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Abstract: Redundancy resolution techniques have been widely used for the control of kinematically
redundant robots. In this work, one of the redundancy resolution techniques is employed in the
mechanical design optimization of a robot arm. Although the robot arm is non-redundant, the
proposed method modifies robot arm kinematics by adding virtual joints to make the robot arm
kinematically redundant. In the proposed method, a suitable objective function is selected to optimize
the robot arm’s kinematic parameters by enhancing one or more performance indices. Then the robot
arm’s end-effector is fixed at critical positions while the redundancy resolution algorithm moves
its joints including the virtual joints because of the self-motion of a redundant robot. Hence, the
optimum values of the virtual joints are determined, and the design of the robot arm is modified
accordingly. An advantage of this method is the visualization of the changes in the manipulator’s
structure during the optimization process. In this work, as a case study, a passive robotic arm that
is used in a surgical robot system is considered and the task is defined as the determination of
the optimum base location and the first link’s length. The results indicate the effectiveness of the
proposed method.

Keywords: design optimization; redundancy resolution; robot mechanism design; optimization
techniques; surgical robots

1. Introduction

Optimization methods have been employed in a wide range of areas from economical
sciences to design processes in engineering applications. All optimization techniques de-
pend on the numerical and/or algorithmic approach. With the improvement and availabil-
ity of powerful computers, many techniques for optimization studies are presented. Such
methods can be listed as genetic algorithms (GA) [1], Ant Colony Optimization (ACO) [2],
and Particle Swarm Optimization (PSO) method [3]. These methods are categorized as
modern and nontraditional optimization methods. However, optimization techniques
have rewards and drawbacks. Various modifications to improve these techniques have
been a focus of many studies. The readers are directed to related resources on methods of
optimization and comparative studies such as the study in [4] as well as the review study of
the seven stochastic optimization methods that are preferred in optimization of industrial
designs [5].

All systems that require an optimum design are inherently redundant. In robotics,
among the other possible redundancy of components, kinematic redundancy has been an
attractive research area since kinematically redundant robot arms may be used to perform
additional task/s while performing their main tasks. This is due to the infinite number of
solutions received for the inverse kinematics analysis of a redundant robot resulting in an
infinite number of configurations of the robot for the same end-effector pose. Consequently,
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the motions of the links of a robot that are not affecting the motion of the end-effector are
named “self-motion” by Nakamura [6]. The algorithms that are developed to regulate
the self-motion of the redundant manipulators for a specific aim are called redundancy
resolution techniques.

In this study, a design optimization method is formulated specifically for robot ma-
nipulators by using Denavit–Hartenberg parameters. The proposed optimization method
adopts a redundancy resolution technique for a kinematically non-redundant manipulator.
In this new method, an originally non-redundant manipulator is modified to be a redun-
dant manipulator by including virtual joints. Hence, the employment of a redundancy
resolution technique is possible for this modified redundant manipulator. The type and
location of the added virtual joints are selected by the designer for selectively optimizing
the specific parameters of the robot manipulator. The current approach immerses the robot
mechanism designer into the optimization process by providing the convergence steps as
design parameters continuously change to their optimal values. Hence, the optimization
process becomes more intuitive to the robot mechanism designer than the optimization
methods involving randomness. This intuitive approach is our motivation in carrying out
this study and the main novelty of this work.

The structural optimization process is carried out, considering the design constraints,
to validate the applicability of this new technique. Design optimization procedures fol-
lowed in the design of industrial robot manipulators [7] and the design of haptic devices [8]
are utilized in this present work in terms of analyzing the requirements, stating the prob-
lem, assigning design constraints, and nominating objective functions. Consequently,
performance indices such as manipulability and condition number can be utilized to eval-
uate kinematic and/or dynamic performances of manipulators [9]. Specifically, in this
present work, the objective function that is used in redundancy resolution via null-space
optimization is derived by using the modified form of these two indices.

The case scenario selected for this work is the passive arm of a surgical robotic system
called NeuRoboScope [10] as shown in Figure 1. In this system, the passive arm is required
to be backdriven by the surgeon to the designated locations of the surgical workspace
with minimal effort. Therefore, its performance measures related to both kinematic and
dynamic manipulability are studied in this paper as objective functions to test the proposed
optimization technique. In the next sections, after a brief review of redundancy resolution
techniques, the mechanical design optimization technique is described and the passive
arm mechanism of the NeuRoboScope system is introduced. Related to this specific case
scenario, the design constraints that are used in modifying the problem as the optimization
of a two degree-of-freedom (DoF) planar manipulator are explained. This modification also
facilitated the understanding and verification of the method described in this paper since
the two-DoF planar manipulator is an extensively studied manipulator in the literature.
The optimization procedure for this case scenario is explained along with the modifications
of the well-known performance indices that are used in this study. Finally, simulations that
are carried out to determine the optimal design of the mechanical structure are presented
and discussions are given on the obtained results.
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ance in [16], mechanical joint-limit avoidance in [17], minimization of joint velocities and 
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Figure 1. The surgical robotic system for minimal invasive pituitary tumor surgery: NeuRoboScope.

2. A Brief Review of Redundancy Resolution Techniques

A variety of redundancy resolution methods have been introduced in the literature
such as the Jacobian pseudo-inverse method, weighted pseudo-inverse method, and singu-
larity robustness method (damped least-squares DLS). All those redundancy resolution
methods are grouped as Jacobian-based.

By adding constraints in the form of additional tasks to redundancy resolution, the
infinite number of solutions is narrowed down to a specific/bounded solution. This is
exactly equivalent to establishing design constraints in design optimization techniques. To
incorporate an additional task, which is usually called the subtask, to the resolution process
of kinematic redundancy, a null-space-based method can be applied. In this method, the
gradient of a differentiable objective function is projected in the null-space of the Jacobian
matrix so that it does not affect the main task. Here, the main task is the task that is usually
assigned as the tracking of the end-effector’s motion trajectory.

Another method of redundancy resolution is the decomposition method which de-
composes joint-space variables into two groups (two minor Jacobian matrices) as they are
related to the main task and the additional task. Afterward, constraint objective equality is
utilized as an implicit function to reduce the gradient of optimization objective function [11].
This method has the attribute of eliminating the unnecessary intensive computation of
pseudo-inverse which increases the efficiency of calculation time.

In the task augmentation null-space-based method, the Jacobian matrix is extended
by the addition of an auxiliary task [12] to result in a square augmented Jacobian matrix.
In this method, the pseudo inverse is not to be used [13] and the kinematic solution is no
longer redundant.

Multi-task priority is another null-space-based method [14,15]. In this method, other
than the Jacobian matrix related to the main task, for each additional subtask, another
Jacobian matrix exists. The self-motion of the first subtask is projected to the null-space
of the main task’s Jacobian matrix. The motion of the second subtask is projected into the
null-space of the first subtask’s Jacobian matrix. In the same means, other lower-order
priority subtasks can be embedded in the earlier subtask that has higher priority.

Among possible secondary tasks, the extra DoFs have been used for obstacle avoid-
ance in [16], mechanical joint-limit avoidance in [17], minimization of joint velocities and
accelerations in [18], and reducing interaction forces in physical human-robot interaction
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in [19]. In [20], the manipulability measure was used, and dynamic manipulability was
introduced in [21]. Most methods for resolving redundancy in manipulation involve defin-
ing an objective function to satisfy specific additional tasks. In accordance, in the proposed
optimization technique presented in this paper, those objective functions are used as po-
tential performance indices to assign design constraints in the optimization problems for
structural design of manipulators.

3. Description of the New Mechanical Design Optimization Method for
Robot Manipulators

To resolve the redundancy in robot manipulators, first, the manipulator has to be
kinematically redundant with respect to the requirements of the task. That is the DoF of
the manipulator n should be higher than the DoF needed for the task m. In the proposed
optimization method, if n = m, by including p number of virtual joints, the modified robot
arm has n + p DoF and becomes a redundant one. The additional virtual joint variables
represent the design parameters of a manipulator. In the structural synthesis of a robot
arm, design parameter/s can be any Denavit–Hartenberg (DH) [22] parameter/s shown in
Figure 2 other than the joint variable. Hence, (1) for link k that is connected to link k− 1 via
a revolute joint, the possible design parameters are the effective link length ak, the twist
angle αk and the relative offset between the two links defined along the revolute joint’s axis
of rotation dk (2) for link k that is connected to link k− 1 via a prismatic joint, the possible
design parameters are the effective link length ak, the twist angle αk and the relative rotation
between the two links defined about the prismatic joint’s motion axis passing from the DH
joint center θk. When a virtual joint is included in the manipulator’s mechanism to change
the design parameter/s, the self-motion of the robot arm becomes a consequence of the
change of the selected design parameter/s.
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As a next step, a suitable objective function to be minimized or maximized should
be selected to optimize the selected design parameters, which are, in this case, the added
virtual joints. The objective functions are generally selected to represent a performance
index defined for robot manipulators such as manipulability or condition number. However,
the designer can also formulate an objective function based on the requirements of the
manipulator’s task.

The aim in this method is to calculate the optimal values of the virtual joints by
maximizing or minimizing the objective function via a redundancy resolution algorithm
and thus, selecting optimal design parameters. However, for the redundancy resolution
algorithm to control the self-motion of the manipulator, joints should move at a finite
rate. This means enough time should be provided during the optimization so that the self-
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motion of the manipulator is completed, and the optimal values of the design parameters
are obtained. To ensure that there is enough time for self-motion of the manipulator
to be completed, the end-effector of the manipulator is fixed to a specific pose and the
convergence of the parameters is observed. This specific pose may be selected as a critical
or most visited pose of the manipulator. In this way it is possible to observe the changes
in the design parameters as the optimization process is carried out. Consequently, the
designer can gain insight into the effect of the design parameters on the performance of
the manipulator.

4. Optimization Methodology Described for the Passive Arm of the NeuRoboScope
System

In this section, the robot manipulator’s mechanism that is selected as a case study is
introduced. Later, the structural synthesis optimization of this robot arm mechanism is
explained by defining the specific optimization procedure applied in this case scenario.

4.1. Mechanism of the Robotic Manipulator and the Description of the Case Scenario

The manipulator that is considered for the case scenario is designed as a passive arm
of the NeuRoboScope surgical system (Figure 1). The NeuRoboScope system is designated
to work alongside the surgeon assisting him/her by handling the camera system, the
endoscope, throughout the surgery. The passive arm carries an active arm mounted on its
last link and the endoscope is attached to the active arm.

The passive arm has six revolute joints that are not actuated. The surgeon is expected
to backdrive the passive arm to locate the active arm at some desired poses during the
surgery. Accordingly, the joints of the passive arm are equipped with brake systems to
maintain their angular positions when desired by the surgeon.

The passive arm’s kinematic architecture is shown in Figure 3. The first two revolute
joints are for the planar motion on the horizontal plane. Third and fourth revolute joints
have axes parallel to the horizontal plane and they are interrelated to each other with
a parallelogram loop so that θ3 + θ4 = 2π. The other three joints compose the wrist
mechanism that is responsible for adjusting the orientation of the active arm’s base located
at the last link of the passive arm. In Figure 3, MP is identified as the manipulation point at
which the ease of manipulation of the passive arm is designated to be calculated.
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Figure 3. Kinematic scheme of the passive robot arm.

DH parameters of the passive arm are provided in Table 1. In this table, a1 length is
kept as to be designed (TBD) on purpose since in the case study, this is the link length that
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is selected to be optimized for this manipulator. The eighth row of this table indicates the
coordinate frame selected for the active arm’s motion definition.

Table 1. DH parameters of the passive arm.

k dk θk ak αk

1 0 θ1 TBD 0
2 d2 θ2 a2 −π/2
3 0 θ3 a3 0
4 0 θ4 a4 π/2
5 d5 θ5 0 −π/2
6 0 θ6 a6 −π/2
7 d7 θ7 0 π/2
8 0 δ8 0 −π/2

The position of MP is assigned as the maneuvering point which is essential for being a
critical consideration for optimization.

→
p MP = a1

→
u
(1)
1 + d2

→
u
(1)
3 + a2

→
u
(2)
1 + a3

→
u
(3)
1 + a4

→
u
(4)
1 (1)

In Equation (1), d2, a2, a3, and a4 are assigned as fixed parameters. The only variable
is the design parameter that is selected for this optimization study which is the effective
link length of the first link, a1.

The joint variables are θ1, θ2, θ3, and θ4, three of which are independent parameters so
that the position in the Cartesian space is to be considered as moving on a horizontal plane
as related to θ1 and θ2. Apart from that, θ3 is related to the vertical motion and it is selected
as a constant value as explained previously. In this way, the passive arm is reduced into a
planar revolute-revolute (RR) manipulator. Consequently, the length of the new second
link is calculated as a∗2 = a2 + a4 + a3 cos θ3.

The position of the MP is assigned as a constraint for design. Concerning that this
position on the horizontal plane and the base of the passive arm is fixed at a specific
point on the surgery table, two possible configurations can be calculated as elbow-up and
elbow-down. Any one of the two solutions can be selected to find the initial position for
each of θ1 and θ2 during the optimization study. The inverse kinematics solutions are not
presented here since it is trivial for a planar two DoF revolute-jointed arm.

For verifying and testing the objective function on the actual passive arm, the original
Jacobian matrix is a Ĵ ∈ <2×2 matrix for the planar arm with two DoF. However, for
optimization study, virtual joints are added to the original passive arm and the Jacobian
matrix is modified as Ĵ2×4 ∈ <2×4 and Ĵ2×3 ∈ <2×3. The case with the two virtual joints
( Ĵ2×4) includes a prismatic joint acting along the y-axis and its positive direction motion

is defined along −→u
(0)
2 axis by a virtual joint parameter Y0. The other virtual joint in the

two-virtual joint case ( Ĵ2×4) and the single-virtual joint case ( Ĵ2×3) is the prismatic joint
included to change the effective link length, a1. The dimension of the Jacobian matrix is
related to the DoF of the workspace and DoF of the original or modified passive arm. In
Equations (2)–(4), Jacobian matrices with two virtual joints, one virtual joint, and no virtual
joints are presented, respectively.

Ĵ2×4 =

[
0 c1 −a1s1− (a2 + a4 + a3c3)s12 −(a2 + a4 + a3c3)s12
−1 s1 a1c1 + (a2 + a4 + a3c3)c12 (a2 + a4 + a3c3)c12

]
(2)

Ĵ2×3 =

[
c1 −a1s1− (a2 + a4 + a3c3)s12 −(a2 + a4 + a3c3)s12
s1 a1c1 + (a2 + a4 + a3c3)c12 (a2 + a4 + a3c3)c12

]
(3)

Ĵ2×2 =

[
−a1s1− (a2 + a4 + a3c3)s12 −(a2 + a4 + a3c3)s12
a1c1 + (a2 + a4 + a3c3)c12 (a2 + a4 + a3c3)c12

]
(4)
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In the equations above, sk = sin θk and ck = cos θk for k = 1, 2, 3, and s12 = sin(θ1 + θ2)
and c12 = cos(θ1 + θ2).

4.2. Design Optimization Constraints

NeuRoboScope system is designed to be used in a minimally invasive pituitary tumor
surgery. In this surgery, the natural openings through the nostrils are used to insert surgical
tools. Hence, the passive arm of NeuRoboScope system is back-driven manually by the
surgeon while the surgeon places the endoscope in and out of the nostril. Concerning this
special use of the passive arm, design constraints are defined below.

1. The surgeon can insert the endoscope from either nostril.
2. The endoscope and the active robot arm should not interfere with the surgeon’s hands,

and they should not block the surgeon’s view of the monitor, see Figure 4.
3. The passive arm should locate the active arm inside the surgery workspace by ap-

proaching from behind the patient’s head.
4. The passive arm should be fixed to the surgery table.
5. Physical dimensions of the links should not be large, and they should not be heavy,

but they should be rigid enough to compose an inertial frame for the active arm when
their brakes at the joints of the passive arm are activated.

6. There should be no actuators on the joints of the passive robot arm.
7. When the passive arm’s brakes are released, the surgeon should be able to move the

endoscope freely while the endoscope is still attached to the active robot arm.
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Figure 4. The surgery room setting with the monitor, the NeuRoboScope system and the surgeons.

A study can be carried out for all of the DH parameters, excluding the joint variables,
of the passive arm. However, in this study, the passive arm’s motion on the horizontal
plane is considered to facilitate the demonstration of the optimization method. Accordingly,
from this point on, the kinematics of the passive arm are reduced to a 2-DoF planar robot
arm with two revolute joints. Design parameters that are considered are the effective link
length of the first link and the ground frame’s origin, which is the location that the passive
arm is fixed on the surgery table.

4.3. Optimization through Mechanical Redundancy

Depending on the previously defined design constraints, the requirements for the
passive arm are set for the optimization procedure by considering the necessities and
conditions of the surgery:



Robotics 2022, 11, 1 8 of 21

1. The surgeon should have minimal effort when he/she intends to push the active robot
arm in or away from the surgery zone.

2. The parallelogram loop in the passive robot arm is utilized with no modifications
since it is designed with counter-spring for gravity compensation. This linkage is
responsible for providing vertical motion of the base of the active arm.

3. The optimization is related only to the ease of manipulation only on the horizontal plane.
4. The fixing point position on the y-axis (with respect to reference-frame in Figure 5) is

selected as a possible design parameter, which is related to another design parameter
that is the first link’s length.

5. MP position is fixed at the coordinate (−20, −30) cm (which can be considered as
an average position of workspace required by the surgeon) relative to the reference
frame in Figure 5.

6. The effective link length of the first link should be limited depending on its manufac-
turability, final weight and allowed compliant displacements due to loads.

7. The linear density of the first link is taken as follows: mass/length = 1 kg/m.
8. The third joint variable θ3 in Figure 3 is fixed at −30◦ which is the condition when the

endoscope is located just above the patient’s nostrils.

Since the objective of the optimization is to ease the manipulation at MP, which is de-
noted in Figure 3, forward and inverse kinematics, and the Jacobian matrix calculations are
presented for MP. Hence, these calculations are used for the proposed optimization method.
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u
(0)
1

and the unit vector along the y-axis is
→
u
(0)
2 ).

5. Implementation of the New Optimization Strategy

When there is kinematic redundancy, there is a free motion of the mechanism even if
the end-effector is fixed. This so-called self-motion happens in the null space of the Jacobian
matrix. In the implementation of the proposed optimization strategy, this property is used.
However, to use this property, the non-redundant passive arm must be modified to have
more joints.

For the case with two virtual joints, the DoF of the RR planar arm is increased by 2.
Consequently, a 4-DoF PRPR planar arm operating for a 2-DoF planar task is formed. Since
the objective is to find optimum design parameters, these new joint variables (Y0 and a1)
are included in the control of the self-motion of the resultant redundant arm.

Although a designer is free to choose any redundant manipulator controller, a previ-
ously designed controller for redundant robot manipulators is utilized for this optimization
task [18]. However, only the kinematic part of this controller is used in this work. This
controller is used to control both the main task in task-space, earlier defined by the MP
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point’s position x in horizontal plane, and a desired subtask by adjusting the joints’ motion
in the null space.

An error term is defined as e = xd − x as the tracking error, and xd is defined as
the desired position/trajectory in task-space. The designed controller is presented in
Equation (5) where K̂v and K̂p are diagonal constant feedback gain matrices related to the
proportional-derivative (PD) controller of the main task.

..
q = Ĵ+

(
..
xd + K̂v

.
e + K̂pe−

.
Ĵ

.
q
)
+

..
βN (5)

The column of joint variables in position level are denoted as q ∈ <n, where n, from
now on, is the summation of actual and virtual joints in this approach. We consider that
a vector function z(.) ∈ <n is calculated as a gradient of optimization objective function
f (q) for a specific optimization objective function (which may be time-dependent function,
including design constraints, etc.), and joint velocities in the null space are required to track
the projection of z onto the null space of Ĵ. Since În − Ĵ+ Ĵ projects vectors onto the null
space of Ĵ, this can be formulated in an error signal calculation as presented in Equation (6),
which converges to zero. Here, Ĵ+ represents the pseudo-inverse of Ĵ and În ∈ <n×n is the
identity matrix.

.
eN =

(
În − Ĵ+ Ĵ

)
z−

.
βN (6)

Assuming the manipulator does not go through a singularity condition, it is needed to

design
..
βN to obtain the desired result for the subtask objective.

..
βN is determined as;

..
βN =

(
În − Ĵ+ Ĵ

) .
z−

(
Ĵ+

.
Ĵ Ĵ+ + Ĵ+

)
Ĵz + K̂N

.
eN (7)

In Equation (7), K̂N is a diagonal positive definite feedback matrix. This designed
control law guarantees that the error will be bounded and converged to zero [18]. After
the description of the controller to be used in the proposed optimization method, the
performance indices that are used to formulate the objective function are explained in the
next subsections. It should be noted that instead of the performance metrics mentioned
below, the objective function can be developed by considering other performance metrics
and/or their variations.

5.1. Manipulability Ellipsoid and Singular Value Decomposition (SVD)

Manipulability of a selected point in a mechanical linkage can be represented as a
scalar value related to the area/volume of velocity ellipse/ellipsoid calculated at this point.
It is first developed in [20] and introduced as a performance index. Since the motion
of any point on a mechanical linkage can be related to the motion of the joints by the
Jacobian matrix, the scalar representation of the manipulability index Mp is provided in
the following equation.

Mp =
√

det( Ĵ ĴT) (8)

In addition to the manipulability index shown in Equation (8), another manipulability
measure in Equation (9) was also formulated by Paul and Stevenson [23] as follows

Mp = |det( Ĵ)|. (9)

The objective set when using the manipulability index is to maximize this value via
changing the positions of joints by staying inside the null-space when MP is fixed at the
desired position. During this motion, the effective link length of the first link (a1) and the
position of the fixing point of the passive arm (Y0) will be changing to reach the optimum
value in this optimization.
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Singular value decomposition on the matrix Ĵ ĴT is used to solve for singular values
of Ĵ, which also represents the semi-axes of manipulability ellipse during the simulation.
The rank of Ĵ represents the number of singular values, which is two in this case be-
cause in the formulation of the objective function, the Jacobian matrix is related to the
original manipulator.

5.2. The Modified Condition Number

Another way to represent force/motion relation of a point in the workspace of a
mechanism is done by a scalar number called condition number [24]. Manipulability
represents ease of manipulation of the end-effector at a certain location of the workspace
and the condition number relates the length of the maximum and minimum axes of
manipulability ellipse achieved along with different directions at that specific location of
the end-effector. The condition number is represented by the ratio of the maximum singular
value to the minimum singular value of the Jacobian matrix, which represents the radii of
the manipulability ellipse. The distance between any point on the ellipse and its center was
defined in [25] as the velocity transmission ratio on one specific direction of motion of the
end-effector. In an ideal case, the performance index is 1, which means at that specific point,
the velocity transmission ratio is the same in all directions and a circle will be representing
the manipulability.

Force condition number and velocity condition number are calculated in similar ways.
Salisbury and Craig [24] introduced force condition number as the amplification of the
relative force error at the task-space to the relative torque error at the joint-space. While
Merlet [26] described a velocity condition number using relative motion error in joint-space
and relative motion error in the task-space.

In this work, the difference between the maximum and minimum singular values of
the Jacobian matrix (σmax and σmin, respectively) is used instead of the condition number
and it will be referred as the modified condition number from this point on. The objective
function shown in Equation (10) is used in the optimization procedure to be minimized to
a minimum value or if possible zero value.

Cn = σmax − σmin (10)

5.3. Generalized Inertia Matrix

To include a dynamic orientated design constraint for the design of the passive arm,
the dynamic model of the arm is studied via finding its dynamic equation of motion and the
generalized inertia matrix. This is essential to find the dominant part of design parameters
in the relation between the forces displayed at the end-effector and the consequent motion
of the manipulator. In this work, since the end-effector is moved at a slow rate, Coriolis
and centripetal forces, and the viscous frictional forces are neglected. Consequently, the
remaining part of the dynamic equation is shown below.

τ = M̂
..
q (11)

In Equation (11), τ is the column of actuator torques/forces acting on the joints and M̂
is the generalized inertia matrix. To represent Equation (11) in the task-space, where the
interaction is taking place, the task-space forces are mapped to the joint space forces by
using the Jacobian matrix as follows:

τ = ĴT F. (12)

Here, in Equation (12), F is the external forces acting at the end-effector. For the
slow-motion of the end-effector, where

.
q→ 0 , we consider

..
q = Ĵ−1

..
x. Subsequently,

ĴT F = M̂Ĵ−1
..
x. (13)



Robotics 2022, 11, 1 11 of 21

As a result of this expression in Equation (13), mapped generalized inertia matrix
(mGIM) M̂G is defined in the task-space as shown in Equation (14).

Ĵ−T M̂Ĵ−1 = M̂G (14)

The dynamic performance of the passive arm can be represented by the ellipse (in the
case of the 2-DoF manipulator) which can be plotted for the eigenvalues and eigenvectors
of M̂G matrix [27]. On the other hand, the dynamic manipulability (the determinant of
Ĵ M̂−1) as defined in [21] by Yoshikawa relates the loads at actuators to the acceleration
output at end-effector as shown in Equation (15).

..
x = Ĵ M̂−1τ (15)

For the design optimization study of the passive arm, the objective is to minimize the
resistance shown to the operator during he/she backdrives the arm, which can be termed
as the mechanical impedance [28] of the passive arm. By doing so, the end-effector can be
moved freely inside its workspace with minimum force reflected to the user. This can be
achieved by either minimizing the determinant of the numerator part of M̂G in Equation (14)
hence the generalized inertia matrix ImN (previously defined as M̂), and/or maximizing
the determinant of denominator part of M̂G, which corresponds to the manipulability
index ImD since det( ĴT Ĵ) = det( Ĵ ĴT). In this work, the mapped generalized inertia matrix
M̂G and its abovementioned numerator (ImN) and denominator parts (ImD) are used as
indicators of the dynamic performance measure while selecting the objective function.

6. Simulation Tests and Results

Two simulation tests are conducted to verify the presented approach. Two design
parameters are used for both tests. The Jacobian matrix developed for the MP of the
actual passive arm (RR manipulator version) is used to determine the desired objective
function that is related to the modified condition number. All tests are carried out in Matlab
Simulink setting the fixed step calculation frequency to 100 Hz with an ODE3 solver. The
fixed position of MP is selected as a design constraint on the horizontal planar workspace
at−20, −30 cm for this particular scenario of the presented case study, which is determined
relative to the frame described in Figure 5. In all the tests, the initial value of the first link
is chosen as a1 = 30 cm and the initial value of fixing position (first joint’s axis location)
along the y-axis is selected to be Y0 = 0 cm. The other parameters of the passive arm are
assigned as fixed parameters.

6.1. Simulation Test with the Modified Condition Number Performance Index

In this test, the modified condition number and the manipulability index is calculated
to visualize the effect of the optimization. Both the fixing point of the manipulator along
the y-axis and the first link’s length are selected as design parameters.

By using the modified condition number, which is presented in Equation (10), as the
only performance index in forming the objective function f (q) = −Cn, singular values
are forced to be equal during the optimization procedure due to the minimization of the
objective function. As a result, the manipulability ellipse is forced to be a circle and the
robot arm moves into an isotropic pose as can be seen in Figure 6.

This result is the same result that is presented and discussed in [29]. The obtained
results are exactly as expected for the isotropic pose. The optimal length of the first
link came out to be a1 = 38.47 cm which is equal to a1 = a2

√
2. The fixing point position

converged to a position at Y0 = −11.57 cm. It is observed in Figure 7 that the manipulability
index decreases while the modified condition number index increases which is making
maximum and minimum singular values to be equal.
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As another consideration of the optimization process, the variation of inertial proper-
ties of the manipulator is investigated. In Figure 8a, it can be noticed that the determinant
of the mapped generalized inertia matrix (mGIM) is increased because of this optimization.
This is due to the increase in the first link length and decrease in overall manipulability.
In addition, the determinant of the generalized inertia matrix (the numerator of mGIM) is
increased as can be seen in Figure 8b, which is represented by ImN in this figure. ImD rep-
resents manipulability (the denominator of mGIM). As the objective function is minimized,
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the modified condition number becomes zero since in this work, it is described as the dif-
ference between the maximum and minimum singular value of the manipulability matrix.
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During the optimization process, design parameters could converge to constant values.
As shown in Figure 8c, the length of the first link is increased due to this optimization,
which leads to a decrease in manipulability and as a result increase in the determinant
of mGIM. This can be considered as a drawback but the objective in using the modified
condition number is to result in an isotropic pose in terms of manipulability index.

6.2. Simulation Test with the Modified Condition Number Performance Index and Generalized
Inertia Matrix

In this final test, modified condition number and the numerator part of the mapped
generalized inertia matrix, which corresponds to the generalized inertia matrix, are used
with selected weights of w1 = 1 and w2 = 2 in forming the objective function, respec-
tively. In this way, the objective function is modified to have both the effect of mod-
ified condition number and the determinant of the generalized inertia matrix ImN as
f (q) = −w1Cn − w2 ImN. As a result, shorter length for the first link is obtained and ma-
nipulability ellipse is reshaped as can be noticed in Figure 9. In Figures 6 and 9: (1) the
red line indicates the first link, and the black line indicates the second link, (2) the joint
centers for the first and second joint are indicated with red and black circles, respectively
(3) during the optimization process, the link colors are drawn darker as the links move
from their initial states to their final states.
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inertia matrix.

In this optimization procedure, due to the decrease in manipulability, which is shown
in Figure 10, and the decrease in the determinant of generalized inertia matrix ImN,
which is shown in Figure 11b, the determinant of mGIM, as shown in Figure 11a, is
increased more relative to the results presented in Section 6.1. The positive result of this
optimization is obtaining a smaller link length for the first link, which is indicated in
Figure 11c. Nevertheless, the weights used for the influence of the modified condition
number and the inertia matrix on the objective function is critical. The choice of these
weights could decrease manipulability in one direction to a value near zero, which would
minimize the backdrivability of the manipulator in that direction.
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7. Validation of the Proposed Optimum Design Approach

To ease the comparison of our optimization approach, we named our optimization
approach as Optimization via Redundancy Resolution (ORR). To show the accuracy of the
proposed optimization approach, we compared the results obtained by stochastic optimiza-
tion algorithms Simulated Annealing (SA) algorithm, Differential Evolution (DE) algorithm,
Nelder–Mead (NM) algorithm, Random Search (RS) algorithm, based on four different
phenomenological search approaches, and that of ORR for the mechanism design problem
we defined. Here, the basic rationale for choosing these algorithms for validation is (i) they
have proven their reliability in the solution of mathematical optimization problems, which
have been used in many different disciplines, (ii) because they have different phenomeno-
logical bases, a solution alternative that an algorithm might miss can be compensated by
this way. At this stage, two different optimization scenarios were defined: First, to find the
results that minimize only the Cn parameter, and in this context, optimize the parameters
Y0, θ1, θ2 and a1 under the given nonlinear equality and linear inequality constraints; The
second was to define the importance levels of the Cn and ImN parameters with the weight
values of w1 and w2, to define a new objective function (w1Cn + w2 ImN) and to use the
constraints used in the first scenario. Weights are selected as w1 = 1 and w2 = 2 in forming
the objective function, respectively. The unit for the distances is m and the unit for the
angular positions is rad in description of the two optimization scenarios.

Find design variables: Y0, θ1, θ2, a1
Scenario 1:
To minimize the objective function: Cn(Y0, θ1, θ2, a1)
Scenario 2:
To minimize the objective function: w1Cn(Y0, θ1, θ2, a1) + w2 ImN(Y0, θ1, θ2, a1)
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Subjected to: −1 ≤ Y0 ≤ 0, 0 < a1 < 0.5
a2 = 0.350;
a3 = 0.216;
a4 = 0.05;
θ3 = −30π/180;
X0 = 0;
a∗2 = a2 + a4 + a3 cos θ3;
[XMP, YMP] = [− 0.2,−0.3]
XMP = a1 cos(θ1) + a∗2 cos(θ1 + θ2);
YMP = Y0 + a1 sin(θ1) + a∗2 sin(θ1 + θ2);
where

Cn(Y0, θ1, θ2, a1) = 1
2 (((a2

1 + (a4
1 + 1.088a3

1 cos(θ2) + 0.592a2
1 cos2(θ2) + 0.161a1 cos(θ2) + 0.022)0.5

+0.544a1 cos(θ2) + 0.148)

−((a2
1 − (a4

1 + 1.088a3
1 cos(θ2) + 0.592a2

1 cos2(θ2) + 0.161a1 cos(θ2) + 0.022)0.5)

+0.544a1 cos(θ2) + 0.148)0.5)0.5)2

ImN(Y0, θ1, θ2, a1) = 0.172707a2
1 + 0.100746a3

1 − 0.0740175a2
1 cos2(θ2)

In the Appendix A, summary information about the working logic of the optimization
algorithms we use for validation is given. For more detailed information, you can refer to
the relevant reference [5].

For the optimization problems solved for the scenarios, the algorithm options given in
Table 2 are used.

Table 2. Corresponding options for the optimization algorithms DE, NM, RS, and SA.

Options DE NM RS SA

Crossover
fractions 0.5 - - -

Random Seed 1 5/10 0 2
Scaling factor 0.6 - - -

Tolerance 0.001 0.001 0.001 0.001
Contact ratio - 0.5 - -
Expand ratio - 2.0 - -
Reflect ratio - 1.0 - -
Shrink ratio - 0.5 - -

Level iterations - - - 50
Perturbation

scale - - - 1.0

Penalty Function - - Automatic -
Search Points - - 2 -

Method - - Interior Point -

The obtained results using the four well-established optimization algorithm’s results
are tabulated along with the result obtained by the proposed ORR algorithm. Due to the
“RandomSeed” dependency, which is one of the advantages of the NM algorithm, it is
possible to produce alternative results when two different choices (5 and 10) are made for
this problem. Therefore, the results for two version of NM are also presented. Tables 3 and 4
present the result obtained for Scenarios 1 and 2, respectively.

In Table 3, the solution obtained in DE algorithm is the positive solution alternative
for the RR manipulator. Therefore, the obtained optimization result in DE is identical to the
ones obtained via SA, NM2, RS and the proposed ORR algorithm. The result obtained via
NM1 algorithm is different than the other ones. However, when the constraint is narrowed
to −0.4 ≤ Y0 ≤ 0, this algorithm also gives the same result with the others.
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Table 3. The optimization results for Scenario 1 obtained via DE, NM, RS, SA and ORR algorithms.

Optimization Algorithm Objective Function Y0 (cm) θ1 (rad) θ2 (rad) a1 (cm)

SA 2.21008 × 10−14 −11.56 −1.611 −2.356 38.48
DE 1.21496 × 10−13 −11.56 3.079 2.356 38.48

NM1 8.39033 × 10−15 −48.44 1.611 2.356 38.48
NM2 2.21008 × 10−14 −11.56 −1.611 −2.356 38.48

RS 2.21008 × 10−14 −11.56 −1.611 −2.356 38.48
ORR 5.03038 × 10−9 −11.57 −1.611 −2.356 38.47

Table 4. The optimization results for Scenario 2 obtained via DE, NM, RS, SA and ORR algorithms.

Optimization Algorithm Objective Function Y0 (cm) θ1 (rad) θ2 (rad) a1 (cm)

SA 0.0363314 −30.00 −1.998 −2.408 28.50
DE 0.0363314 −30.00 1.998 2.408 28.50

NM1 0.0363314 −29.997 −1.998 −2.408 28.49
NM2 0.0363314 −29.994 1.998 2.408 28.50

RS 0.0363314 −30.00 1.998 2.408 28.50
ORR 0.036349 −26.57 −1.835 −2.398 28.55

When the results in Table 4 are considered, although the proposed ORR approaches to
the optimization results of the other well-established algorithms, there is still a considerable
difference for the Y0 value. As ORR is developed based on a control algorithm using
redundancy resolution, the convergence to the optimal result can take some time due to
the characteristics of the robot mechanism’s controller. The controller can be optimized
to converge to the end result faster. To test this, the same controller is used for extended
simulation durations. The obtained optimization results for Scenario 2 are presented in
Table 5.

Table 5. The optimization results for Scenario 2 obtained via ORR algorithm for different simulation
durations.

Method—Duration Objective Function Y0 (cm) θ1 (rad) θ2 (rad) a1 (cm)

ORR—200 s 0.0363496 −26.57 −1.835 −2.398 28.55
ORR—300 s 0.0363404 −27.22 −1.864 −2.402 28.54
ORR—400 s 0.0363369 −27.63 −1.883 −2.404 28.53
ORR—500 s 0.0363351 −27.92 −1.897 −2.405 28.52
ORR—800 s 0.0363329 −28.48 −1.923 −2.406 28.51

ORR—1600 s 0.0363317 −29.22 −1.959 −2.408 28.50

It is observed in Table 5 that the design parameters converge to their optimal values
as the simulation duration is extended. This convergence trend is expected since in an
actual robot control case, it takes a certain amount of time for the robot to move to the
desired location.

8. Discussion and Conclusions

A new approach of mechanical optimization of robot manipulators through mechanical
redundancy and the use of redundancy resolution algorithm designed for the control of
redundant robots is presented in this paper. The advantages of this approach with respect
to the other design optimization methods are (1) the possibility of visualization of the
robot’s configuration variations during the optimization, (2) selectively optimizing specific
structural parameters of the robot manipulator, and (3) during the optimization process,
the design parameters are continuously changed until they approach near the optimal
results and no randomness exists during the optimization. In this way, the designer can
perceive the effects of the selected performance index and the selected structural parameter
for optimization.
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Figure 12 shows the Pareto chart for two performance indices to be minimized (the
modified condition number, Cn, and the determinant of the generalized inertia matrix, ImN),
by using the selected design parameters within their design limits of Y0 = −0.3 m→ 0 m and
a1 = 0 m→ 0.4 m with the discrete step size of 0.01 m. Within these ranges, a Pareto set of
961 individual solutions are evaluated for the corresponding performance indices which
are presented with “x” mark on the figure. The distribution of the Pareto set shows the
opposing requirements of the two performance indices. In this constrained multi-objective
optimization problem, the procedure described in test B is selected for observing the new
optimization method’s performance via the Pareto set. The execution of the proposed
optimization method is printed on the figure which initiates from the point marked with
the red circle and follows the blue line to terminate at the red plus mark. The result of
the proposed optimization method with two performance indices indicates that its final
result on the Pareto Front is located at the lower curve in this Pareto set. This demonstrates
that the proposed optimization method guarantees the final solution will be located at
the Pareto Front without setting a stopping criterion as in genetic optimization methods.
However, the exact location on the lower curve depends on the weighting values (w1 and
w2) which can be selected depending on the desired performance of the robot manipulator.
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Figure 12. Pareto set and the initiation-termination points of the optimization procedure for test B
for minimizing the modified condition number, Cn, and the determinant of the generalized inertia
matrix, ImN.

In this approach, optimum solutions for various design parameters can be obtained
by including these design parameters as virtual joints of a virtually constructed redundant
robot. These variables are adjusted in the null-space of the Jacobian matrix through redun-
dancy resolution techniques so that it will not affect the main task or design constraint/s.
However, the manipulation directly affects the selected subtask, which is the optimization
procedure’s objective function. Thus, the design parameters are optimized according to
the selected objective function that includes the selected performance indices of manipula-
tors. A flowchart representing the implementation of this new technique is presented in
Figure 13.
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The implementation procedure of this new technique is investigated by using a case
scenario for determining the fixing point of the base platform and the first link’s length of a
surgical robotic system’s passive arm. The main concern for the optimization is increasing
the backdrivability of this passive arm. The presented results with various numbers of
design parameters and various uses of performance indices in the objective functions
verify the applicability of this new method for the mechanical design and optimization of
robot manipulators. The validation test results against the well-established optimization
algorithms indicate that the proposed optimization algorithm ORR can converge to global
optimal results for various robot mechanism design objectives.

One shortcoming of the proposed optimization algorithm is the duration of the opti-
mization process. This shortcoming can be addressed by selecting suitable gains for faster
motion of the manipulator and thus, convergence to the optimal results.
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Appendix A

Nelder–Mead algorithm:
NM is designed firstly for unconstrained optimization problems. Essential steps of the

traditional algorithm are Ordering, Centroid, and Transformation. Since our mathematical
optimization problem includes nonlinear equality constraints a hybrid form including
conventional NM, conjugate gradient, and principle axis methods has been selected. To
implement the hybrid approach, NMaximize command as a postprocessor embedded in
Mathematica software is performed.

Simulated Annealing algorithm:
A combination of traditional SA and the principle axis algorithm is selected because of

inherent nonlinearity of the objective functions and constraints for the presented problem.
The main stages of the algorithm are [5]

(1) Introduce an initial guess zi.
(2) Generate next point, zi+1, in the neighboring point of zi.
(3) The main goal of step 2 is to obtain smaller radius of the neighborhood for each iteration.
(4) If g(zbest) = g(zi+n), zi+n replaces zbest and z.
(5) Boltzmann’s probability distribution function is used to measure the distance between

these two points

where
zi: The starting point,
zi+1: The next iteration point in the algorithm steps,
g(zbest): The fitness function value for zbest,
g(zi+n): The fitness function value for zi+n,
zi+n: The maximum number of iteration (last) points in the algorithm steps
zbest: The best point found so far in the algorithm steps
Differential Evolution algorithm:
DE is a widely used stochastic optimization method and has the stages crossover,

population size, and scaling factor to produce the generations. In this problem, we first
converted the constrained optimization problem into the canonical form. To ensure conver-
gence, we use an augmented Lagrangian merit function. Mathematica implementation of
the DE algorithm follows the procedures:

(1) Introduce a population of h points.
(2) Produce randomly generated population points.
(3) Use the real scaling factor rsF and select Cross-Probability value in the interval [0, 1].
(4) Compare the difference between the two most recently generated points.

where
h: The number of population points
rsF: The real scaling factor and it scales applied to the difference vector in creating

a mate
Random Search algorithm:
RS algorithm is the simplest method utilized for both discrete and continuous opti-

mization problems. However, for our optimization problem a combination of conventional
RS and Levenberg–Marquardt algorithms is performed at the final step. This process is
important in the evaluation of convergence and provides the merging quality of selected
starting points to the local minimum. The main steps of the algorithm are:

(1) Enter the start parameter.
(2) Create working group point Vk+1.
(3) Update Xk+1, Qk+1 for Vk+1
(4) Compare the difference between the two most recently generated points.

where
Vk+1: A collection of candidate points
Qk+1: Algorithm parameters
Xk+1: The current iterate
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18. Maaroof, O.W.; Gezgin, E.; Dede, M.İ.C. General Subtask Controller for Redundant Robot Manipulators. In Proceedings of the
2012 12th International Conference on Control, Automation and Systems, Jeju, Korea, 17–21 October 2012; IEEE: Piscataway, NJ,
USA, 2012; pp. 1352–1357.
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