots do not become contaminated to simplify
maintenance. This then pushes robot designs to being in the gloves. Manipulating from
inside the glove will apply pressure to the robot and limit rotations and dexterity. It is
worth noting that the end-effectors may be on the inside of the environment, connected to
the robot through a modified glove that can dock a robot and end-effector.

In a similar fashion, the glove may have a window modified into it to allow the robot
to have a wrist camera. External sensors may be challenging to install as their cabling,
and themselves will have to be posted in, or they have to be able to cope with the reduced
visibility glass interfering with their functioning. In the case of posting in, that will require
the sensor to have to be able to withstand the environment, a mechanism for power and
data to be connected without breaking containment, and affixing method to be deter-
mined. Moreover, it increases secondary waste generated in the decommissioning process.
Secondary waste is waste generated in the process of decommissioning primary waste.

While robots that replicate human physiology will have an advantage in being able to
replicate operations, other robot kinematic layouts will also have their advantages, such as
slender continuum robots, which will have advantages in inspecting complex shapes and
internals such as pipes.

Another significant challenge is radiation, which will degrade many parts of the robot.
Gamma radiation is the most challenging type of radiation to protect a robotic system
from nuclear gloveboxes, due to its penetrating power (shielding the whole robot would
be impractical due to the thickness of material required to stop it) and its negative effects
on sensitive components commonly used on robotics. Components and materials such as
semiconductors (used in sensors, local motor drive electronics, etc.), plastics (polymers),
optical components, and lubricants are degraded or rendered unusable after certain levels
of accumulated Total Integrated Dose (TID) of gamma radiation. Electronic components
using a standard layout will accumulate trapped charges inside various components
that can change the voltage levels at which transistors are switched on or off, induce
leakage currents in critical parts of devices, or even outright inhibit their functioning.
Polymers suffer from either an increase or decrease in cross-linking, or from off-gassing,
which can lead to a change in polymer morphology and liberate some of the (sometimes
volatile) additives used in the polymer’s manufacturing. Either of these processes will
change the polymer properties, which makes some polymers stiffer and more brittle and
others more soluble or liable to melt at a lower temperature. Finally, greases such as
mineral oil may oxidise and stiffen in a radiation environment due to the off-gassing of
hydrocarbon molecules.

Since the damage caused by ionising gamma radiation is done over time as a con-
sequence of the accumulating dose, limiting the amount of time the robotic tool spends
inside the glovebox to active operations only is a good first step to extending its useful
lifetime. However, this method requires a reliable mechanism for insertion and removal
which does not rely on extensive human intervention and does not add an unacceptable
risk of spreading contamination.

There are different approaches for dealing with the radiation degradation of a robot.
One method is to utilise standard COTS components which are replaced on a regular
basis and/or as they stop functioning. This has the advantage of being achievable with
commercially-available technologies but puts requirements on the glovebox/robot design
such that all “perishable” components are easy to remove and replace and that a robust
safety system is in place to handle any unexpected robot failures at inconvenient times,
since the mean time to failure due to radiation degradation cannot be easily predicted in
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COTS devices that have not been designed with this environment in mind, and they could
fail after anything between 10 s and 1000 s of hours depending on dose rate and radiation
sensitivity. There is also the risk of creating further secondary waste from this process.

A better long-term approach to this challenge is to use radiation hardened components,
which are designed, manufactured, and certified to withstand a particular TID before
failing. Historically, such technology has mainly been developed for use in the space sector,
but electronics designed for spaceflight are often prohibitively expensive, and the space
sector is more concerned with protecting devices from the effects of charged particles
and high-energy electrons than gamma radiation due to these factors dominating the
space environment.

Traditionally, the nuclear sector has been able to work around the lack of radiation-
sensitive electronics through the extensive use of shielding and simple electro-mechanical
solutions, but the maturing field of nuclear fusion has created a strong research push
towards radiation tolerant sensors and electronics. For example, devices such as DC-to-DC
converters, resolver-to-digital converters, relay drivers, and even sensor components such
as digital camera image sensors [9] and LIDAR components [10] have been designed and
qualified for multi-MGy TID tolerance. These devices are now in advanced prototype
and/or early commercialisation stages, and would be capable of surviving many thousands
of hours in a typical glovebox environment. This means that it is only a matter of time
until the control systems of robots can be made tolerant to even the harshest glovebox
radiation environments.

2.2.2. Control and Intelligent Systems Challenges

Now that there is a robot reaching into the environment, the next set of challenges
present themselves. The biggest element of this is that these robots should be aiming to
match or outperform the human operator.

Robotic solutions for gloveboxes mostly rely on teleoperation in order to keep the
human in the decision making process. However, ideal robotics solutions will attain better
productivity, reduced cost, and increased safety by relying on autonomous systems. Despite
the considerable amount of pre-existing research, deploying an autonomous robotic system
inside a glove box is not feasible with current technology however, certain parts of the task
execution can benefit from autonomy or semi-autonomy.

Regardless of teleoperation or autonomy the area is cluttered, and the robot can not
risk hitting the windows and breaking containment. This then requires the robot to be able
to sense its location and environment and then avoid collisions.

Within teleoperation this primarily presents itself as a complex operation to be able
to manage redundant joints re-orienting in the null space, without risking collisions or
reducing manipulability. The cognitive load of managing these additional degrees of
freedom is very mentally taxing on the operator.

A further challenge is the limited number of sensors and cluttered environment, which
leads to limited visibility. This then affects the ability of intelligent systems to act within
the glovebox.

The variety of tasks, events, and elements that the robot may encounter are numerous
and unpredictable. For example, the faults that the robot may encounter can not be
predicted, as testing for them through accelerated destructive testing would be prohibitively
difficult. Similarly, an autonomous grasping system would be able to have a priori items
that it can deal with, but many items such as shrapnel from decommissioning will be novel,
possibly even in their physical characteristics.

The next issue is in assurance. The robot and control system must meet nuclear regula-
tor and site owner requirements. The safety and operation must be verified and validated.
This does not preclude advanced techniques such as deep learning, as verification through
statistical methods have been used in nuclear but, it is a consideration.
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3. Previous Work

In the last 40 years, the robotics research community has investigated innovative
robotic solutions to improve the safety and efficiency of operational activities in nuclear en-
vironments. In [11], the authors highlight the importance of robotic solutions to accomplish
inspections and decommissioning tasks in a hazardous environment and glovebox, this
aspect in particular was investigated more in depth with preliminary experiments in [12],
where a robotic manipulator was exploited to dismantle a JDPR reactor. Autonomous
robotics and teleoperation are also key factors to innovate the dismantling of legacy glove-
boxes in multiple nuclear facilities in the world. Up to now, operators have accomplished
different tasks by inserting their hand (with proper equipment) into a hazardous envi-
ronment where the consequence of an accident could be serious: The operator could be
contaminated by accidental cuts of the rubber glove [13] or by an error in the operation
process [14]. Robotics and artificial intelligence can be profitably used to remove the
operator from these dangerous tasks while autonomous or semi-autonomous systems
could accomplish the activities. To pursue this aim, it is necessary to improve the control
strategies of manipulation systems in order to operate in complex environments with
constraints and robot redundancy [15].

One preliminary study into the use of automated robotics within a glovebox is pre-
sented in [16], where an automation system and non-redundant robotic arms are proposed
to mitigate human operator risks in handling activities. In order to reduce operational
cost, robotic solutions are proposed to execute ad-hoc tasks [17,18] and simulations are
developed to aid in mitigating hazards that may be introduced as a result of the deploy-
ment of robotic manipulators [19]. The solutions proposed above are not multipurpose
because they are designed to solve specific tasks. In this scenario, redundant collaborative
robots can potentially improve the system manipulation capabilities [20] as redundancy
can be exploited to adapt robot poses, for example, to avoid collision with objects in the
constrained space, or to handle an object with a higher quality grasping index [21] lead-
ing to more robust handling. At the same time, novel strategies need to be designed to
exploit redundancy within individual applications or tasks with the aim to reduce the
control complexity.

The same strategies could support the operators in manipulation and grasping tasks
that are accomplished with difficulty by teleoperation inside the glovebox, as shown
in [6,22].

While a training course can improve the ability in manipulation tasks [23] and reduce
operator fatigue, in some cases an autonomous system could provide direct aid to the
operator [24] to control the robot at any level of autonomy.

More recent research fields explore how to reduce the operator workload with high-
level instructions given to the robot by voice command [2] while the usability of a humanoid
robot is explored in order to do bi-manual tasks inside a legacy glovebox [25,26]. In general,
all the solutions cited above exploit methods and strategies presented in robotics literature
in order to identify reliable grasping poses.

4. The RAIN Solution: Teleoperated Robotic Manipulation

The following is a proposed testing framework for glovebox robotics. It does not
attempt to represent the challenges of contamination, but does attempt to reproduce in a
safe environment the other challenges presented in Section 2.

4.1. Hardware

To best represent a human-like kinematic chain, it is proposed to use a serial robot with
inline joints, with a narrow diameter to fit through the glovebox ports. To limit possible
forces exertible on internal surfaces, a cobot is desirable due to in-built force limitations.
This leads to the proposed option of the Kinova Gen3. The robot will be in-glove and the
end-effector will be inside the glovebox. This will allow for the end-effector to perform
high dexterity tasks while minimising contamination and also enables the possibility of
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tool changing. Two robots are mounted at a standard port width of 450 mm on a mobile
plinth that can be raised and lowered.

The Kinova Gen3 has a wrist mounted RGB-D camera. In addition, two external
RGB-D camera sensors are installed, their positioning is subject to the operation being
tested. All of this is integrated with ROS and MoveIt [27], to deliver path planning, collision
avoidance, teleoperation, and visualisation.

The glovebox mock-up itself is an aluminium extrusion frame, with an enclosed upped
section with closed panels and a support structure, as illustrated in Figure 3.

Figure 3. The glovebox mock-up hardware. The dimensions of the glovebox mock-up is based on legacy gloveboxes that
are still in use in the industry. The dimensions of the glovebox mock-up drawing is in millimetres.

Continuum and cable-driven robots are promising solutions to manipulate objects in
a constrained environment however, there is no commercially available continuum robot
that is suitable for glovebox access and can be operated with required payloads. As a future
work, cable-driven manipulators could be explored in order to evaluate the advantages
and disadvantages of different solutions.

For the local (master) side of the teleoperator, a HTC Vive joystick is selected as the
interface for remote (slave) robot control. Despite the success of many haptic teleoperation
applications [28], a VR system controller is selected due to the intuitiveness of the system.
The controller is a 6D motion tracking device that allows the operator to use hand motion to
control the motion of the remote robot in a unilateral teleoperation architecture. Therefore,
the resulting system requires less training for the operator while the motion control of
the remote robot is a trivial task. The same intuitive interface with haptic feedback could
be achieved by using a device such as in [29] however, an important goal of this project
is to demonstrate robotics and AI capabilities of COTS systems in nuclear environments.
Therefore, in the lack of satisfactory wearable haptic interfaces, a VR control lacking the
haptic interface is preferred.

The teleoperation is system built with the aforementioned hardware is base unilateral
teleoperation architecture. The hand motion of the operator is tracked by the local device
and is sent to the remote robot for manipulation. The operator acquires visual and auditory
feedback from the glovebox.

4.2. Simulator

An important asset for development and testing is a simulator, as it allows simpler,
safer, faster, repeat testing without risk to humans or robots. For this reason a Glovebox
Robot simulator was created [30].

The simulator has been generated in Gazebo and integrates the robots, the glovebox,
and sensors. They have the same API for control and Moveit through ROS as the real
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robots. Additionally some tools in Python have been generated to enable easy scripting.
Two versions of the simulator have been generated: A ROS package (https://github.
com/ukaea/Glovebox-Simulator accessed on 2 July 2021) and a Docker container (https:
//github.com/ukaea/Glovebox-Simulator-Docker accessed on 2 July 2021) . The docker
option is essentially the same as the ROS package, but does not require installation, can
start with a single command, and has an entirely browser-based interface with gzweb for
visualisation and Jupyter notebooks for interaction.

5. Research Areas
5.1. Autonomous Grasping

As with all remote handling tasks, the robot most do more than inspect, it must be able
interact with the world. This may be achived through specially-designed remote handling
tooling, enabling mechanical automation to simplify tasks. Eventually the robot will need
to handle objects. This may be achieved through teleoperation. However, for performance
and repeatability it would advantageous to have an autonomous method.

The glovebox presents a few abnormal issues in respect to the state of the art for
autonomous grasping. First is the constrained and cluttered environment which limits
robot motions, and causes some optimal grasps to become unreachable. Then there is
the nature of the objects to be grasped. If they are known, they may be damaged or
contaminated, leading to them being desirably picked up from very particular points,
with optimality and success rates degrading away from those points. Alternatively, many
of the objects in the boxes may be entirely unique and novel in gloveboxes, with humans
having not performed detailed inspections on them for 30 years. For this reason the system
should also be capable of coping with a clutter of novel objects which will need to be sorted
in order to be put into different waste streams, for example.

5.1.1. Grasp Synthesis

Operations in gloveboxes require the manipulation of objects and tools in order to
follow complex procedures, in this context it can be concluded that grasping plays a
fundamental role in ensuring safe and successful operation. Identifying a feasible grasp in
an unstructured environment is one of the fundamental research questions that is yet to
be solved. The synthesis of a reliable grasp is complex because of the need to (i) consider
the geometric constraints (such as obstacles in the environment, the glovebox boundaries)
on the arm/gripper pose, (ii) identify a suitable grasp pose on the manipulated object,
and (iii) apply a suitable contact force distribution for a safe hold. In order to provide a
reliable solution for the problem described above, autonomous grasping strategies have to
be improved in order to provide novel tools for supporting operators in identifying feasible
grasping poses or to develop robotic gloveboxes with a high degree of autonomy.

Grasping synthesis in a glovebox, in robotics literature, could be formulated as a
problem of identifying feasible grasping solutions in a constrained workspace. Two differ-
ent strategies are commonly used in order to identify feasible grasping poses that satisfy
the environmental constraints: (1) Finding grasp poses without considering constraints
and then filtering them to respect environment constraints [31–34], and (2) modelling the
constraints inside the algorithm to find grasping poses [35–38].

Taking in account a priori knowledge of the proprieties of the object, the first group
could be split into two different subgroups which use two different approaches based on:
(i) The model of the object or (ii) sensor signals to partially estimate object properties.

Several strategies have been proposed to identify optimal grasping poses in environ-
ments without constraints. If the object model is available, swept volumes and continuous
collision detection [39] or independent contact region algorithms [40] can be used to iden-
tify a handling pose. Force closure [31] and form closure index [41] optimisation could be
considered a valid offline method to collect high quality grasping poses. In [32], a real-time
algorithm is proposed to collect stable grasping poses.

https://github.com/ukaea/Glovebox-Simulator
https://github.com/ukaea/Glovebox-Simulator
https://github.com/ukaea/Glovebox-Simulator-Docker
https://github.com/ukaea/Glovebox-Simulator-Docker
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In [42,43], the authors design an optimisation algorithm in order to identify suitable
grasping poses taking into account optimal contact force distribution constraints. The en-
vironment constraints and hand kinematics are not considered in this work. A different
approach is presented in [44], where support functions and wrench-oriented grasp quality
measures are used; this solver is not tested in a real scenario where a cluttered environment
restricts feasible grasping poses.

5.1.2. Grasping without Object Model

The object model could not be available in all the scenarios, in these cases sensor data
is exploited to estimate some properties of the scene, then a partial reconstruction of the
object is used to identify grasping poses.

One possible approach exploits a grasp quality neural network that is trained with
information from a synthetic data set and RGB-D images; grasping pose candidates could
be estimated in real time as shown in [45,46]. Usually, good performance is only achieved
after extensive neural network training with a very large dataset.

Different light conditions and partial views of the scene could reduce the performance
of these methods; in such conditions Gaussian Process Implicit Surfaces and Sequential
Convex programming could be used to recover the performance as shown in [33].

Alternatively, grasping strategies could be inspired by human motor control, a tactile
sensor could be used to implement human inspired grasping strategies as shown in [34] or
a video recording of human handling sequence could be used to train the robot [47].

5.1.3. Grasping in Constrained Environments

Filtering grasping poses by constraints has the disadvantage that high quality grasping
poses may not be identified, in which case an alternative approach could be used to
model the constraints directly in the research algorithm. Following the concept above,
in a constrained environment reliable kinematic chain configurations are identified by
minimising a suitable cost index, the optimisation is subject to linear and nonlinear
constraints, and is presented and tested on humanoid characters in [48,49].

A similar approach, for robotics applications, is provided by Graspit [35], an algorithm
that synthesises stable holding poses in constrained environments by exploiting simulation
and shape primitives.

In a structured scenario, the environment could be modelled and an accurate simula-
tion tool can be developed using multi-body dynamics tools in order to avoid collisions [36].
A complete knowledge of the workspace could be useful to avoid collisions between the
robot and objects as shown in [50] exploiting the motion constraint graph.

In some hazardous applications, it is mandatory to guarantee a safety distance of the
gripper from dangerous objects in the scene, and in these scenes it is possible to use a list of
grasp candidates associated with a metric [37]. In order to identify feasible grasping poses
in glovebox environments, a constrained optimisation is proposed in [51], which allows
the system to synthesise poses of the manipulation systems that are force closure and are
not in collision with glovebox walls.

Visual feedback could be a valid alternative, in unstructured environments, to evaluate
the constraints and object positions that are necessary to plan grasping poses [38] or to
move obstacles in order to reach a target object.

In recent studies [52,53], environment constraints are exploited to perform grasping
tasks; this approach is promising for application with a compliant hand in an environment
where no risks are caused by interactions between the manipulation system and the
environment however, it may apply to a wider range of situations.

In recent studies [52,53], environment constraints are exploited to perform grasping
tasks; this approach is promising for application with a compliant hand in an environ-
ment where no risk is caused by interactions between the manipulation system and the
environment however, it may apply to a wider range of situations.
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Multiple manipulators or robotic hands with high dexterity could be used to grasp
and re-grasp objects in the scene in order to handle the objects in a suitable configuration if
the environment constraints do not allow to grasp the object with optimal grasp in the first
time. In robotic literature, three different approaches are proposed. The first approach aims
to use a dexterous robotic hand to change the configuration of the object during the grasp as
shown in [54], and this approach could not be possible with grippers or manipulators with
a low level of dexterity. A second approach allows to plan different grasp, pick, and place
action with a manipulator such as proposed in [55]. As an alternative solution, in [56] an
algorithm is proposed to grasp and pass an object between two different manipulators,
which is a challenge when increasing the manipulation capability and the dexterity of the
whole manipulation setup.

If the cluttered environment is populated with dynamic objects, grasping a desired
object could be possible only if a sequence of actions is generated and executed in order
to push the obstacles in the scene. A learning-based motion modelling method [57] is
proposed for motion prediction of the obstacles being pushed by the manipulator, and then
the trained models are utilised in the motion planning. An alternative solution aiming to
get a clear work space and, after, plan a collision-free path is presented in [58], which is
less efficient than the previous one. Finally, if the objects are fixed, it is necessary to avoid
any possible collision exploiting for example [59].

5.2. Grasp Detection Using Deep Learning

Advancements in deep learning models, especially in computer vision, has led to their
widespread application in robotics and they have been gaining popularity in autonomous
operations. One of the limitations of this approach is that its performance is tied to the
quality of the data, which is sometimes difficult to acquire. For an active agent in a
dynamic environment, these data-driven models can become challenging to implement
where accuracy and speed are an essential part of ensuring safety in operations. In recent
years however, significant progress has been made leading to vastly improved levels of
speed, accuracy, and generalisation that makes it possible to apply these models to a closed
loop control system.

Robotic grasping is a difficult problem to solve due to the many sources of potential
uncertainties such as object pose, shape, friction, and camera pose [45]. Nuclear industry
gloveboxes include the added challenges of limited visibility, clutter, and objects with
varying shapes and textures. In such cases, where finding an accurate model of the
physical properties is difficult, data-driven approaches have demonstrated that a level of
adaptability can be reached when the robots learn from example.

5.2.1. Grasp Estimation with Convolutional Neural Networks

There has been many different approaches with deep neural networks on the grasp
detection problem. Instead of a separate module to extract object properties, and using
that output for further processing to extract grasp information, these models estimate the
grasp pose directly from the input data. While some models directly estimate 6dof gripper
poses from 3D inputs such as pointclouds, others estimate 2D gripper poses from depth or
RGB images and project them to 3D space. The availability of standardised grasp datasets
such as Cornell [60] and Jacquard [61] and its relative speed of detection has made the
2D input models a popular choice for application in robotic grasping. These 2D input
models can also be categorised based on the type of outputs produced. Earlier models
generated a 6-dimensional vector that represented the position, angle, and width of a
parallel plate gripper [60,62,63]. Models such as the grasp quality convolutional neural
network (GQ-CNN) [45] performs grasp sampling, followed by a grasp quality evaluator
model which ranks the sampled grasps. In recent developments, the grasp map estimator
type of models such as the generative grasp convolutional neural network (GGCNN),
first proposed in [64], has demonstrated the highest performance in terms of speed and
accuracy. These networks, which generally follow an encoder-decoder structure similar to
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image segmentation models, generate 2D maps associated with position, angle, and width,
with pixel-wise grasp representation.

5.2.2. Grasp Convolutional Neural Network with Variational Autoencoders

For autonomous grasping in a glovebox, it is important to identify feasible gripper
poses for novel objects in a cluttered environment. For this purpose, a neural network was
developed where a variational autoencoder (VAE) was added to a grasp map estimator
type of model.

The VAEs, first proposed by Kingma and Welling in [65], maps the data into a dis-
tribution, also known as the latent space, from which samples drawn can generate data
similar to the input. A VAE consist of two neural networks, the encoder and the decoder
respectively, and a loss function. The encoder maps the input sample into a reduced size
space, called latent space, containing the main characteristics of the sample. The decoder,
in a similar way, maps back out from the latent space to the original form. The distinc-
tiveness of a VAE is that the latent space has a form of Gaussian distribution, expressed
as mean and logarithmic variance value. The loss function is given as the sum of two
components: Reconstruction loss and latent loss. The former measures the ability of the
VAE to reconstruct in output the presented input, while the latter is a metric of how much
the latent space is in the form of a Gaussian distribution.

In the proposed models, variational autoencoders were used for modelling the grasp
estimation neural network. Two different types of VAEs were explored in this work, condi-
tional variational autoencoders (CVAE) [66] and vector quantized variational autoencoders
(VQ-VAE) [67]. Similar to other grasp map estimation models such as [64,68], these models
are also very lightweight and are able to generate grasp poses with relatively high speed
with a response time of around 19 ms. Evaluation of these approaches on the Cornell
dataset also demonstrated a high grasp detection accuracy of 95.4% for the VQ-VAE and
94.3% for the CVAE-based models. Figure 4 depicts the output (for a validation set from
Cornell dataset) of the grasp neural network using VQVAE, which generates a grasp quality
map (Q) and its associated angle and width map. The oriented rectangle representation
of grasp (bottom row of Figure 4) is then calculated from the maximum pixel value of
Q and its corresponding angle and width. These models were also evaluated with 3D
models of objects with complex geometry such as the Evolved Grasping Analysis Dataset
(EGAD) [69]. In Figure 5, a simulated testing platform developed in Gazebo is shown
where EGAD objects with random pose are generated to replicate a cluttered environment.
The simulated RGBD camera attached to the robot wrist is used for capturing the depth
image as input to the neural network.

While grasp models using VAE have shown promising results, the full extent of its
capabilities are currently being investigated in simulation and real world trials. Further
improvements can be potentially introduced with its application on 3D input. Future work
will include data from the simulation environment to train deep learning models to learn
grasping pose directly from 3D data.
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Figure 4. Grasp detection from the grasp quality, width and angle maps generated by the VQ-VAE
grasp model on test images from the Cornell Dataset.

Figure 5. Grasp evaluation in simulation for cluttered environment with objects from the EGAD
dataset. The top two pictures from RViz show the image and estimated grasp map.

5.3. Assisting the Operator

Nuclear decommissioning requires material handling inside radioactively contami-
nated gloveboxes [6]. Working inside gloveboxes is not only dangerous for the operators,
but also strenuous. These strenuous tasks typically include the various POCO tasks
described in Section 2.1. This work introduces robot manipulators inside the nuclear
gloveboxes so that the different glovebox tasks could be remotely handled using teleoper-
ation [16]. Introducing a teleoperated robotic system into gloveboxes ensures the safety
of the operator by detaching the operator from the hazardous glovebox environment.
However, the resulting manipulation system is usually not intuitive to use and requires
a certain level of familiarisation with the technology via extensive training in order to
achieve effective use.
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The teleoperated glovebox system improves the safety of the operator but the safety of
the manipulation is not ensured by default. During the manipulation, the operator cannot
omit the risks involving the robot and environment and, therefore, the operators have to pay
the utmost attention to the movement of the robotic arms, consider the possible collision
scenarios and ensure the safety of the manipulated objects and the environment. Overall,
the task load on the operator during teleoperated manipulation is significantly high.

The RAIN project not only improves the safety of the operator, but also aims to
improve the safety of the manipulation while keeping the task load on the operator as
low as possible. Using a teleoperated robotic solution inherently implies the required
operator safety however, how to ensure the safety of the operations, such as ensuring the
safe manipulation of objects in the glovebox and avoiding collision that might damage
either the robot or the integrity of the glovebox components, is the fundamental question
of this research package.

The teleoperated robotic system in the RAIN project allows the operator to plan and
execute the manipulation in the task space of the robot using an intuitive interface at the
local (operator) side. Well-known telerobotic solutions, such as the Mascot system used
in the Joint European Torus, provide two kinematically similar robotic interfaces for the
tele-manipulation to achieve a simplified control architecture and to allow operators to
control robots at the joint level. While this approach can be viewed as giving operators
more control of the robot, the resulting teleoperation system is more costly (due to the use
of similar robots) and is not always as intuitive as expected due to the kinematic structure
of the robots. In order to achieve a cost effective solution with ease of use, the teleoperation
system in RAIN gloveboxes are relying on local-remote devices with dissimilar kinematics
where the local device is a hand tracking system while the remote robot is an industrial
robotic arm.

The local device, a HTC Vive controller, is a vision-based tracking system which closely
monitors the pose of the operator hand. The tracking system introduces an unmatched
level of intuitiveness to the robot control by allowing the operators to use the hand motion
to drive the end-effector remote robot. The reference signal, which is the operator hand
pose, is tracked by the low level motion controller of the remote robot of the teleoperator.
The choice of allowing the operators to plan and execute their actions in the task space of
the remote robot is the first step in reducing the task load on the operator.

The intuitive control interface and task space control approach is prone to unwanted
collisions because there is no mechanism to prevent the remote robots from colliding
with the environment or objects. Therefore, without any assistance mechanism in the
teleoperation, the resulting teleoperator system would require the operator to ensure the
safety of the operation.

The motivation for this work is to achieve a system that follows a given end-effector
motion reference without colliding with the environment or the obstacles while keeping
the manipulation capability of the robot as high as possible.

An example setup is introduced in Figure 6 which depicts one of the remote robot
arms with an obstacle inside the glovebox. The operator is expected to manoeuvre the robot
while avoiding any collision with the obstacle however, in the given robot configuration,
the elbow of the robot is likely to collide with the cylindrical object. Instead of relying on the
operator’s skills for avoiding collisions and securing the operational safety, our approach
utilises the redundancy available in the remote robot and implements a collision avoiding
rule to the inverse kinematics solutions of the robot. Hence, the proposed approach still
enjoys the task space planning and control of the robot arm during the tele-manipulation
and the collisions are avoided at the inverse kinematics solutions.

Obtaining the joint space motion synthesis from a given end-effector trajectory is a
challenging problem due to the inherent nonlinear relation between the joint and task space
positions. For a majority of robots, this nonlinear mapping prevents obtaining analytical
solutions to the inverse kinematics problem. As a result, numerical solution methods are
popular for solving the inverse kinematics problem.
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Figure 6. Remote robot colliding with an obstacle in the glovebox interior.

The inverse kinematics problem becomes more intricate for redundant robots, since
the mapping between joint and task spaces become one to many; multiple joint space
configurations are mapped to the same task space configuration. These multiple inverse
kinematics solutions naturally vary with levels of optimality in respect to different perfor-
mance measures, such as collision or singularity metrics.

Assisting the operator research package designs an inverse kinematics solution al-
gorithm for the teleoperation of redundant remote robots. In this approach, the joint
space trajectories, which are required to control the remote robot, is generated from the
operator motion reference. The inverse kinematics solution simultaneously considers the
collision of the robot arm with the objects/obstacles in the environment and improve the
manipulability of the remote robot configuration for better manipulation.

Manoeuvring the teleoperated manipulators in a cluttered environment and/or a
confined space is a well-established problem in the robotics literature [70]. The likes
of [71–73] have addressed the problem of collision detection and trajectory generation
for moving the manipulator through the clutter. However, the problem becomes more
complicated when the space where the whole body of the manipulator will move becomes
restricted due to scattered clutter. This situation is explained in the following example.

Figure 7 depicts a manipulator inside a confined space and the end-effector of the
manipulator needs to reach to particular objects amidst a bunch of different objects inside
the space. It should be noted that in addition to the end-effector, the links of the robot can
collide with the objects in the glovebox. Then, precise trajectory estimation can facilitate
to avoid catastrophic accidents. In this work, we are addressing the collision detection
problem and primarily focusing on collision detection and avoidance of teleoperated robots
inside nuclear gloveboxes.

Avoiding collisions is important for safe operations however, smooth manoeuvring
the remote robot is another important step for reducing the task load on the operator.
The ability of moving the robot end-effector in arbitrary direction is characterised by the
manipulability of the robot. In this work, the collision avoidance in the inverse kinematics
solution as well as the manipulability of the robot is taken into account so that safer and
easier handling of objects is achieved.

Considering multiple performance metrics, such as collision avoidance or manipula-
bility, in the inverse kinematics problem is a problem considering that the redundancy of
the remote manipulator is less than the number of performance metrics considered in the
inverse kinematics. In order to solve this problem, multiple performance metrics are com-
bined into one single performance metric using a weighted sum approach. The weighted
sum of the performance metrics not only allows us to consider as many metrics as pos-
sible in the inverse kinematics but also the trade-off between metrics can be studied by
investigating different weight combinations.
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Figure 7. Glovebox simulator built in the ROS/Gazebo environment. The simulator depicts the
remote robot arms, glovebox, and obstacles for manipulation.

Augmenting Sensing

The challenges of working with gloveboxes also extend to poor visibility caused due
the combination of discoloured and damaged windows, a dark and cluttered environment,
and wearing personal protective equipment which usually limits the field of view for
operators. While the introduction of a simple camera view of the interiors can be useful,
additional information related to the environment properties such as the type of objects, its
position and pose, would not only provide helpful guidance during teleoperation, but also
form an important component for grasp estimation and collision avoidance systems.

For the glovebox computer vision, multiple sources of visual information were ac-
quired through RGBD and stereo cameras and different processing units were developed
to extract valuable information about the environment. In addition to the static sensors,
the RGBD wrist cameras attached to the Kinova robots were used for surveying the less
accessible areas. The vision modules include object detection and tracking, semantic
segmentation RGB image, grasp detection, and pointcloud segmentation.

Deep learning models were trained using custom annotated images that are repre-
sentative of a glovebox environment. An object detection network was trained with the
dataset from which the output detection were then fed into a tracking algorithm. For object
detection, models similar to the You Only Look Once (YOLO) [74] were chosen since they
generated detection at a much faster rate (45 frames per second). In addition, a scene
segmentation model was also implemented to extract more detailed information about
the environment. These models provide a pixel-wise categorisation of the image. Models
such as Deeplab [75] demonstrated high accuracy, but had a much slower response time
of 8 frames per second. The segmented objects were projected to 3D to extract segmented
pointclouds. This technique was used mainly for estimating the object shape and pose of
known objects and obtaining an initial map of the environment. While these supervised
techniques for object detection and segmentation have demonstrated a high accuracy on
the training dataset, there is less room for improvements in terms of generalising for novel
objects. The grasp detection model was kept independent of object recognition and is able
to detect grasping pose objects regardless of its type.

Unsupervised detection, which includes traditional computer vision techniques,
was also introduced to extract objects with simpler geometries such as cylinders, cubes,
and spheres. The PCL library [76] was used for pointcloud segmentation which implements
a RANSAC- [77] based technique to extract object position, orientation, and size. This
information was the input for the Grasp synthesis module (described in Section 5.1.3),
which then generated optimal grasping pose for the objects. The extracted objects were
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also introduced into the simulation platform, which is useful for testing the algorithms
before deployment.

5.4. Condition Monitoring of the Robots

In a robotic glovebox, it is extremely important to have confidence that the robot
will not occur in any failure during operations. Such a failure can have dramatic impacts
both on safety and on costs. A robot that is unable to be properly controlled can have
catastrophic consequences, for example it can impact the glovebox’s walls and damage it.
In addition, a robot that is unable to move can be difficult or impossible to retrieve and
repair, which has a big impact on costs in terms of hardware costs and time delay.

A condition monitoring system (CMS) has the objective of monitoring robots measure-
ments and identifying any anomalous behaviour.

In recent years many deep learning techniques have been used to identify anomalies
in many different environments, from images to bank transactions. In this work we focused
our attention on a variational autoencoder (VAE) (see Section 5.2.2).

We applied the VAE model to a set of automated moves we perform specifically for
CMS as part of our operational routine. They are performed at the beginning and at the
end of operations, in order to inform the operator that the robot is respectively safe to use
or has not been damaged during the session.

Our VAE model consists of a fully-connected multiple-layer neural network. Encoder
layers have been dimensioned respectively [512, 256, 128, 64, 32] with a latent space of
dimension 6. The decoder has been implemented in a symmetric way. Measurements
collected from the control system are very diverse in physical units and ranges, which
are not limited to 0.0 and 1.0. For this reason a ReLu activation function has been used.
Moreover, mean absolute percentage error (MAPE) function is used as the reconstruction
loss function. In this way, the reconstruction error will be weighted by measurement
amplitude and errors will be evenly distributed across the measurements.

As already mentioned earlier, our glovebox consists of two identical Kinova Gen3
robots equipped with different end-effectors. We have used data collected from only one
robot, from now on called the training robot, to train the model and data collected from the
other robot, from now on called the testing robot, for testing purposes only.

In order to capture the dynamic behaviour of the system, we considered as a single
sample at time tnow all the measurement collected in the interval [tnow − h; tnow), where h
is the length of the time window. It is important to note that this does not affect the ability
of the system of working online. The length of the interval has also an effect on the ability
of the system capturing information and therefore identifying different types of anomalies.

In Figures 8–10 it is possible to see how the trained VAE is able to reconstruct mea-
surements collected from CMS moves. For simplicity we will report in our pictures only
on the reconstruction of joint 3 in few time intervals. In particular Figure 8 shows actual
measurements and their reconstruction of data collected from the training robot and in-
cluded in the training set. In Figure 9, the same quantities are reported for data that are not
included in the training set. Similarly, Figure 10 shows the actual measurements and their
reconstruction in case of data collected from the testing robot.

It is clearly visible that in some time intervals the VAE is not able to correctly recon-
struct the measurements. These time intervals should be considered as anomalies.

To have a quantitative metric of reconstruction quality needed to discriminate faults
from nominal behaviours, we use the value returned by the loss function associated to a
sample. This measures the mean absolute percentage difference between the sample pre-
sented in input and its reconstruction. The smaller the value, the better the reconstruction
of the sample.
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Figure 8. Example of data reconstructed by VAE in case of data collected from the training robot and
included in the VAE training set. The light blue shows the reported original measurement, while the
dark blue shows a different sample of reconstructed output.
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Figure 9. Example of data reconstructed by VAE in case of data collected from the training robot but
not included in the VAE training set. The light blue shows the original measurement, while the dark
blue shows the different sample of reconstructed output.
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Figure 10. Example of data reconstructed by VAE in case of data collected from the testing robot.
The light blue shows the original measurement, while the dark blue shows a different sample of
reconstructed output.

In the cases reported in Figures 8–10 the maximum errors are respectively 1.73%,
13.49%, and 73.86%. It is important to note that these errors are related only to the time
windows reported in the pictures.

A more comprehensive analysis is needed for the whole length of the move. Figure 11
shows the VAE score of each sample of a CMS move in the three cases before, i.e., data
coming from training a robot included in the VAE training set, data coming from training
robot not included in the VAE training set, and data collected from the testing robot.

Results show that data collected from the training robot give similar results regardless
if they have been included in the training of the VAE. In particular, the maximum score is
about 19.78% at sample 2640 in case of data not included in the training set, and it is about
4.00% at sample 100 in case of data included in the training set.

Results also show that the testing robot performs quite differently from the training
robot. In particular, the score reached the maximum value of 340.30% at sample 5480.
Authors believe that the difference is caused by the different end effectors weights and
dimensions affecting the dynamic of the robot during the CMS move.
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Figure 11. Example of VAE score evolution over time for the following three cases: Data collected
from the training robot and included in the training set (red line), data collected from the training
robot but not included in the training set (blue line), and data collected from the testing robot
(green line).

5.5. Operations

The Operations Management System (OMS) is a web application that supports the
three main facets of operations: Management of the assets used or encountered during an
operation, preparation of the operational procedures to be carried out, and the execution of
those operational procedures. Built off 35,000 hours of remote handling operations at JET,
OMS is a unique operations management tool.

In particular, RAIN intends to use the planning and execution capabilities of the OMS
application to reduce cognitive load on the operator by the following means. Firstly, an in-
built capability of procedures in OMS highlights a single action or decision at all times as
the current operational activity to be addressed, with progression being tracked throughout
the procedure, including along any sub-procedures or different branches resulting from
decision points. Secondly, the planned procedures often give the operator the choice of
completing the action via teleoperation or else allowing the robotic system to autonomously
complete the action by submitting pre-configured commands through OMS.

6. Conclusions

Nuclear gloveboxes are designed for the safe handling of hazardous objects. The safety
measures, personal protective equipment, and the glovebox construction provide some
degree of assurance to the operators. However, they are still prone to hazards and working
conditions are still challenging given the long working hours in a glovebox, which is an
arduous task.

In the RAIN project, we are introducing and developing cutting-edge robotics and AI
technology to the legacy gloveboxes for improving the safety of the operator and operations,
along with ease of operation. Moreover, our approach potentially increases the efficiency in
handling nuclear materials inside gloveboxes. The technologies we develop are automated,
grasping for robotic manipulators working inside the gloveboxes, assistive teleoperation
technologies for easing the task load of the operators using the developed robotic glovebox
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solution, and condition monitoring the robots for the early detection of failures in the
robot’s hardware.

This paper has presented the problem statement and challenges related to utilising
robots in a nuclear glovebox, presenting a glovebox mockup platform and simulation
suitable for testing developing robotics and AI systems. Beyond this, it has presented a
selection of technologies developed and integrated into the gloveboxes is a step forward
for safer and more efficient manipulation interfaces for handling nuclear materials and
contaminated objects. Furthermore, the next generation of gloveboxes will be based on
these technologies.
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