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Abstract: Visual-inertial simultaneous localization and mapping (VI-SLAM) is popular research topic
in robotics. Because of its advantages in terms of robustness, VI-SLAM enjoys wide applications
in the field of localization and mapping, including in mobile robotics, self-driving cars, unmanned
aerial vehicles, and autonomous underwater vehicles. This study provides a comprehensive survey
on VI-SLAM. Following a short introduction, this study is the first to review VI-SLAM techniques
from filtering-based and optimization-based perspectives. It summarizes state-of-the-art studies over
the last 10 years based on the back-end approach, camera type, and sensor fusion type. Key VI-SLAM
technologies are also introduced such as feature extraction and tracking, core theory, and loop
closure. The performance of representative VI-SLAM methods and famous VI-SLAM datasets are also
surveyed. Finally, this study contributes to the comparison of filtering-based and optimization-based
methods through experiments. A comparative study of VI-SLAM methods helps understand the
differences in their operating principles. Optimization-based methods achieve excellent localization
accuracy and lower memory utilization, while filtering-based methods have advantages in terms
of computing resources. Furthermore, this study proposes future development trends and research
directions for VI-SLAM. It provides a detailed survey of VI-SLAM techniques and can serve as a brief
guide to newcomers in the field of SLAM and experienced researchers looking for possible directions
for future work.
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1. Introduction

Simultaneous localization and mapping (SLAM) technology was first proposed by Smith [1,2],
which was applied in robotics with the goal of building a real-time map of surroundings based on
sensor data in an unknown environment as the sensor positioned itself. Over the years, new methods
have appeared using different sensors such as sonar [3], lidar [4], and cameras [5]. These methods
created new data representations and consequently new maps. Durrant-Whyte and Bailey [6,7]
systematically reviewed SLAM technologies. Due to recent advances in CPU and GPU technologies,
visual SLAM methods have seen increased interest because of the rich visual information available
from low-cost cameras compared to other sensors. There are many excellent visual SLAM methods
that have improved the development of SLAM technologies, such as MonoSLAM [5], PTAM [8],
RatSLAM [9], DTAM [10], KinectFusion [11], and ORB-SLAM [12]. SLAM technology has undergone
three major iterations over the last 30 years [13]. Today, SLAM technology is thriving and robust;
real-time, high-precision SLAM technology is urgently needed in robotics.
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Visual-inertial simultaneous localization and mapping (VI-SLAM) that fuses camera and IMU data
for localization and environmental perception has become increasingly popular for several reasons.
First, the technology is used in robotics, especially in extensive research and applications involving
the autonomous navigation of micro aerial vehicles (MAV). Second, augmented reality (AR) and
virtual reality (VR) are growing rapidly. Third, unmanned technology and artificial intelligence has
expanded tremendously.

VI-SLAM is generally divided into two approaches: filtering-based and optimization-based.
Maplab [14,15] and VINS-mono [16–18] are typical of these two methods, and both are open source.
Maplab is a filtering-based VI-SLAM system that also provides the research community with a
collection of multi-session mapping tools including map merging, loop closure, and visual-inertial
optimization. VINS-mono is a real-time optimization-based VI-SLAM system that uses a sliding
window to provide high-precision odometry. Furthermore, it features efficient IMU pre-integration
with bias correction, automatic estimator initialization, online extrinsic calibration, failure detection,
and loop detection.

Much research has been conducted on SLAM over the last few decades, including reviews and
tutorials. A classic review was [6,7]; however, they do not reflect the more recent and emerging
SLAM technology. Most reviews [19–23] have also focused solely on visual SLAM or visual odometry
without addressing VI-SLAM technology. This study, therefore, provides an overview of VI-SLAM
technology from filtering-based and optimization-based perspectives. Feature extraction and tracking,
core theory, and loop closure are proposed, which are key technologies in VI-SLAM methods. This work
also summarizes research over the previous 10 years and famous VI-SLAM datasets and compares
filtering-based and optimization-based methods through experiments. Finally, potential development
trends and forthcoming research directions are introduced.

2. Filtering-Based Methods

VI-SLAM approaches can also be further categorized into either loosely or tightly coupled
according to sensor fusion type. State-of-the-art VI-SLAM studies over the last 10 years are listed in
Table 1. This study divides VI-SLAM methods into filtering-based and optimization-based approaches,
mainly according to their back-end optimization type. The loosely coupled method [24,25] usually
only fuses the IMU to estimate the orientation and possible the change in position, but not the full
pose. In contrast, the tightly coupled method [26,27] fuses the state of the camera and IMU together
into a motion and observation equation, and then performs state estimation. Tightly coupled methods
presently constitute the main research focus, thanks to advances in computer technology.

Table 1. State-of-the-art visual-inertial simultaneous localization and mapping (VI-SLAM) methods.

Year Paper Back-End Approach Camera Type Fusion Type Application

2007 MSCKF [28] filtering-based monocular tightly coupled
2007 [29] filtering-based monocular tightly coupled
2010 [30] filtering-based stereo loosely coupled
2011 [31] filtering-based monocular tightly coupled vehicle
2011 [32] filtering-based monocular tightly coupled
2011 [24,25] filtering-based monocular loosely coupled
2011 [33] filtering-based monocular loosely coupled MAV
2012 [27] filtering-based monocular tightly coupled vehicle
2012 [34] filtering-based monocular loosely coupled
2012 [35] filtering-based stereo tightly coupled
2013 [36] filtering-based monocular tightly coupled vehicle
2013 [37] filtering-based monocular loosely coupled
2013 [38] filtering-based monocular loosely coupled MAV
2013 [39] filtering-based monocular loosely coupled
2013 [40] filtering-based rgb-d tightly coupled
2014 [41] filtering-based monocular tightly coupled mobile phone
2014 [42] filtering-based stereo tightly coupled
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Table 1. Cont.

Year Paper Back-End Approach Camera Type Fusion Type Application

2015 OKVIS [43–45] optimization-based monocular tightly coupled
2015 SR-ISWF [46] filtering-based monocular tightly coupled mobile phone
2015 [47] optimization-based monocular tightly coupled
2015 [48] optimization-based Stereo tightly coupled MAV
2015 [49] optimization-based rgb-d loosely coupled Mobile devices
2015 [50] filtering-based monocular tightly coupled
2015 ROVIO [51] filtering-based monocular tightly coupled UAV
2015 [52] optimization-based monocular tightly coupled autonomous vehicle
2015 [53] filtering-based stereo tightly coupled
2015 [54] optimization-based stereo tightly coupled
2016 [55] optimization-based monocular tightly coupled
2016 [56] optimization-based stereo tightly coupled
2016 [57] filtering-based monocular loosely coupled robot
2016 [58] optimization-based rgb-d loosely coupled
2016 [59] filtering-based stereo loosely coupled
2016 VIORB [60] optimization-based monocular tightly coupled MAV
2017 [61] optimization-based rgb-d tightly coupled
2017 [62] filtering-based monocular loosely coupled AR/VR
2017 [63] filtering-based Multi-camera tightly coupled MAV
2017 [64] filtering-based monocular tightly coupled UAV
2017 VINS-mono [16–18] optimization-based monocular tightly coupled MAV, AR
2017 [65] optimization-based monocular tightly coupled AR
2017 [66] optimization-based monocular tightly coupled
2017 [67] filtering-based monocular tightly coupled MAV
2017 VINet [68] end-to-end monocular / deep-learning
2017 [69] optimization-based event camera tightly coupled
2017 S-MSCKF [26] filtering-based stereo tightly coupled MAV
2017 [70] optimization-based monocular tightly coupled MAV
2017 [71] optimization-based stereomonocular tightly coupled
2017 PIRVS [72] filtering-based stereo tightly coupled robot
2017 Maplab [14,15] filtering-based monocular tightly coupled mobile platform
2018 [73] optimization-based stereo tightly coupled mobile robot
2018 [74] optimization-based stereo tightly coupled

2.1. Feature Extraction and Tracking

2.1.1. Feature Extraction

Tracking is an important component in VI-SLAM systems, which depends on the tracking camera
pixel. VI-SLAM tracking strategies are presented on Table 2.

Table 2. VI-SLAM tracking strategies.

Methods Strategies Papers

1 feature extraction descriptor matching [28,60]
2 feature extraction filter-based tracking [75]
3 feature extraction optical flow tracking [26,76]
4 direct pixel processing [56,77]

Feature detection aims to identify features and determine their position in an image. Features
used in VI-SLAM are mainly Harris [78], FAST [79], ORB [80], SIFT [81], and SURF [82]. Feature
detection uses descriptors to describe the keypoint neighborhoods. The ways to obtain features in the
image are summarized at several points: (1) the pixel point corresponding to the local maximum of the
first derivative, (2) the intersection point of two or more edges, (3) the point where the rate change of
the gradient value and gradient direction is high, and (4) the point at which the first derivative at the
corner point is the largest and the second derivative is zero.
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Brito [83] evaluated the application of different state-of-the-art methods for interest point
matching, including SURF, SIFT, ORB, BRISK, and FREAK, aiming for the projective reconstruction
of three-dimensional scenes. New features have also been incorporated into the SLAM system,
such as the planar feature [84,85], line, or edge feature [86–88]. Importantly, Yang [85] translated
monocular sequences to the 3D plane map and proposed semantic monocular plane SLAM for
low-texture environments.

2.1.2. Feature Tracking

There are four commonly used methods to track pixel in SLAM systems: descriptor matching [28],
filter-based tracking [75], optical flow tracking [26], and direct pixel processing [77]. The principle of
the descriptor and feature is the same. Filter-based tracking includes the Kalman filter, particle filter,
and mean-shift method. These methods model the target area in the current frame, and predict position
by finding the most similar area to the model in the next frame. Optical flow is an effective means of
estimating the movement state, such as velocity, pose, and displacement during navigation. Optical
flow relates to the apparent movement in the image brightness mode and expresses an image change.

Optical flow can also be divided into three methods depending on the type of calculation, namely
the difference [89], correlation [90], and phase-based methods [91]. Among these, the block-matching
algorithm is most commonly used in SLAM. However, it has shortcomings, such as a lack of sub-pixel
accuracy and reduction of the matching degree after image deformation. To solve these problems,
an image pyramid is applied simultaneously to increase computing speed [92].

2.2. Dynamic and Observational Models

The filtering-based SLAM method uses linear or nonlinear models in dynamic and observation
models. However, the nonlinear model is mainly used in the filtering-based VI-SLAM method,
whose dynamic model is expressed as

xt = f (xt−1, ut) + wt (1)

where ut is the control vector, wt is the process noise, and wt~N(0,Qt), Qt is the variance. The IMU
status is expressed as a 16-dimension vector.

xI = [IWqT W pT
I

WvT
I bT

g bT
a ]

T
(2)

where I
WqT is the quaternion rotated from the world frame to the IMU frame, and W pT

I and WvT
I

correspond to the rotation and speed of the world coordinate system, respectively. bg
T and ba

T

correspond to the gyroscope bias and accelerometer bias, respectively.
The classic filtering-based method framework is shown in Table 3. Propagation and update steps

are important to filtering-based methods. The non-linear observation and prediction equation model
are expressed as

zt = h(xt) + nt xt|t−1 = f (xt−1, ut) (3)

The work of filtering-based VIO focuses mainly on the covariance matrix, feature processing,
and EKF updates. The propagated covariance matrix is expressed as

Pt|t−1 = FtPt−1FT
t + Qt Ft =

∂ f
∂x

∣∣∣∣
xt ,ut

(4)

The update equations are expressed as

yt = zt − h(xt|t−1) St = HtPt|t−1HT
t + Rt Ht =

∂h
∂x

∣∣∣∣
xt

(5)
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Table 3. Classic filtering-based method framework.

Propagation: For each IMU measurement received, propagate the filter state and covariance
Image registration: Every time a new image is recorded.
augment the state and covariance matrix with a copy of the current camera pose estimate
image processing modules begins operation
Update: When the feature measurements of a given image become available, perform an EKF update

2.3. Filtering-Based VIO and VI-SLAM

MSCKF [28] is a classic VI-SLAM system. It is also a visual inertial navigation system based on
the multi-state constraint EKF. It employs a measurement model to express the geometric constraints
that arise when a static feature is observed from multiple camera poses. The algorithm extracts and
matches the SIFT feature, and maintains 30 camera poses in the filter state.

In addition, Li [27,36] proved that the standard method of computing Jacobian matrixes in filters
inevitably resulted in inconsistencies and a loss of accuracy through simulation tests, which showed
that the yaw errors of the MSCKF and FLS [93] lay outside the ±3σ bounds indicating inconsistencies.
Thus they proposed modifications to the MSCKF algorithm, which ensure the correct observability
properties without incurring additional computational costs. Clement [53] compared MSCKF and the
sliding window filter (SWF). Its results showed the SWF to be more accurate and less sensitive to tuning
parameters than the MSCKF. However, the MSCKF is computationally cheaper, has good consistency
properties, and improves in accuracy as more features are tracked. In contrast to feature-based methods,
Tanskanen [50] combined the advantages of EKF filters and minimized photometric errors to propose
a direct VIO using only CUP. Increasing studies also began to apply VI-SLAM technologies to small
devices such as mobile phones and cleaning robots [41,46].

Bloesch [51] proposed a monocular VIO-ROVIO (https://github.com/ethz-asl/rovio), used to
directly detect luminosity error to obtain accurate, robust tracking from image matching. The model
also uses the FAST corner to recognize candidate feature regions. A multi-layer image pyramid is
used to extract multi-layer features with edge features added. The work process of the filter feature is
shown in Figure 1.
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Figure 1. Work process of the filter feature, reproduced from [51].
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For image pyramid Il and multi-layer image block feature with coordinates p and block Pl,
the photometric error of block pixel pj at pyramid l is shown as

el,j = Pl(pj)− Il(psl + W pj)−m (6)

where W is the radiation enhancement transformation matrix, and m is the mean intensity error.
The average image processing time with 50 features at initialization is 29.72 ms, while the system
can run smoothly at 20 Hz. Furthermore, a VIO based on an iterative extended Kalman filter was
proposed [63].

S-MSCKF (https://github.com/KumarRobotics/msckf_vio) [26] can be considered a stereo
version of MSCKF. The software takes synchronized stereo images and IMU messages and generates a
real-time 6DOF camera pose estimation. It uses the FAST corner [79] to increase the speed and tracked
features with KLT optical flow [94]. In addition, circular matching can be used to remove outliers
generated during feature tracking and stereo matching. It is hard to compare these VI-SLAM methods
using only accuracy, due to their different application platforms and sceneries. Therefore, this study
surveys representative filtering-based and optimization-based VI-SLAM methods in Appendix A.

Robust and accurate state estimation in robotics remains challenging. If the system can obtain
accurate pose estimation based on a prior map, then system adaptability will improve. Therefore,
Schneider [15] proposed a VI-SLAM system called Maplab that includes integrated functions of
creating, processing and blending multiple maps. The system extensibility is suitable for research,
and provided the evaluation method for the selection of system mining components. In addition,
Maplab has been found to extract BRISK [95] and FREAK [96] from the image and fuses IMU data for
localization and mapping. Separate sections can be combined into a single global map to correct drift
for odometry and localization. ROVIOLI [63] is the front-end of Maplab for localization and mapping;
the system module and data flow are present in Figure 2. The matching window has been shown to
improve efficiency and robustness based on integrated gyroscope measurements. This system easily
extends new algorithms in the current framework, such as multithreaded map building, semantic
SLAM, and positioning.
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Methods combining the advantages of filtering-based and optimization-based approaches have
also drawn wide attention. Quan [97] proposed a monocular VI-SLAM using a Kalman filter as an
assistant. To enable place recognition and reduce trajectory estimation drift, the authors constructed
a factor-graph-based nonlinear optimization in the back-end. A feedback mechanism was used to
guarantee estimation accuracy of the front-end and back-end.

The continuous updating and maintenance of maps in a large scale environment is still a challenge.
It is particularly essential for platforms that work in repetitive scenarios or use previous maps,

https://github.com/KumarRobotics/msckf_vio
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such as inspection robots and driverless cars. To update the map according to the dynamic changes
and new explored areas, Labbé [98] employed a memory management mechanism into the SLAM
system, which identified locations that should remain in fast access memory for online processing
from locations.

3. Optimization-Based Methods

With the development of computer technology, optimization-based VI-SLAM has proliferated
rapidly. Optimization-based methods divide the entire SLAM frame into a front-end and back-end
according to image processing; the front-end is responsible for map construction, whereas the back-end
is responsible for pose optimization. Back-end optimization techniques are usually implemented
on g2o [99], ceres-solver [100], and gtsam [101]. Many excellent datasets can be used to study
visual-inertial methods, such as EuRoC [102], Canoe [103], Zurich urban MAV [104], TUM VI
Benchmark [105], and PennCOSYVIO [106]. Details of the study surveys are provided in Appendix B.

3.1. Loop Closure

Loop closure can detect whether the robot re-enters at the same location; and can determine
whether the robot returns to a previously visited location, thus creating a loop in its trajectory.
Loop closure also optimizes the entire circuit map and increases system positioning accuracy.

Loop closure methods are mainly classified into odometry-based geometric relationship and
appearance-based approaches. The odometry-based geometric relationship approach does not work
when the cumulative error is large [107]. The appearance-based approach determines the loop closure
relationship to eliminate the cumulative error according to the similarity of two images, and it has
been used successfully in VI-SLAM systems [18,31,60].

As shown in Figure 3, the camera data in the VI-SLAM is image-processed to match the spot
stored in the map, and a position recognition decision is made after successful matching. The storage
map is then updated.
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Loop closure is essentially a matter of scene recognition, which is a difficult because of different
appearances in various places in the real world. To solve this problem, Galvez-López [109] proposed
DBoW2 to obtain a binary bag model with BRIEF and FAST features. Although this algorithm was more
efficient and robust in terms of feature extraction compared to those using SIFT or SURF, the BRIEF
descriptor lacks rotation and scale invariance, and it can only be used in 2D environments. To address
this issue, Mur-Artal [12] used a bag-of-words model of location recognition based on DBoW2 and
ORB that included covisibility information.

Loop closure methods based on deep learning continue to emerge [110–112]. Compared with the
appearance-based method, they were more robust to environmental changes. However, designing a
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neural network architecture to run in real-time in a VI-SLAM system remains challenging. In the robotic
area coverage problem, the goal is to explore and map a given target area within a reasonable amount
of time, which necessitates the use of minimally redundant overlap trajectories for coverage efficiency.
However, system estimates will inevitably drift over time in the absence of loop closures. Efficient area
coverage and good SLAM navigation performance represent competing objectives. In this case, active
SLAM algorithm is needed that accounts for the area coverage and navigation uncertainty performance
to efficiently explore a target area of interest [113]. Thrun [114] found a balance between visiting new
places (exploration) and reducing the uncertainty by re-visiting known areas (exploitation), providing
a more efficient alternative with respect to random exploration or pure exploitation.

3.2. Optimization-Based VI-SLAM Algorithms

OKVIS (https://github.com/ethz-asl/okvis) [43–45] was an excellent keyframe-based VI-SLAM
system; that combined the IMU and reprojection error terms into a cost function to optimize the system.
The old keyframes were marginalized to maintain a bounded-sized optimization window, ensuring
real-time operation. As a first step to initialization and matching, they propagated the last pose using
acquired IMU measurements to obtain a preliminary uncertain estimate of the states. Optimization
strategies of optimization-based VI-SLAM algorithms are surveyed in Table 4.

Table 4. Optimization strategies of optimization-based VI-SLAM algorithms.

Methods Optimization Function Initialization Optimization Strategies

OKVIS reprojection error and
IMU temporal error term

using IMU measurements to obtain a preliminary
uncertain estimate of the states

Gauss-Newton algorithm
Schur complement
sliding window

Paper [56]
photometric error and

IMU non-linear
error terms

initialize the depth map with the propagated depth
from the previous keyframe

Levenberg-Marquardt algorithm
Schur complement
partial marginalization

Paper [55] photometric error and
IMU inertial residual / Gauss-Newton algorithm

Schur complement

VIORB
reprojection error of all

matched points and IMU
error term

using vision first, than initializing scale, gravity
direction, velocity, and accelerometer and

gyroscope biases

Gauss-Newton algorithm
local bundle adjustment in local
mapping

VINS-mono reprojection error and
IMU residual

using loosely-coupled sensor fusion method get
initial values, than aligning metric IMU

pre-integration with the visual-only SfM results to
recover scale, gravity, velocity, and even bias

Gauss-Newton algorithm
Schur complement
sliding window
two-way marginalization scheme

To avoid repeated constraints caused by the parameterization of relative motion integration,
pre-integration was proposed to reduce computation. This method was first described by
Lupton [35], where IMU data were changed between two frames by pre-integrating the constraints.
The pre-integration principle is illustrated in Figure 4. The pre-integration theory was further
developed after Forster [47] applied it to the VI-SLAM framework to reduce bias.

Systems that fused IMU data into the classic visual SLAM also garnered widespread attention.
Usenko [56] proposed a stereo direct VIO that combined IMU and stereo LSD-SLAM [115].
They formulated a joint optimization problem to recover the full state containing camera pose,
translational velocity, and IMU biases of all frames. Concha [55] devised the first direct tightly
coupled VIO algorithm that could run in real-time under a standard CPU, but initialization was
not introduced.

VIORB [60] is a monocular tightly coupled VI-SLAM based on ORB-SLAM and contains an ORB
sparse front-end, graph optimization back-end, loop closure, and relocation. This method was first
initialized using only monocular vision, and performed a specific initialization of the scale, gravity
direction, velocity, and accelerometer and gyroscope biases after a few seconds. VIORB proposed
a novel IMU initialization method, which is divided into next four steps: (1) gyroscopes biases
estimation, (2) scale and gravity approximation (considering no accelerometer bias), (3) accelerometer

https://github.com/ethz-asl/okvis
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biases estimation (scale and gravity direction refinement), and (4) velocity estimation. The local map
module uses local BA to optimize the latest N keyframes and all points observed on these N keyframes
after a new keyframe is inserted. Local maps are then retrieved based on the time series of the keyframe.
The fixed window connects the N + 1th keyframe and co-visibility graph. The keyframe in the local
map is shown in Figure 5. In addition to monocular and IMU fusion methods, SLAM with stereo and
RGBD fusion with IMU have also been investigated [54,58].
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VINS-mono (https://github.com/HKUST-Aerial-Robotics/VINS-Mono) was a standout
VI-SLAM method whose frond-end uses the KLT optical flow [94] to track the Harris corner, while the
back-end uses a sliding window for nonlinear optimization. The entire system includes measurement
processing, estimation initialization, local bundle adjustment without relocalization, loop closure,
and global pose optimization. See Figure 6 for the system framework. The Fisheye camera model is
used in the front-end, and an outlier of the fundamental matrix is rejected by the RANSAC method.
The calibration error between the camera and IMU is less than 0.02 m, and the rotation error is less
than 1◦ [76]. In addition, this method has been successfully applied to AR [18].

Additionally, methods integrated with deep learning and new sensors have accompanied the
rise of artificial intelligence and computer vision. Clark [68] proposed an end-to-end VIO with good
results that combined sensor fusion and depth learning. However, loop closure and mapping were
not used in this system. Vidal [69] used event cameras instead of luma frames in VIO to achieve good
results in low-light and high-dynamic scenes. CNN-SLAM [116] replaced depth estimation and image
matching in LSD-SLAM with CNN-based methods to incorporate semantic information.

https://github.com/HKUST-Aerial-Robotics/VINS-Mono
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4. Comparisons between Filtering-Based and Optimization-Based Methods

4.1. Details

Different VI-SLAM methods are designed for different applications and it is hard to
comprehensively evaluate them. To deeply compare filtering-based and optimization-based methods,
this section provides the experiments of representative methods on EuRoC datasets using conditions
that emulate state estimation for a flying robot. Because VIORB does not have open source code,
this study uses an implementation from Jing Wang (https://github.com/jingpang/LearnVIORB).

Experiments are performed on an Intel Core i7-6700 × 8@3.40GHz computer with 16 Gb RAM.
The EuRoC datasets consist of 11 visual inertial sequences recorded onboard a micro-aerial vehicle
while it is manually piloted around three different indoor environments. Within each environment,
the sequences increase qualitatively in difficulty with increasing sequence number. For example,
MH_01 is “easy”, while MM_05 is a more challenging sequence in the same environment, introducing
things such as faster motions and, poor illumination.

To account for the nondeterministic nature of the multithreading, we run each sequence five times
and show the median result for accuracy. In order to compare these methods equally, the mapping
thread of VIORB is closed and the camera frequency of all methods is set to 20 Hz.

4.2. Experiments

Experiment results are shown in Tables 5–7. In Table 5, when all eight logical cores are in
use, the CPU utilization load is 100%. This study uses the elevation tool evo (https://github.com/
MichaelGrupp/evo) to calculate the root mean square error of experiment results according to
the ground truth. Notably, VIORB cannot obtain the full trajectory result on the V2_03_difficult
dataset. In Table 7, memory utilization is represented as a percentage of the available RAM on the
given platform.

This section experiments representative optimization-based and filtering-based methods,
which are all proposed in recent years. As shown in Table 5, the CPU utilization of ROVIO is
the lowest among five methods, and filtering-based methods are better than optimization-based
methods. The camera type of ROVIO, VINS-mono, and VIORB is monocular, while the camera type
of S-MSCKF and OKVIS is stereo. The stereo VI-SLAM methods use more computing resources
than monocular VI-SLAM methods, whether filtering-based or optimization-based. Importantly,

https://github.com/jingpang/LearnVIORB
https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo


Robotics 2018, 7, 45 11 of 20

filtering-based methods have advantages over optimization-based methods on CPU utilization.
As shown in Table 6, VINS-mono obtains the best accuracy with a 0.079 m average root mean square
error. OKVIS and VIORB have advantages in terms of memory utilization (according to Table 7),
which implies that they are robust for system management. Optimization-based methods have more
potential than filtering-based methods in terms of localization accuracy and memory utilization.
In summary, optimization-based methods achieve excellent localization accuracy and lower memory
utilization, while filtering-based methods have advantages in terms of computing resource. How to
find the right balance between competing requirements and accuracy can be challenging.

Table 5. CPU utilization statistics on VI-SLAM methods (%).

Sequence ROVIO S-MSCKF OKVIS VINS-Mono VIORB

MH_01_easy 25.32 33.19 47.32 39.12 30.82
MH_02_easy 26.06 29.01 45.14 39.80 32.34

MH_03_medium 26.53 27.51 49.01 40.48 36.52
MH_04_difficult 25.73 27.91 48.44 40.03 33.07
MH_05_difficult 26.61 29.61 45.74 39.05 36.06

V1_01_easy 27.41 29.59 40.66 41.23 27.82
V1_02_media 27.00 30.61 44.58 35.59 32.44

V1_03_difficult 29.69 30.86 63.30 33.95 31.61
V2_01_easy 27.04 30.83 49.67 37.55 27.55

V2_02_media 26.89 28.29 52.94 36.30 32.07
V2_03_difficult 27.29 27.18 56.74 34.56 32.23

Average 26.87 29.51 49.41 37.97 32.05

Table 6. Root mean square error (RMSE) of VI-SLAM methods (m).

Sequence ROVIO S-MSCKF OKVIS VINS-Mono VIORB

MH_01_easy 0.236 0.227 0.164 0.062 0.034
MH_02_easy 0.247 0.231 0.187 0.078 0.049

MH_03_medium 0.427 0.2011 0.274 0.045 0.040
MH_04_difficult 1.170 0.351 0.375 0.134 0.111
MH_05_difficult 0.863 0.213 0.432 0.088 0.269

V1_01_easy 0.216 0.062 0.224 0.045 0.064
V1_02_media 0.210 0.161 0.176 0.045 0.079

V1_03_difficult 0.381 0.281 0.193 0.088 0.212
V2_01_easy 0.298 0.074 0.176 0.057 0.150

V2_02_media 0.232 0.152 0.181 0.114 0.183
V2_03_difficult 0.263 0.366 0.316 0.109 /

Average 0.413 0.211 0.245 0.079 0.119

Table 7. Memory utilization statistics on VI-SLAM methods (%).

Sequence ROVIO S-MSCKF OKVIS VINS-Mono VIORB

MH_01_easy 14.86 14.14 11.03 17.09 12.52
MH_02_easy 15.03 14.22 11.22 16.95 12.53

MH_03_medium 15.04 14.22 11.03 17.74 12.48
MH_04_difficult 15.04 14.24 11.10 17.05 12.77
MH_05_difficult 15.29 14.33 11.22 18.61 13.72

V1_01_easy 12.86 14.04 11.28 17.92 12.72
V1_02_media 14.87 13.79 11.63 17.03 12.59

V1_03_difficult 14.30 13.82 11.67 17.80 12.65
V2_01_easy 13.53 14.06 11.69 16.96 12.46

V2_02_media 14.37 14.08 11.81 17.54 12.32
V2_03_difficult 14.82 14.09 12.11 17.26 12.48

Average 14.55 14.04 11.43 17.45 12.65
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5. Development Trends

5.1. SLAM with Deep Learning

At present, the semantic level of the image features used in the SLAM scheme is too low, rendering
feature distinguishability weak; the point cloud map constructed by the current method does not
distinguish between different objects. Deep learning will develop SLAM technology, which can be
used to build semantic maps to advance human computer interaction. Rambach [117] proposed a deep
learning approach to visual-inertial camera pose estimation through a trained short-term memory
model. Shamwell [118] presented an unsupervised deep neural network approach to the fusion of
RGB-D imagery with inertial measurements for absolute trajectory estimation.

Although the study of semantic issues in SLAM is still in a nascent stage, combining semantics
with SLAM will enable robots to obtain poses more effectively by building consistent maps using
semantic concepts of categories, relationships, and environmental attributes. In addition, a new
map of the SLAM system can effectively store and display information, such as SkiMap [119] and
Road-SLAM [120]. The continuous updating and maintenance of maps still presents an obstacle in
the field.

5.2. Hardware Integration and Multi-Sensor Fusion

The lightweight and miniaturization characteristics of the SLAM system allow it to run well
on small devices, such as embedded systems or cell phones. Excellent results were achieved in
Microsoft Hololens, Intel RealSense, and Google Tango [121]. Customized hardware for the VI-SLAM
can realize the function of robots, and AR/VR devices are applied to sports, navigation, teaching,
and entertainment. Therefore, a strong demand exists for SLAM miniaturization and weight reduction,
prefacing the future of embedded SLAM [122].

A single sensor cannot adequately sense environmental information, and state estimation
is highly uncertain. Multi-sensor fusion can solve these problems and improve the accuracy of
system positioning and environment mapping.VI-SLAM technology is an example of multi-sensor
fusion. Research and applications involving multi-sensor fusion in SLAM are expected to grow,
as evidenced by [123,124].

5.3. Active SLAM on Robots

A pertinent SLAM issue represents a passive estimation problem in robotics. However, the main
purpose of controlling the robot motion problem is to control the robot to minimize uncertainty of
robotic map representation and positioning. In a conventional approach, SLAM is passive and typically
performed on preplanned or human-controlled trajectories. A fully autonomous robot must plan
a motion given a high-level command, such as, a task-level command from a human supervisor to
explore a given area. In this example, the robot should plan accordingly to accomplish the given task
and should not require detailed input by a human supervisor [113]. Active SLAM [125] has therefore
attracted gradual attention. The active SLAM algorithm has demonstrated good effects in terms
of enabling the robot to identify possible locations, calculate each vantage point visited, and select
the most efficient action plan. SLAM technology should thus incorporate technologies such as path
planning [126], mission planning [127], and object recognition [128]. References [129,130] contributed
to active SLAM and combine it to make robots more intelligent and practical. In addition, integrating
the advantages of different branches of SLAM technology (such as, filtering and optimization-based
approaches and loosely and tightly coupled methods) would greatly improve system robustness
and accuracy.

5.4. Applications on Complex Dynamic Environments

The SLAM algorithm generally assumes a static environment. However, the actual working
environment of the mobile robot often involves changes in the spatial positions of pedestrians and
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vehicles over time. These dynamic features can provide useful information about environmental
changes. Identification of static and dynamic features in the environment and locating and mapping the
robot effectively are important. Saarinen [131] made contributions to enabling long-term operation of
autonomous vehicles in industrial dynamic environments and proposed a novel 3D normal distribution
transform occupancy maps. Additionally (to ensure more effective practical application), seasonal
weather changes in unstructured terrain require a more robust SLAM system to handle complex
dynamic environments. Multi-robot collaboration SLAM [132] possesses advantages of high accuracy
and efficiency, and it is emerging as a common research area.

6. Conclusions

VI-SLAM technology is a popular and complicated research issue in the field of robotics and
computer vision. This study provided an overview of VI-SLAM technology and summarized
methods over the last 10 years. State-of-the-art VI-SLAM methods are introduced from filtering
and optimization-based perspectives. The respective frameworks, key technologies, and advantages of
these methods are presented. In addition, central technologies in VI-SLAM are systematically proposed,
including feature extraction and tracking, pre-integration, and loop closure. This study surveys the
performance of representative VI-SLAM methods and famous VI-SLAM datasets. Comparisons are
made between filtering-based and optimization-based methods through experiments, which indicate
filtering-based methods have advantages in terms of computing resources, while optimization-based
methods achieve excellent localization accuracy and lower memory utilization. This study also
predicted upcoming development trends and research directions for SLAM that have the potential to
make the technology substantial.
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Appendix A

This study presents performance of VI-SLAM methods including MSCKF, ROVIO, S-MSCKF,
OKVIS, VINS-mono, and VIORB. The performance of these methods is shown in Table A1. The camera
type of MSCKF, ROVIO, VINS-mono, and VIORB is monocular. The camera type of S-MSCKF
and OKVIS is stereo. Reference [15] proposed an analysis of tightly-coupled monocular, binocular,
and stereo visual-inertial odometry. Notably, the drift rate of ROVIO is calculated according to Figure 3
in [51]. VIORB obtained a 0.075 m root mean square error, with a scale error typically below 1%.
This method was able to close loops and reuse its map to achieve zero-drift localization in already
mapped areas.

Table A1. Performance of representative VI-SLAM methods.

Methods MSCFK ROVIO S-MSCKF OKVIS VINS-Mono VIORB

Platform Vehicle UAV MAV Car/Helmet MAV MAV

Image 640 × 480
@14Hz

752 × 480
@20Hz

752 × 480
@20Hz

752 × 480
@20Hz

752 × 480
@20Hz

752 × 480
@20Hz

Environment outdoor indoor indoor/outdoor outdoor indoor/outdoor indoor
IMU @100Hz @200Hz @200Hz @200Hz @100Hz @200Hz

Drift rate 0.31% ≈1.8% <0.5% <0.1% 0.88% ≈0
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Appendix B

This study provides more details about SLAM datasets. The comparison of datasets with vision
and IMU data is shown in Table A2.

Table A2. Comparison of datasets with vision and IMU data.

Datasets EuRoC Datasets PennCOSYVIO Zurich Urban
MAV Dataset TUM VI Benchmark Canoe Dataset

Carrier MAV Handheld MAV Handheld Canoe

Cameras

1 stereo gray
2 × 752 × 480

(global shutter)
@20Hz

4 RGB 1920 × 1080
@30Hz (rolling

shutter), 1 stereo
gray 2 × 752 × 480
@20Hz, 1 fisheye
gray 640 × 480

@30Hz

1 RGB 1920 × 1080
@30Hz (rolling

shutter)

1 stereo gray
2 × 1024 × 1024
(global shutter)

@20Hz

1 stereo RGB
2 × 1600 × 1200

(rectified 2 × 600 × 800)
@20Hz

IMUs
ADIS16488

3-axis acc/gyro
@200Hz

ADIS16488
3-axis acc/gyro
@200Hz, Tango

3-axis acc
@128Hz/3-axis
gyro @100Hz

3-axis acc/gyro
@10Hz

BMI160
3-axis acc/gyro

@200Hz

ADIS-16488
3-axis acc/gyro

@200Hz,

Environment indoors indoor/outdoors outdoors indoors/outdoors Sangamon River

Ground truth
Leica

Multistation/Vicon
system

fiducial markers Pix4D motion capture
pose GPS

Stats/props 11 sequences, 0.9
km 4 sequences, 0.6 km 1 sequence, 2 km 28 sequences, 20 km 28 sequences, 2.7 km
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