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Abstract: Recently, several deep-learning based navigation methods have been achieved because
of a high quality dataset collected from high-quality simulated environments. However, the cost
of creating high-quality simulated environments is high. In this paper, we present a concept of
the reduced simulation, which can serve as a simplified version of a simulated environment yet be
efficient enough for training deep-learning based UAV collision avoidance approaches. Our approach
deals with the reality gap between a reduced simulation dataset and real world dataset and can
provide a clear guideline for reduced simulation design. Our experimental result confirmed that the
reduction in visual features provided by textures and lighting does not affect operating performance
with the user study. Moreover, by conducting collision detection experiments, we verified that our
reduced simulation outperforms the conventional cost-effective simulations in adaptation capability
with respect to realistic simulation and real-world scenario.

Keywords: reduced simulation; collision detection; micro aerial vehicles

1. Introduction

Micro aerial vehicles (MAVs) have recently cultivated a large market of industrial
applications, e.g., infrastructure inspection, monitoring power transmission lines or surveil-
lance, delivery, and emergency response [1–3]. Apart from broad liberated situations,
MAVs are also used in narrow or confined environments (e.g., vibration isolation damping,
underground pits, ceilings, and piping networks). However, an MAV still needs to be
operated by an experienced pilot using a remote control. Due to the shortage of pilots,
the service cannot be scaled to satisfy the potentially huge market demand. Therefore,
autonomous flight technology in narrow or confined spaces is required.

Recent advancements in autonomous flight technologies have realized non-collision
motion planning in corridors and on city roads without a GPS signal or advanced sensing
(e.g., light detection and ranging) [4–6]. There have also been recent and rapid advances
taking place in convolutional neural networks (ConvNets) and reinforcement learning,
which have adopted deep learning models, where the quality of datasets determines
performance. Some of these studies [4,5] use data collected from the real environment.
However, the situation in which we can obtain affluent real-world data is rare.

This fact motivates researchers to use a dataset from simulations to tackle simulation-
based learning methods. Due to the differences between the real world and simulation,
termed reality gap, the problem remains unsolved. The simulation-to-reality (sim-to-real)
approach, which aims to improve the fidelity of simulations, is a promising one. However,
visual sim-to-real still requires a large, diverse, and high-fidelity dataset [7,8]. These
datasets consist of scanned real-world data [7] or synthetic models [8]. In a narrow or
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confined space, retrieving a 3D model from scanned real-world data is a difficult task due
to limitations placed on the movement of workers from entering the area. Additionally, a
synthetic dataset requires a task-specific bespoke model, which may result in a significant
cost increase. Therefore, the conventional sim-to-real approach is not suitable for industrial
applications in narrow or confined environments. Moreover, due to the limitations of
this approach, in a recent symposium, researchers have discussed the value of using
sim-to-real [9].

With respect to the background literature on the reality to simulation (real-to-sim)
approach, a complementary methodology to the sim-to-real has appeared [10–12]. This ap-
proach converts real-world image data into a simulation. However, conventional method-
ologies employ the real-to-sim approach as only part of the bilateral style translation.
Therefore, manual engineering and adjustment of deep models cause problems in task-
specific industrial applications. Moreover, the current studies on real-to-sim target the
grasping task of the manipulator [13]. These factors motivated us to embed non-learning
traditional image processing into a real-to-sim approach for MAV applications.

One important insight derived from this question: What is the essential or minimal
visual information required to realize MAV visual control? In this paper, we propose a
concept of reduced simulation, which is a data generation scheme for training a machine
learning model. Reduced simulation does not require too much information from two sources,
saving computational costs in a simulation and eliminating unnecessary information from
a real image, respectively. We tested some rendering styles, which gradually decreased
the number of visual features through user studies on MAV flights in simulated narrow
or confined environments. We evaluated our reduced simulation, which has limited visual
features, on MAV collision detection in real environment. Our contributions are as follows:

• We tackled a collision detection problem in narrow or confined environments with
a novel real-to-sim concept. This restricted environment has not been addressed in
previous studies.

• We confirmed that the rendering style of reduced simulation does not reduce the
performance of MAV control through the subject experiment.

• We evaluated our pipeline by carrying out similar experiments as those carried out in
previous studies [4] on real experiment sites of the ceiling environments. By conduct-
ing experiments, we confirmed that our reduced simulation pipeline outperformed,
within the adaptation capabilities, the traditional cost-saving simulation technique.

• Based on the results of our experiment, we provided guidelines for adopting a cost-
saving reduced simulation for MAV collision detection in cluttered environments.

2. Related Works
2.1. Vision Based MAV Control

Before the deep learning era, previous studies utilized traditional visual features,
such as optical flow or vanishing point [14,15]. These studies revealed the possibility of
incorporating low-level visual features for MAV control. However, the dependency on
manual engineering has hindered the subsequent development of the aforementioned
approach. Some prior studies have also utilized reinforcement learning [16,17]. Similar
to our study, the literature [16] used a human operator as supervised data. However,
narrow or confined environments are not suitable for imitation learning because complex
situation recognition is required. ConvNet has been greatly utilized as another type of
learning-based method [4–6,18]. Regardless of whether a data source is a simulation or a
real-world environment, these sources are difficult to handle in narrow or confined contexts
because of the dependency on large-scale and realistic datasets.

2.2. Sim-to-Real Approaches

The learning-based methodology for visual control suffers from the limitation of the reality
gap. The recent mainstream method for handling the reality gap is the sim-to-real approach.
Most of the conventional datasets employ 3D scanned data of real-world environments [7,19,20].
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The simulators based on these datasets are also reported [10,21]. These datasets and simula-
tors have supported visual control research in indoor environments, such as corridors and
ordinary houses. However, these datasets do not contain a model of a narrow or confined
environment, and creating a task-specific dataset of narrow or confined environments from
real-world scanning is impractical. Additionally, simulators based on synthetic data have
already been developed [8,22,23]. These datasets can easily be expanded by adding 3D
models. However, off-the-shelf synthetic models of narrow or confined environments are
not cost effective. Thus, it is not appropriate to use the existing sim-to-real type datasets
and simulators or conventional methods directly for industrial applications in narrow or
confined environments. Previous research [24] has handled this gap between real-world-
based simulators. This study has revealed the effectiveness of splitting visual perception
and motion control. However, synthetic simulators and the real world were not targeted.

2.3. Real-to-Sim Approach

A new research paradigm handling the reality gap is the real-to-sim approach.
Zhang et al. [11] investigated a real-to-sim domain adaptation for visual control. Their
study also emphasized the advantages of decoupling visual perception and motion control.
However, this study did not provide guidelines for designing simulated environments.
Moreover, conventional works have not applied the real-to-sim concept to MAV’s visual
control. Therefore, we attempted to apply real-to-sim to a MAV flight in narrow or confined
environments by including design principles for simulation.

3. Reduced Simulation Concept

The critical insight of our approach is simple. The cost problem and visual reality gap
results depending on the diversity of texture, lighting effect, or minor objects in the real
world. Do these features also affect the maneuver itself? If not, we should omit these visual
features in order to simplify the simulation. The real-to-sim approach essentially aims to
transfer real-world data into simulation data. However, conventional studies have utilized
real-to-sim transfer only as a complementary method to sim-to-real transfer. Thus, we tried
to return to the original concept of real-to-sim. We illustrated this concept in Figure 1.

Real WorldSimulation

Sim-To-Real

Reduced Simulation

Training:
Low fidelity simulation

Inference:
Reduced information 
from real image

Training:
High fidelity simulation

Training: 
High cost data accumulation
Inference:
Real images

Real-To-Sim

Real-To-Red.Sim

Training: 
No/small cost data 
accumulation

Real World

Figure 1. The concept of reduced simulation (top), conventional real-to-sim approach (bottom), and
the proposed real-to-reduced simulation (real-to-red.sim) approach. Our proposed concept is that a
machine learning model is trained with a dataset generated by a reduced simulation and then inferred
with real-to-red.sim data from real images using image processing. By comparing the conventional
real-to-sim, which uses CycleGAN [25] as the main component, our proposed approach includes
only simple image processing, such as canny edge extraction.
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One of the issues concerning real-to-sim is the lack of guidance in designing the
simulation. Previous research [18] has examined the adaptation capability of simple
simulations. However, this study did not provide any design guidelines. In order to
establish guidelines for the reduced simulation, we focused on human visual cognition:
The ability of human vision to recognize a 3D structure from a single or edge image has
been verified in the fields of art, psychology, and cognitive science [26]. Importantly, the
linear perspective technique does not comprehend some visual characteristics, such as
texture and lighting. We doubted the necessity of incorporating abundant visual features,
which a conventional visual perception approach includes, for 3D structure cognition.
Moreover, this is the same in a task for automatic MAV control based on visual perception.
Therefore, we proposed a novel concept, reduced simulation, which combined this insight
and the conventional learning-based approach.

Our proposed concept can also function as the methodology to make the learning
of motion control independent from visual perception [24]. In other words, we required
the real-to-red.sim transfer to be applicable with the trained deep model by reduced
simulation into practical usage. In this paper, we considered both non-learning traditional
image processing and learning-based instance segmentation [27,28] as this transfer. When
compared to edge extraction by using traditional image processing, instance segmentation
provides additional information: What type of objects does the edge belong to? If this extra
information is necessary, we can adapt the instance segmentation method for industrial
applications in narrow or confined environments. Therefore, we tested its necessity by
using user study and experiments.

4. User Study for Reduced Simulation

In the user study, we evaluated the performance of test subjects operating a MAV in
four types of simulation environments. As the application scenario for operating the MAV,
the MAV had to perform surveillance of a space behind a ceiling, which was a surveillance
task carried out before any maintenance or replacement work of air conditioners in the
building. We asked participants to fly MAV in order to maximize the coverage area of the
environment that the participant surveyed within the limited time. The assumptions and
purposes of operating the MAV were explained to the subjects.

We prepared simulation environments comprising metal boxes, which contained elec-
trical equipment, pipes (including air ducts), and hanging bolts. In order to avoid applying
the same environment twice to one subject, the objects were randomized according to the
variations indicated in Table 1. We placed four light sources on the floor that simulated
lighting from maintenance holes. The positions of the light sources were also randomized.
All objects in the environment had collision detection. In one environment, when the
collision happens, the robot will respawn at the start point without changing the environ-
ment. The objective is to record the total coverage area the operator can cover within the
limited time. When the MAV collided, it respawned at the origin of the environment and
exploration continued. The size of the MAV was 120 mm × 100 mm × 20 mm, and the
camera on the MAV had an 82◦ viewing angle.

We implemented four types of simulation environment: texture + lighting, lighting,
color segmentation, and edge extraction, as shown in Figure 2. In order for subject to
become familiar with MAV control, they are asked to take nine practice flights before the
actual experiment. During the actual experiment, a subject operated the MAV three times
for each type of simulation environment. In order to avoid bias in growing experience,
participants operate MAV in random orders decided by Latin square design [29] in order
to counterbalance immediate sequential effects.
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“Texture + Lighting” “Lighting”

“Color Segmentation” “Edge Extraction”

Figure 2. Examples of simulations.

Table 1. Size variation of the objects in the environment.

Type Number Scale (x, y, z)

Box 20 (0.2~0.8, 0.2~0.6, 0.2~0.8)
Hanging Bolt 800 (0.01, 1, 0.001)

Pipe 10 (0.2~0.8, 1000, 0.2~0.8)

4.1. Hypothesis

We will confirm the following hypothesis: The reduction in visual effect by texture
and lighting has no effect on the operating performance evaluated with the number of
collisions and exploration area. If this hypothesis is supported, collision detection can be
achieved from reduced images.

4.2. Experiment Setup

The simulation setup used for our experiment comprised a MAV simulator based on
the ROS and Unity renderer. The input device for operating MAV was Sony DualShock4.

We implemented the MAV simulation setup by referring to Meyer et al. [30]. In order
to apply the parameters of the MAV simulator to the small MAV that we assumed, we
modified the value of the principal moment of inertia of the 120 mm× 100 mm × 20 mm
box that weighed 200 g. The max speed was 3 m/s. A proportional controller was used.
Unity received MAV behavior from the ROS, rendered the graphics of the environment,
and detected a collision.

MAV behavior during the experiment was logged every 0.1 s. The area of observation
was calculated following the experiment. The number of subjects was 24 (8 females and
16 males between 21 and 45 years of age). The average age of the subjects was 25. Four
subjects had some experience operating a MAV that weighed less than 200 g, and one
subject had experience operating a MAV that weighed over 200 g.

4.3. Comparison among Types of Simulation

Figure 3 shows the histogram of coverage by each simulation style. Table 2 shows the
result of the Shapiro–Wilk test. The findings suggested that lighting did not fit the Gaussian
distribution. We then conducted the Friedman test, and the result was p = 0.4843.
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Figure 3. An histogram of the coverage distribution for each drawing style. Apart from the lighting-
only style, these distributions follow a normal distribution. The results proved that there was no
statistical significance between the groups beyond individual differences.

Table 2. Result of Shapiro–Wilk normality test.

Texture + Lighting Color Edge
Lighting Segmentation Extraction

p-value 0.3776 0.0353 0.2228 0.62977

After examining both these results, no significant difference was observed between
the groups in terms of simulation style. We also conducted the Friedman test on the
data obtained from the number of collisions. The result of the test was p = 0.4630. No
significant difference was again observed in terms of the simulation style between the
groups. Although these results are of no significant difference, the tests cannot completely
verify the equal performance in simulation styles, and this result shows a high possibility for
our hypothesis. We, therefore, believe that our reduced simulation is a reasonable concept.

5. Collision Detection with Reduced Simulations

In this section, we present the application of our concept of reduced simulation to
train a Neural Network (NN) model and to test with the real environment. Figure 4 shows
the overall process of training and testing. Firstly, we generate a low-cost dataset from
reduced (low cost) simulation. Afterward, we train the NN model with images obtained
from a low-cost dataset. Finally, we apply the NN model to reduced images converted by
an image processing technique from real environment images, and the NN model detects
a collision.

5.1. Dataset Generation

In order to train and test the classification model, we collected data on images when
the MAV traveled into free space and also at the time of collision. We prepared three
datasets: low-fidelity simulation, moderate-fidelity simulation, and the real world. Sample
images taken from the simulation datasets are depicted in Figure 5. The size of images
obtained from the simulation is 576 × 256 pixels. In order to adjust the input size of the
NN model, all of the images were cropped to 256 × 256 pixels from the image center. In
order to create simulation datasets, we adapted the bite-the-bullet method used in the
pioneering study by [4]. Our virtual MAV was spawned in randomly sampled positions
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in the Unity environment and was then moved straight until it collided with an object.
Figure 6 illustrates the path taken by MAV during data collection. Through this phase, for
each type of object, we used three texture images as shown in Figure 7.

Reduced (Low cost) Simulation

NN model

Training

Real Environment

Low cost 
Dataset

5.1 Dataset 
Generation

5.2 Image based Collision 
Detection NN model training

NN model

5.3 Experimental 
Evaluation

Real-To-Red.Sim

Testing

Reduced image 
from real image

Image Processing 
Techniques

Figure 4. The overall process of training and testing for the experiment of collision detection with
reduced simulation.

Low-Fidelity Simulation Moderate-Fidelity Simulation Real-World

Texture
+ Lighting

Color
Segmentation

Morphology

Canny

Ideal Edge 
Extraction

Figure 5. Example images of simulation and real-world data. The original real-world data had a
shape for residual neural network (ResNet) input. Color segmentation and ideal edge extraction are
the ground truths of the reduced simulation style. In order to obtain these images, specific real-to-sim
transfer is required.
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Figure 6. Our virtual MAV had a Rigidbody. When the MAV collided with an object, the front
camera saved a rendering image as the screenshot. An edge detection filter, Robert Cross, was also
implemented in Unity as the post-processing effect. We recorded the original data and post-processed
data separately.

Figure 7. The textures are represented by these images in low-fidelity simulations.

5.1.1. Low-Fidelity Simulation

We prepared three patterns of the texture combination. During image data collection,
MAV collided 1500 times. We first create Texture + Lighting and Color Segmentation from
Unity game engine. We applied Canny edge-detection and the morphology method
to the texture + lighting rendering style to obtain Canny images and Morphology images,
respectively. Ideal edge extraction images were derived through Robert Cross post-processing
of Color Segmentation. This style contained only the outermost edges of the objects.

In this simulation, the position and scale of the objects, including the position, bright-
ness, and color of the light, were randomly determined. However, every object had a
simple shape: cylinder or cube. Additionally, each type of object had the same texture.
This meant that the simulation had lesser fidelity compared to the conventional sim-to-real
methods. Therefore, we defined this simulation as a low-fidelity simulation.

5.1.2. Moderate-Fidelity Simulation

Subsequently, we collected the test dataset to verify adaptation capabilities into realis-
tic simulation data. In order to set up the simulation, we manually created a photorealistic
model of the entire environment based on Unity assets. As we mentioned in the introduc-
tion, customization of a 3D model of a narrow or confined space has a high cost. Therefore,
we adopted and assembled an off-the-shelf piping model and defined this second sim-
ulation as the moderate-fidelity simulation. By using this simulation, MAV passed and
collided 200 times.
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5.1.3. Real-World

Finally, we obtained real-world data, which mimicked the ceiling environment from
our experimental site (Figure 8). The sample images obtained from the site are shown
in Figure 9. The MAV we used was DJI Tello [31]. We chose it as an off-the-shelf and
appropriately sized MAV. The virtual MAV that we selected had a similar field of view
and similar dimensions. The real-world dataset consisted of 100 collision and collision-free
images. During this phase, we operated the MAV perpendicular to the direction of the
camera or in the horizontal direction. MAV collided with the objects at various angles.

Figure 8. Our experiment site of the ceiling environments. The width and length was 3.5 m, and the
height was 1.5 m. This site included some hanging bolts and an air conditioner and a duct pipe.

Figure 9. Sample of images obtained from DJI Tello at our experiment site of the ceiling environments.

5.2. Image Based Collision Detection Model

Following conventional research [4], we tested our proposed concept by using binary
collision classification by ConvNet. In our study, the network architecture was changed to
ResNet because of its similarity to human vision as reported in the literature [32].

We used pretrained ResNet18 implementation in pytorch with 256 × 256 input size
and trained it with 50 epochs, a batch size of 16, and learning rate of 0.01. Our processing
PC comprises CPU Ryzen 5 4600H with GeForce GTX 1650Ti GPU.

We trained the models with five rendering styles: Texture + Lighting, color segmented,
canny, morphology, and ideal edge extraction. All models were trained by a subset of the
low-fidelity simulation dataset. The models were then evaluated with a test subset of
low-fidelity simulation, excluding the subset used for training and for the entirety of
moderate-fidelity and real-world datasets. During training, we employed the Adam
optimization and cross-entropy loss.
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5.3. Experimental Evaluation

Table 3 shows a summary of experimental evaluations. For the test, by a split of
the low-fidelity dataset, ideal edge extraction outperformed the others. Color segmentation
produced richer visual features than ideal edge extraction. Figure 10 shows the samples of
fake-free of ideal edge extraction on the moderate-fidelity dataset. These results imply that if
the training data does not have sufficient variety of the object’s shape, the model does not
necessarily require segmentation information. The noisy edge deviated from the texture
and decreased the accuracy on morphology and canny. Texture + lighting also fared worse
in terms of achieving adaptation results for the moderate-fidelity simulation.

For the domain adaptation to the real world, texture + lighting performed with an
accuracy of 0.5. However, the models trained in reduced simulation also exhibited a
certain accuracy. Even if the models trained by ideal edge extraction received canny data, as
indicated in parentheses in Table 3, it performed almost similarly to the canny model. By
tuning the hyperparameters, we could improve the performance of the edge-based models.

Table 3. Evaluation in the test subset and adaptation capability. The bold means the best accuracy in
each fidelity. The bracket at the lower right means an evaluation using Canny edge extraction images
instead of ideal edge extraction of real images.

Rendering Style Low Fid. Moderate Fid. Real World

Texture + Lighting 0.9360 0.8325 0.5050
Color Segmentation 0.9360 0.8825 NaN

Morphology 0.9160 0.6525 0.7200
Canny 0.8860 0.7850 0.6800

Ideal Edge Extraction 0.9480 0.8675 (0.6650)

Figure 10. Example of the collision scene, which is mispredicted as the non-collision scene. The
characteristic shape of the pipe seems eminent.

5.4. Discussion

In this section, the advantages and limitations of our methodology are discussed. As
shown in Table 3, the results of the test datasets in low-fidelity simulation revealed the
highest accuracy. Therefore, we thought that the ideal edge extraction style had enough visual
information to decide if there was a collision or not from a single image. In other words,
the edge of an object was the critical information that corresponded to our assumption.
Following this point, our proposed pipeline allowed learning flight control policy or
method with minimal effort and costs to set up the simulation; this is one of the advantages.
If a developer obtains the moderate-fidelity model affordably, diverse shapes are available.
When compared to single image-based collision detection, advanced methods, such as
reinforcement learning, require a large dataset. In such situations, reducing labor by
introducing our concept will be more effective. Finally, regarding data reduction, we can
observe that reducing RGB images obtained from simulation to edge detection images
yield acceptable results when training based on reduced simulation. Clearly, the amount of
image data can be reduced from the three channels of the RGB representation to only one
channel of blackwhite or grey-scale image.
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A limitation is that our real-to-red.sim concept still requires a robust edge-extraction
method and sim-to-real approach in order to operate in real-time. As shown in Figure 5,
the morphology style cannot yield a similar image as that acquired through the ideal edge
extraction style. Canny was not robust to the noisy edge, such as derived from a texture.
Thus, we should have pursued a more effective real-to-red.sim transfer. However, as
indicated by [24], the separation of advanced visual perception and motion planning
is advantageous for domain adaptation. For real-time MAV motion planning, where
motion blurring is introduced, candidate applications are limited to non-agile and non-
complex trajectories. An appropriate combination of pose estimation and robust control
methodology with our learning-based control is required. Alternatively, adding dynamics
randomization to methods such as reinforcement learning is also a promising option.

Finally, Our approach enabled MAV to fly in the narrow space environment without
creating a map. Although there are many traditional map-based exploration techniques that
rely on sensing, mapping and planning, our approach aims for non-map-based exploration.
The problem of map-based exploration is that it requires heavy sensors (such as LIDAR for
precise measurement) and enormous memory to store map data. Our proposed approach
does not require a map for exploration and does not require a heavy sensor. In this study,
based on training in reduced simulation, we showed that the MAV can fly in an unknown
environment without collision and capture data for post processing of the 3D environment
(map). In the future, we believe that we can combine post preprocessing to create a minimal
map so that the robot can navigate back to the starting point.

6. Conclusions

In this paper, we proposed the novel real-to-sim concept, reduced simulation, to realize
autonomous flight in a narrow or confined environment. We also proposed guidelines
for creating reduced simulation (texture-lighting less simulation) to cope with the reality
gap, which resulted in reducing the development cost. Our user study showed that our
proposed reduced simulation pipeline had enough features for visually controlling the
MAV. Through the experiments, we confirmed that our methodology possesses an advan-
tage in terms of adaptation capability, without incurring any additional costs compared to
traditional cost-saving simulations. Based on the results of these experiments, we believe
that reduced simulation is more advantageous than moderate simulations. When com-
pared to sim-to-real approaches, this study is expected to be used in conventional indoor
environments, such as in a corridor or in a typical house. Future research can include
adding the dilation model to the sequential input or in reinforcement learning. It is also
possible to expand input channels or promising reinforcement learning in order to improve
the control performance.
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