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Abstract: This paper proposes a classification of all non-isomorphic anatomies of an orthogonal
metamorphic manipulator according to the topology of workspace considering cusps and nodes.
Using symbolic algebra, a general kinematics polynomial equation is formulated, and the closed-form
parametric solution of the inverse kinematics is obtained for the coming anatomies. The metamorphic
design space was disjointed into eight distinct subspaces with the same number of cusps and nodes
plotting the bifurcating and strict surfaces in a cartesian coordinate system

{
θπ1 , θπ2 , d4

}
. In addition,

several non-singular, smooth and continuous trajectories are simulated to show the importance of
this classification.

Keywords: orthogonality; pseudo-joint; metamorphic manipulator; surfaces; metamorphic
topological spaces

1. Introduction

This paper investigates the cuspidality of the anatomies derived by a metamorphic manipulator
structure. Metamorphic manipulators are considered as a new special class of serial open-chain
manipulators that have been developed to fulfill the high manufacturing demands (high productivity,
low maintenance cost, space-saving, high accuracy etc.) [1].

A metamorphic manipulator consists of rigid links, pseudo-joints and active modules that can be
easily and quickly assembled into different arm structures. The metamorphosis is achieved through
the pseudo-joints [2], which are used to change the arm anatomy [3]. It was showed that a regular
metamorphic manipulator system can be used to achieve high kinematic performance adapted to the
tasks’ requirements [4,5].

The first prototypes of modular, reconfigurable robotic arms have been started to come up at the
end of the previous century. A modular manipulator system was developed, which consists of actuator
modules, rigid links and a control unit and the efficiency of its mechanical hardware and control
software [6]. A reconfigurable modular manipulator system (RMMS) with rigid links, intelligent and
active joint modules of various sizes was proposed to perform a wide range of simple or more complex
tasks thanks to different arm geometries and an embodied sophisticated kinematic, calibration and
control software [7]. A rapidly reconfigurable robotic work cell was designed based on component
technology with hardware, software and control issues [8] and a fully functional RMMS work cell to
perform light machining tasks was introduced [9]. An innovative mechanical conceptual design is
proposed for a modular reconfigurable serial manipulator with a unique geometric cubic actuator
module design with connecting ports on all faces of the cubic module, so to minimize the total number
of passive or active modules [10].
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A closed-form kinematics for reconfigurable robots especially with robustness in coping with
singularities using Product-of-Exponentials techniques was developed for different arm geometries
and DOF’s [11]. The inverse kinematics of a 3R metamorhic manipulators with one pseudo-joint using
a feedforward neural network was also presented [12].

A Genetic Algorithm method was used to evaluate the wide range of modular robot assembly
geometries, as well as the effectiveness and robustness of the method, was tested using 4-DOF
manipulators [13]. Methods for the kinematic synthesis of structure topologies [3], optimal design
of a metamorphic manipulator using path dexterity indices for service tasks [14,15] as well as task
placement in the presence of obstacles [16] was presented.

Reconfigurable robotic systems were assessed to find the most suitable geometry with high
adaptability [17]. An active module with multiple input-output mechanical connection ports was
proposed [18] as well as the active joint module has 2 DOF and it can be used as a rotary or pivotal
joint. Experimental verification of high kinematic performance of a simple task using metamorphic
manipulators was presented [19].

Considering the most representative papers commended above as well as the robotics literature
on reconfigurable manipulators it could be concluded that this type of robot attracts the attention
of the robotics community and the manufacturing industry. However, apart from the topology and
derived anatomies optimality other aspects should be considered to show the advantages of modular
reconfigurable manipulators such as the classification of anatomies in cuspidal and non-cuspidal.

A non-redundant robot that can change its arm configuration (posture) without encountering
a singularity is defined as cuspidal [20]. The general, necessary and sufficient conditions for a 3R
manipulator to be cuspidal was introduced [21].

Serial orthogonal 3R fixed-anatomy manipulators were classified based on the number of cusp
points in workspace Groebner Basis and Cylindrical Algebraic Decomposition [22]. The manipulator
design parameter space was divided under some hypotheses into domains with a constant number of
cusp points. The obtained equations were produced as algebraic polynomials in the D-H parameters.
A classification of 3R orthogonal manipulators was presented, taking into account more topological
features such as cusps, nodes, accessibility, aspects, voids [23].

Since the metamorphic manipulators have the ability to alter their anatomies there is a need to
investigate and classify the anatomies of metamorphic manipulators according to their topological
features (cusps, nodes etc.).

The main aim of this paper is to classify all the non-isomorphic kinematic anatomies for
an orthogonal 3R metamorphic structure considering topological features such as cusp, node, aspects,
generic and non-generic. According to the approach presented in [22,23] a modified analytical work is
introduced adaptable to metamorphic structures to classify the cuspidality of their derived anatomies.
General and sufficient conditions to investigate these features, as well as the hypersurfaces that separate
them, are determined in terms of metamorphic structure parameters. Selected anatomies are used to
illustrate the singularities in configuration and their mapping to the workspace.

To highlight the significance of the metamorphic structure workspace topologies in performing
non-singular posture changing paths in the operational space, test trajectories are simulated. The joint
angles variation, as well as the determinant of the Jacobian matrix for a closed path and a rectilinear
trajectory, are used to illustrate the performance of the metamorphic anatomies.

The rest of this article is organized as follows: in Section 2 the proposed method is presented with
the illustrative–metamorphic manipulator structure and some preliminary facts about singularities in
joint space and workspace, as well as the meaning of non-singular posture changing mode, is given.
Subsequently, Section 3 part of the study is devoted to the classification of non-isomorphic orthogonal
anatomies based on the metamorphic workspace topology and the complete enumeration is displayed
in the metamorphic design space through strict bifurcating surfaces. In addition, sample metamorphic
anatomies are selected from each subspace to represent the kinematic behavior of each one in joint space
and workspace. In Section 4, the so-called non-singular posture changing phenomenon is simulated
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with several numerical examples in generic and non-generic arm models. Finally, the article sums up
the most significant conclusions.

2. Cuspidality Investigation in Orthogonal—Metamorphic Modular Arm

Cuspidality Investigation in Metamorphic Orthogonal Serial Robotic Arm is the main aim in this
paper and the basic concepts are presented in this section. The next subsection presents the Metamorphic
Manipulator Structure that was introduced in [2–5], in order to facilitate the understanding of the
proposed method.

2.1. Presentation of Metamorphic Manipulator

The Metamorphic Manipulator belongs to reconfigurable modular robotic systems that could
be reconfigured providing a variety of manipulator anatomies adapted to a wide spectrum of task
requirements. The mechanism consists of active modules, pseudo-joints, and link modules (rigid
links) [3–5]. Active modules (Figure 1a) are mechatronic devices, which are fully equipped with
an actuator, harmonic drive, failsafe brake, encoder, power electronics, transmissions and sensors.
They are designed with a variety of mechanical standardized coupling connector interfaces that can be
easily and quickly assembled into different arm structures. In the present study, the active module is
considered as a fully rotational joint.

On the other hand, a pseudo-joint constitutes a versatile connector between successive active
joints [2], as it is shown in Figure 1b. Pseudo-joints are specially designed to receive discrete values
in [−90◦, 90◦] with a step of 15◦. Moreover, mechanical interface connectors are developed to align
the passive with the active module and couple them together with sufficient strength to transmit the
internal forces generated by the load and movement of the arm. The pseudo-joints remain locked
in a preselected angular position as the manipulator system is on-line. The angular position of the
passive joint is changing offline manually. The transition from an initial robot metamorphic anatomy
to a completely different one is feasible with the variation of the pseudo-angles without reassembly
of the structure. The pseudo-joint angle alteration changes the D-H parameters of the manipulator
structure without changing its kinematic topology.
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Table 1. The DH-parameters of the metamorphic manipulator (A = (R1+α
1
+h) , B = (R2+α2+h) ,  

R1 = R2 = 0.045 m α1 = α2 = 0.04225 m d = 0.2735 m and h = 0.08725 m). 

i 𝐝𝐢 𝐚𝐢 𝐫𝐢 𝛉𝐢 

1 0 0° 0 θ1 
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Figure 1. (a) Active rotational module. (b)Versatile passive joint (pseudo-joint) connector constructed
with aluminium and 13 discrete angular positions.
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In this work, three active modules and two pseudo-joints are used to assemble the metamorphic
structure and investigate the cuspidality of the derived anatomies, as it is shown in Figure 2a. In Figure 2,
Ri is the radius of pseudo-joint, h is the added length of the rotating part of the upper part of the
pseudo-joint. The half-width of second and third servo-electric module are αi and the length of the
second actuator is indicated with d. All lengths are measured in meters.

Robotics 2020, 9, x FOR PEER REVIEW 4 of 23 

Robotics 2020, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/robotics 

 

(a) 

 

(b) 

Figure 1. (a) Active rotational module. (b)Versatile passive joint (pseudo-joint) connector constructed 

with aluminium and 13 discrete angular positions. 

 

(a) 

 

(b) 

Figure 2. (a) Orthogonal metamorphic mechanism with local coordinates systems, (b) Side view of 

passive joint with 13 possible discrete angular positions in [–90°,90°]. 

Table 1. The DH-parameters of the metamorphic manipulator (A = (R1+α
1
+h) , B = (R2+α2+h) ,  

R1 = R2 = 0.045 m α1 = α2 = 0.04225 m d = 0.2735 m and h = 0.08725 m). 

i 𝐝𝐢 𝐚𝐢 𝐫𝐢 𝛉𝐢 

1 0 0° 0 θ1 

2 A ∗ sin θπ1 −90° d + B ∗ cos θπ2  θ2 

3 B ∗ sin θπ2 90° r3 θ3 

2.2. The Proposed Method 

𝛉𝛑𝐢 

h 

Figure 2. (a) Orthogonal metamorphic mechanism with local coordinates systems, (b) Side view of
passive joint with 13 possible discrete angular positions in [−90◦, 90◦].

A specific family of 3R orthogonal metamorphic manipulators with five kinematic parameters
{d2, d3, d4, r2, r3} and mutually orthogonal active joint axes i.e., a2, a3= ±90◦ is studied. The first
passive joint axis is placed perpendicular to the first active joint axis and parallel to the second active
module joint axis. In the same way, the second passive joint axis is placed perpendicular to the second
actuator axis and parallel with respect to the third active joint axis. Moreover, the actuator limits are
ignored, therefore it is considered that (θ1, θ2, θ3) ∈ [−π,π]. The D-H parameters of the metamorphic
manipulator shown in Figure 2 are presented in Table 1 as functions of the metamorphic parameters
θπ1 , θπ2 .

Table 1. The DH-parameters of the metamorphic manipulator (A = (R1+α1+h), B = (R2+α2+h),
R1= R2= 0.045 m α1 = α2= 0.04225 m d = 0.2735 m and h = 0.08725 m).

i di ai ri θi

1 0 0◦ 0 θ1
2 A∗ sin θπ1 −90◦ d + B∗ cos θπ2 θ2
3 B∗ sin θπ2 90◦ r3 θ3

The kinematic operator F projects the joint space to operation space:

x = F(θ), (1)

where x = (x, y, z) is the cartesian coordinates of the TCP with respect to the global reference frame
coinciding with the local coordinate system of the first active joint. Finally, the pseudo-joint angles
take 13 discrete values

[
θπ1 , θπ2

]
=

{
−

π
2 ,−π

2 + κ π
12 , . . . , π2

}
, where κ = 1, . . . , 12.
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2.2. The Proposed Method

The metamorphic structure presented in the previous section is used for the introduction of the
proposed method. The general, necessary and sufficient conditions for cuspidal 3R serial manipulators
are considered to investigate cuspidal anatomies derived from this metamorphic structure. The study
focuses on a special family of orthogonal modular manipulators with four distinct kinematic parameters
{d2, d3, d4, r2} depended on two metamorphic variables

{
θπ1 , θπ2

}
while the last joint offset equals to

zero (r3 = 0). The algebraic parametric polynomial P of fourth-degree in t = tan θ3
2 that it solves the

inverse kinematics of the depicted mechanism in Figure 2 must have one or more multiple real triple
roots [22] or it is equivalent to show that the parametric polynomial system P, dP

dt , d2P
dt2 has real roots.

The above parametric algebraic polynomial system is considered a zero-dimensional system with

three equations on three variables {ρ, z, t} where ρ =
√

x2+y2. Thanks to the parametric solution of the
polynomial system are obtained the real suitable boundary algebraic polynomials that depend only on
D-H parameters shown in Table 1 after removing the imaginary polynomials from the discriminant
variety of polynomial system. Thanks to the parametric solution of the polynomial system, the real
suitable boundary algebraic polynomials are obtained that depend only on D-H parameters shown in
Table 1 after removing the imaginary polynomials from the discriminant variety of the polynomial
system. The derived bifurcation equations divide the metamorphic space into subspaces with a constant
number of cusp points (0, 2, 4) in workspace.

By the annulment of the determinant of the Jacobian matrix, the singular values could be
determined. The investigation of det(J) = 0 produces new separating equations [23] that effectively
verify the bifurcation equations, which are derived from the solution of the parametric polynomial
system. The new separating equations represent intersecting points between singular curves and
straight lines in the joint space plane (θ2, θ3). Moreover, the topological feature of node is taken
into account in this investigation. Node is a point in the workspace where the inverse kinematics
admits two double solutions [21]. So, the node-based classification is done with pure geometric
reasoning by looking at the continuous deformation of workspace [23]. Extra separating equations
are produced, which allow us to enumerate both cusp and node points for the depicted kinematic
topology in Figure 2. The results are displayed in 3D graphs with strict surfaces which depend only
on the metamorphic design parameters

{
θπ1 , θπ2 , d4

}
. Finally, illustrative metamorphic anatomy is

selected from each subspace of metamorphic design parameters 3D space and it is displayed so the
singular curves and straight lines in joint space are mapped as the external and internal boundaries of
metamorphic workspace.

A considered number of scientific works have been elaborated to plot so the internal as the
maximum reach external boundaries in a half cross-section of the total workspace [24,25]. Regional
boundaries are singular points in the workspace that the inverse kinematics solutions admit real roots
with multiplicity higher than one [26]. However, the most suitable methods investigate the discriminant
of the polynomial that provides the inverse kinematics solutions to represent the singular values in
half cross-section of the workspace [27]. Furthermore, a variety of important topological features
such as cusps, nodes, accessibility and voids are displayed in half cross-section of the metamorphic
workspace that assists the engineer to plan discrete or continuous paths in operational space avoiding
regional singularities.

Besides, sample metamorphic anatomies are displayed in the same figure in a half cross-section of
metamorphic workspace to emphasize the importance of design parameters or the combination of
them in the transformation of the workspace (cusp, node, regular, dexterity, manipulability).

Furthermore, non-singular posture changing trajectories with several numerical examples in
generic and non-generic models of the metamorphic manipulator are demonstrated. The notion of
aspects (singularity free-regions in joint space) helps us to join two inverse kinematic solutions in joint
space [28].
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3. Classification of Orthogonal Kinematic Non-Isomorphic Configurations of 3R Metamorphic
Manipulator according to the Topology of Metamorphic Workspace

Exploiting the homogeneity of mechanism R1= R2,α1= α2 or A = B the geometric analysis of
the orthogonal 3R metamorphic manipulator revealed variable DH-kinematic parameters that are
dependent on metamorphic design parameters

{
θπ1 , θπ2

}
as is shown in Table 1. Assuming continues

variation of the pseudo-joints in
[
−
π
2 , π2

]
then the link lengths and the joint offset are continuously

varied, while the twist angles remain constant and equal to 90◦.
The position of the end effector TCP of the end-effector with respect to the manipulator base is

given by: 
x = [d2 + r3s2 + (d3 + d4c3)c2]c1 − (r2 + d4s3)s1

y = [d2 + r3s2 + (d3 + d4c3)c2]s1 + (r2 + d4s3)c1

z = r3c2 − (d3 + d4c3)s2

, (2)

where, ci = cosθi, si = sinθi for i = 1, 2, 3. The metamorphic parameters θπ1 , θπ2 of the manipulator
are embodied in the system of Equation (2).

It is known that the inverse kinematics in general 3R manipulators can be solved through
a fourth-degree polynomial P in the variable of the last active joint. The Groebner Basis Elimination
is used to eliminate the first two active joint variables (θ1, θ2) [22], and to produce a solution that
stands for the orthogonal 3R metamorphic manipulator. Following the method presented in [22] the
polynomial is derived in the following form:

P(t) = at4 + bt3 + ct2 + dt + e, (3)

with t = tan θ3
2 ,α = w0 − w2, b = 2(w1 −w3), c = 2(2w4 + w0), d = 2(w1 + w3), e = w2 + w0,

w0 = (R + K)2 + 4d3
2d4

2 + 4d2
2
(
r2

2
− ρ2

)
, w1 = 4d4r2(L−R), w2 = −4d3d4(K + R), w3 = 8d3d4

2r2,

w4 = 4d4
2
(
d2

2
− d3

2 + r2
2
)
, ρ2 = x2 + y2, and R = ρ2 + z2, S = d3

2 + d4
2 + r2

2 + r3
2, K = d2

2
− S,

L = d2
2 + S. The coefficients of the polynomial P depend on the DH-parameters, including the

pseudo-joint variables, and the TCP coordinates (x, y, z).

3.1. Necessary and Sufficient Conditions to Investigate Cuspidality

The necessary and sufficient conditions to recognize a cuspidal 3R manipulator has been introduced
in [28]. If and only if there is at least one singular point in its workspace such that the inverse kinematics
admits a real triple root, then the manipulator is considered as cuspidal. Therefore, it is equivalent to
prove that t in Equation (3) admits at least one triple root. Based on the method introduced in [22],
a fourth-degree polynomial P has at least one or more triple roots if and only if the polynomial system
P, dP

dt , d2P
dt2 admits real radicals. In this way, an algebraic parametric polynomial system S derived to

identify and investigate the cuspidal anatomies in orthogonal 3R metamorphic manipulators:

S(t, a, b, c, d, e) =


P(t, Z, ρ, d2(θπ1), d3(θπ2), d4, r2(θπ2), r3) = 0

∂P(t,Z,ρ,d2(θπ1),d3(θπ2),d4,r2,(θπ2),r3)
∂t = 0

∂2P(t,Z,ρ,d2(θπ1),d3(θπ2),d4,r2(θπ2),r3)
∂t2 = 0

(4)

The parametric polynomial system is considered a zero-dimensional system of three equations
with three unknowns

{
t, z,ρ

}
. Without loss of generality, it is assumed that y = 0 because a complete

rotation around the z-axis of the first active joint lets the system invariant. In addition, d2 > 0, d3 >
0, d4 > 0, r2 > 0 and r3 = 0 are the constraints for the solution of S. Since d2(θπ1) = A ∗ sin(θπ1)

is a continuous and differentiable function in
[
−
π
2 , π2

]
, then, d2(θπ1) and d3(θπ2) are monotonically

increasing function in
[
−
π
2 , π2

] (
alwaysd2 > 0

)
. The same stands for d3(θπ2) since A and B are positive

quantities. r2(θπ2) > 0 is always positive i.e., d > B ∗ cosθπ2 in
[
−
π
2 , π2

]
.
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The design parameter space {d2, d3, d4, r2} ∈ R4 must be divided in subspaces such that the sign
of the polynomials in Equation (4) is constant. The set of variables

{
t, z,ρ

}
should be eliminated to

derive polynomials that depend only on DH-parameters.
For this reason, it has been developed general and efficient algorithms to solve parametric algebraic

polynomial systems [29,30]. In this way, the parametric polynomial system shown in Equation (4) is
solved and the discriminant variety is obtained. After removing the imaginary polynomials, the desired
algebraic polynomials are derived that depend only on the following four DH-kinematic parameters
{d2, d3, d4, r2}. The following system of polynomials indicates the bifurcating equations:

h1 : r2
2d4 − d2

2d3 + d2
2d4 = 0

h2 : (d3 − d2)
2
(
d3

2
− d4

2
)
+ r2

2d3
2 = 0

h3 : (d3 + d2)
2
(
d3

2
− d4

2
)
+ r2

2d3
2 = 0

h4 : r2
2 + d3

2
− d4

2 = 0

h5 : d4
2
[(

d2
2 + r2

2 + d3
2
)2
− 4d2

2d3
2
](

r2
2 + d3

2
− d4

2
)
− r2

2d2
4d3

2 = 0

(5)

However, only three real polynomials out of five {h2, h3, h5} in Equation (5) can be used to the
classification according to the number of real roots of Equation (4) i.e., cusp points [31].

Last but not least, it is worth mentioning that Equation (5) has the most general form, as well as
the separating equations, are valid for any 3R orthogonal metamorphic manipulator with the selected
four kinematic parameters {d2, d3, d4, r2}.

In the following sections the investigation of the set of the Equation (5) to classify the metamorphic
manipulator according to the number of cusps and the number of nodes.

3.2. Separating Algebraic Equations through Investigation of det(J) = 0

The algebraic set of Equation (5) is used to the classification of open chain 3R orthogonal
metamorphic manipulators according to the number of cusp points. The analysis presented in this
section is based on the method introduced in [31] without taking into account the assumption that
d2 = 1, since in the considered metamorphic structure this parameter depends on the first pseudo-joint
angle θπ2 . The bifurcating surfaces separate the metamorphic design parameters space is subspaces
according to the number of cusps as it is shown in Figure 3. The discrete transition of the metamorphic
parameters is shown only for the positive angles of the two pseudo-joints

(
θπ1 , θπ2

)
. The classification

is the same for all possible combinations of pseudo-joints exploiting the symmetry for all the distinct
kinematic configurations of the mechanism i.e., (169 kinematic postures). Using Figure 3 the anatomy
is derived by selecting the metamorphic parameters based on the number of cusp points.

The bifurcating equation h5 in Equation (5) is a biquadratic polynomial in d4 providing the
following two roots:

C0α : d4 =

√√√√√√√√1
2

d32 + r22 −
(d32 + r22)2

− d32 + r22√
(d3 + d2)

2 + r22
√
(d3 − d2)

2 + r22

 (6)

C0b : d4 =

√√√√√√√√1
2

d32 + r22 +
(d32 + r22)2

− d32 + r22√
(d3 + d2)

2 + r22
√
(d3 − d2)

2 + r22

 (7)

Equations (6) and (7) apply to manipulators with a singular point in the workspace where two
cusp points coincide with a node such that Equation (4) has a quadruple root [32]. Equation (6) defines
the transition between binary and quaternary manipulators. The surfaces C0α and C0b does not appear
in Figure 3 since they are valid for negative values of the metamorphic parameters

(
θπ1 , θπ2

)
.
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The rest bifurcating equations are derived from the investigation of the determinant of Jacobian
det(J) = 0:

det(J) = (d3 + d4c3)[d2s3 + (d3s3 − r2c3)c2)] + (d3s3 − r2c3)r3s2. (8)

Since for the last joint offset, it is assumed that r3 = 0, Equation (8) could be written as two product
factors providing the following equations:

d2s3 + (d3s3 − r2c3)c2 = 0 (9)

d3 + d4c3 = 0⇒ θ3 = ± cos−1
(
−

d3

d4

)
. (10)

Taking into account that s3 = ε

√
1−

(d3
d4

)2
, where ε = ±1 for d3 ≤ d4 and substituting in Equation

(9) the following equation is obtained:

c2 = −

d2

ε
√

1−
(d3

d4

)2


d3

ε
√

1−
(d3

d4

)2
+ d3

d4
r2

. (11)

Assuming that 0 ≤ c2 ≤ 1 with ε = −1 then, d4 ≤
( d3

1+d3

)√
r22 + (d2 + d3)

2.
As it shown in Figure 4a the transition from subspace 1 to subspace 2 is characterized by

a manipulator for which the singular branch (line) E1 defined by θ3 = − cos−1
(
−

d3
d4

)
in the joint space

is tangent to the singular curve S1. So, the bifurcating surface C1 separates the metamorphic anatomies
with four and two cusps such that,

C1: d4 =

∣∣∣∣∣ d3

d2+d3

√
r22 + (d2+d3)

2
∣∣∣∣∣. (12)
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Since d2 and d3 depend on θπ1 and θπ2 respectively then the bifurcating surface C1, separates the
subspace 1 from subspace 2 with four and two cups respectively, as it is shown in Figure 3. Assuming

that 0 ≥ c2 ≥ −1 with ε = − 1, then d4 ≥
d3

|d2−d3 |

√
r22 + (d3 − d2)

2, d3 > d2 or
∣∣∣θπ2

∣∣∣ > ∣∣∣θπ1

∣∣∣.
As it shown in Figure 4b the transition from subspace 2 with two cusps to subspace 3 with four

cusps is characterized by a metamorphic anatomy for which the singular branch (line) E1 defined by
θ3 = − cos−1

(
−

d3
d4

)
in joint space is tangent to the singular curve S2. So, the bifurcating surface C2

separates the manipulators with two and four cusps such that,

C2: d4 =

∣∣∣∣∣ d3

d3−d2

√
r22 + (d3 − d2)

2
∣∣∣∣∣. (13)
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The final bifurcating surface is d4 = d3
|d2−d3 |

√
r22 + (d3 − d2)

2 with d2 > d3 or
∣∣∣θπ1

∣∣∣ > ∣∣∣θπ2

∣∣∣.
As it shown in Figure 4c the transition from subspace 2 to subspace 4 is characterized by

a manipulator for which the singular branch (line) E2 defined by θ3= + cos−1
(
−

d3
d4

)
in joint space is

tangent to the singular curve S1. So, the bifurcating surface C3 separates the manipulators with two
and no cusp points (regular workspace topology) given by,

C3: d4 =

∣∣∣∣∣ d3

d2 − d3

√
r22 + (d3 − d2)

2
∣∣∣∣∣. (14)

The above surfaces Ci, i = 0, 1, 2, 3 can be verified through Equation (5). The separating equation
h2 in Equation (5) is a second-degree polynomial in d4 such that:

h21 : d4 =
d3

d3 − d2

√
r22 + (d3 − d2)

2, ifd3 > d2or
∣∣∣θπ2

∣∣∣ > ∣∣∣θπ1

∣∣∣
h22 : d4 =

d3

d2 − d3

√
r22 + (d3 − d2)

2, ifd2 > d3or
∣∣∣θπ1

∣∣∣ > ∣∣∣θπ2

∣∣∣
Similarly, the bifurcating algebraic equation h3 can be simplified as:

h31 : d4 =

∣∣∣∣∣ d3

d3+d2

√
r22 + (d3+d2)

2
∣∣∣∣∣.

3.3. Classification According to the Number of Nodes

Another important topological feature is the node which is a singular point in the workspace
where two singular curves (internal or external) intersect and the polynomial P admits two double
roots. In the present section, the distinct kinematic anatomies are classified according to the number
of nodes in order to show the deformation of the workspace and hence the non-isomorphism of the
kinematic topology.

The method to classify 3R orthogonal fixed manipulators according to the number of nodes
is introduced in [23], where analytical algebraic expressions of the surfaces in the parameter space
were derived. Analytical algebraic expressions of the surfaces of the parameter space were produced
in [23] and are used in this paper to classify the anatomies derived from the considered orthogonal
metamorphic structure. The bifurcating surfaces subdivide the metamorphic design space

{
θπ1 , θπ2 , d4

}
into eight distinct non-isomorphic subspaces with a constant number of cusps and nodes shown in
Figure 5. The number of cusp and node points are indicated in parentheses of separating subspaces,
respectively. The production of these subspaces is based on the following analysis.

Subspace 1 in Figure 3 represents metamorphic anatomies with four cusp points and is divided
into three distinct subspaces with different numbers of nodes. The transition between subspace 1.1(4, 2)
to subspace 1.2 (4, 0) is given by the following boundary surface:

C4 : d4 =

∣∣∣∣∣∣∣∣∣
√
(d3 + d2)

2 + r22 −

√
(d3 − d2)

2 + r22

2

∣∣∣∣∣∣∣∣∣. (15)

Figure 6a shows the singularity curves of a representative metamorphic anatomy from subspace
1.1 (4, 2) that includes generic anatomies with four cusps, two nodes, a void, two subregions with four
and one with two inverse kinematic solutions (IKS), respectively shown in Figure 5. Subspace 1.2 (4, 0)
in Figure 6b includes metamorphic anatomies with 4 cusps, no nodes, one subregion with four IKS and
another one with two IKS, respectively shown in Figure 5. The surface that divides the subspace 1.2
(4, 0) and subspace 1.3 (4, 2) is the following:

C5: d4 = |d3|. (16)
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Figure 6. Selective arm anatomies of the metamorphic structure and singularities are displayed in
joint space and half cross-section of workspace with the metamorphic parameters: (a) θπ1= ±75◦,
θπ2= ±90◦, d4= 0.07 m (b) θπ1= ±45◦, θπ2= ±60◦, d4= 0.1 m (c) θπ1= ±15◦, θπ2= ±30◦, d4= 0.11 m.

Subspace 1.3 (4, 2) in Figure 6c contains metamorphic anatomies with four cusps, two nodes, one
region with two and three regions with four IKS respectively and five c-sheets shown in Figure 5.
Moreover, subspace 2 in Figure 3 includes metamorphic anatomies with two cusps and it can be
subdivided into two neighboring subspaces. The bifurcating surface is formulated as follows,

C6: d4 =

∣∣∣∣∣∣∣∣∣
√
(d3 + d2)

2 + r22 +

√
(d3 − d2)

2 + r22

2

∣∣∣∣∣∣∣∣∣. (17)

The transition between subspace 1.3 (4, 2) to subspace 2.1 (2, 1) is expressed by Equation (12) in
Figure 4a subspace 2.1 (2, 1) exhibits non-generic metamorphic anatomies with two cusps, one node,
two subregions with four and one subregion with 2 IKS respectively and 5 aspects. On the other hand,
the transition from subspace 2.1 (2, 1) to subspace 2.2 (2, 3) is defined through the boundary strict
surface in Equation (17). In Figure 7a subspace 2.2 (2, 3) includes metamorphic anatomies with two
cusps, three nodes, five c-sheets, two subregions with four and two IKS, too as well as the internal
intersect with the external boundaries.

Furthermore, subspace 3 (4, 4) in Figure 4b is a region with four cusps, four nodes, six c-sheets,
three subregions with four and two subregions with two IKS, respectively shown in Figure 5.
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Figure 7. Selective arm anatomies of the metamorphic structure and singularities are displayed in 
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θπ1
 = ± 30°, θπ2

 = ± 90°, d4 = 0.4 m  (b) θπ1
 = ± 75°, θπ2

 = ± 15°, d4 =  0.4 m  (c) θπ1
 = 0°, θπ2

 = 0°, 

d4 = 0.2 m (d) θπ1
 = ± 90°, θπ2

 = 0°, d4 = 0.2 m (e) θπ1
 = 0°, θπ2

 = ± 30°, d4 = 0.2 m. 

Figure 8a illustrates the transformation of metamorphic workspace with a variation of θπ1
 and 

θπ2
 =  ±

π

2
,d4 = 0.13 m and the corresponding topologies are discerned with different colors. However, 

the number of cusp points remains constant and equal to four. Moreover, the internal singular segments 

tend to deform in both axes (ρ,z) as well as the location of cusp points is changed too. Moreover, the 

ratios between the internal subregion i.e., 4 IKS and external one i.e., 2 IKS is changed too. 

 

(a) 

 

(b) 

Figure 8. Continuous direct and inverse projections-mappings of internal and external singularities 

in a section of metamorphic workspace with the variation only of θπ1
 on left (a) and of θπ2

 on  

(b) right. 

The two DH-parameters d3, r2 depend on the variation of the second passive joint angle θπ2
 as 

it is shown in Table 1. The variation of θπ2
 in [–

π

2
,

π

2
] causes increasing variation for d3, decreasing 

and increasing for r2  in [0,
π

2
], [–

π

2
,0] respectively. Consequently, the continuous change of the 

second pseudo-joint with θπ1
 =  ± 

π

2
,d4 = 0.13 m changes in a continuous manner the topology of the 

workspace as it is plotted in Figure 8b. The ratios of internal and external regions are varied, the 

2 IKS 

0 IKS 

0 IKS 
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joint space and half cross-section of workspace with design parameters: (a) θπ1= ±30◦, θπ2= ±90◦,
d4= 0.4 m (b) θπ1= ±75◦, θπ2= ±15◦, d4= 0.4 m (c) θπ1= 0◦, θπ2= 0◦, d4= 0.2 m (d) θπ1= ±90◦,
θπ2= 0◦, d4= 0.2 m (e) θπ1= 0◦, θπ2= ±30◦, d4= 0.2 m.

Finally, the regular subspace 4 in Figure 3 is classified into two spaces through the surface in
Equation (17). Subspace 4.1 (0, 0) in Figure 7b includes regular metamorphic anatomies with no nodes,
4 c-sheets, one region with four and two IKS, respectively. Finally, the subspace 4.2 (0, 2) in Figure 4c
includes regular non-generic metamorphic anatomies with two nodes, two subregions with 2 and one
subregion with four IKS, respectively and four aspects shown in Figure 5.

Moreover, three more arm anatomies are exhibited with at least one zero DH-parameter in
Figure 7c,d from subspaces 1.3, 4.1 and 1.3, respectively. The anatomy appeared in Figure 7c is regular
with one region of 4 IKS and 2 aspects. Similarly, the manipulator anatomy in Figure 7d has one region
of 4 IKS but 4 aspects.

Figure 8a illustrates the transformation of metamorphic workspace with a variation of θπ1 and
θπ2= ±

π
2 , d4= 0.13 m and the corresponding topologies are discerned with different colors. However,

the number of cusp points remains constant and equal to four. Moreover, the internal singular segments
tend to deform in both axes (ρ, z) as well as the location of cusp points is changed too. Moreover,
the ratios between the internal subregion i.e., 4 IKS and external one i.e., 2 IKS is changed too.

The two DH-parameters d3, r2 depend on the variation of the second passive joint angle θπ2 as it
is shown in Table 1. The variation of θπ2 in

[
−

π
2 , π2

]
. causes increasing variation for d3, decreasing

and increasing for r2 in
[
0,π2

]
,
[
−

π
2 , 0

]
respectively. Consequently, the continuous change of the second

pseudo-joint with θπ1= ±
π
2 , d4= 0.13 m changes in a continuous manner the topology of the workspace

as it is plotted in Figure 8b. The ratios of internal and external regions are varied, the number of cusp
and node points is changing as well as the maximum reach of the end-effector of the mechanism is
increasing. Moreover, it is also feasible to switch from generic to non-generic manipulators. Finally,
the perpendicular distance from the first joint axes is decreased and as a result, the total workspace is
placed closer to the local coordinate system of the base (see Figure 8b in horizontal axis ρ). Besides,
the topological transition from cuspidal to regular anatomy is feasible only with the activation of
angular rotation steps of θπ2 .

In conclusion, it is worth mentioning that the metamorphosis provides various anatomies from
a single structure. Kinematic singularities in the workspace of cuspidal manipulators especially the
internal boundaries cause serious drawbacks in planning smooth and continuous trajectories and
control. However, metamorphic manipulators overcome this fact since it provides a wide spectrum of
arm anatomies and hence a variety of regular or cuspidal topological workspaces with varied shape
or volume are created. Therefore, engineers can easily select the anatomy required by the given task,
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based on the classification and analysis introduced in this work. Then, the position of the trajectory or
the points for moving objects based on [14,16] can be optimized. In the next section examples of these
trajectories are presented.
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4. Planning Non-Singular Posture Changing Trajectories

In this section, three distinct metamorphic anatomies that perform non-singular, continuous and
smooth trajectories are presented. The active joint angles are illustrated as a function of the distinct
steps and the determinant of Jacobian matrix is also plotted to verify the continuity and smoothness of
the executed trajectories. In manufacturing and particularly in precision engineering it is important to
achieve smooth and very precise trajectories so the manufacturing engineer could select the proper
metamorphic anatomy to design the location of such a task avoiding the activation of manipulator
breaks close to singularity points. On the other hand, for a different task like point to point motion,
the engineer could select a proper metamorphic anatomy using the analysis and the results presented
in the previous section.

4.1. Generic Mechanism

The design of a representative anatomy with four cusps and no nodes is based on Figures 3 and 5.
So, a metamorphic anatomy is chosen from subspace 2 (4, 0) to perform non-singular mode changing
trajectory. The selected anatomy has the metamorphic parameters

[
θπ1= ±45◦, θπ2= ±60◦, d4= 0.1

]
m.

The desired geometric motion is a circle with its center and radius, respectively K (x, y, z) = (0.45, 0, 0.1)
and R = 0.045 m respectively. The circular path belongs in the vertical plane passing through the
Z-axis of the first joint in order to show the singularity free motion. The following function is used to
define the path and the trajectory is divided into 100 distinct steps:

ρ = R cos
(
λθ−

π

2

)
+ K(1, 1) (18)

Z = R sin
(
λθ−

π

2

)
+ K(1, 3), (19)

where λ = ±1 for left-hand or right-hand direction and ρ =
√

x2+y2.
An inner point in 4 IKS region is considered as the starting point of the circle such that A(x, y, z) =

(0.45, 0, 0.055) and the IKP is solved. Then the respective set of the inverse kinematic solutions are
shown in Table 2.
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Table 2. Four inverse kinematic solutions on the starting-ending point of trajectory.

# θ1 θ2 θ3

1 −1.7417 −2.8731 0.9736
2 −1.4908 −2.5800 2.0697
3 −1.1937 −0.9150 2.5274
4 −0.7096 −0.2471 −0.7420

Left-hand rotation is selected i.e., λ = 1 and the TCP of the manipulator performs the circular
motion in the half-cross section of the metamorphic workspace (see Figure 9b), as well as the path free
of singularity, is traced in the joint space (θ2, θ3) joining the third inverse kinematic solution to the first
one in a continuous manner. Besides, the allocation of inverse geometric solutions sets in couples for
each aspect is shown in Figure 9a. The joint path is smooth and does not cross any singular curve S1,2

in aspect A1.

Robotics 2020, 9, x FOR PEER REVIEW 17 of 23 

Robotics 2020, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/robotics 

4 −0.7096 −0.2471 −0.7420 

Left-hand rotation is selected i.e., λ = 1 and the TCP of the manipulator performs the circular 

motion in the half-cross section of the metamorphic workspace (see Figure 9b), as well as the path 

free of singularity, is traced in the joint space (θ2,θ3) joining the third inverse kinematic solution to 

the first one in a continuous manner. Besides, the allocation of inverse geometric solutions sets in 

couples for each aspect is shown in Figure 9a. The joint path is smooth and does not cross any singular 

curve S1,2 in aspect A1. 

 

(a) 

 

(b) 

Figure 9. (a) A free of kinematic singularity path joins two inverse kinematic solutions in aspect A1, 

(b) perfect cyclic motion of the TCP encircling a cusp point in the workspace of the selected 

metamorphic anatomy. 

Furthermore, the joints angles are plotted in Figure 10 as a function of discrete steps for the 

circular path generation. The non-singular posture changing trajectory is feasible without 

encountering a singularity (outstretched or folded arm) and that can be useful for tasks where 

collision avoidance is needed. 

 

Figure 10. Joints behavior performing non-singular posture changing trajectory. 

Finally, the determinant of the Jacobian matrix is plotted in Figure 11 as a function of the 

executed steps for a complete circle. The function of determinant is smooth and does not change sign 

or becomes zero. Moreover, the determinant’s morphology at the beginning of the path is different 

from the end of the closed path showing the change of posture. Consequently, determinant’s behavior 

𝐴1 

𝐴2 𝑆1 

𝑆2 

Figure 9. (a) A free of kinematic singularity path joins two inverse kinematic solutions in aspect
A1, (b) perfect cyclic motion of the TCP encircling a cusp point in the workspace of the selected
metamorphic anatomy.

Furthermore, the joints angles are plotted in Figure 10 as a function of discrete steps for the
circular path generation. The non-singular posture changing trajectory is feasible without encountering
a singularity (outstretched or folded arm) and that can be useful for tasks where collision avoidance
is needed.
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Finally, the determinant of the Jacobian matrix is plotted in Figure 11 as a function of the executed
steps for a complete circle. The function of determinant is smooth and does not change sign or becomes
zero. Moreover, the determinant’s morphology at the beginning of the path is different from the end
of the closed path showing the change of posture. Consequently, determinant’s behavior verifies the
singularity avoidance during the transition from an inverse kinematic solution to another one.
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4.2. Non-Generic Anatomy

Non-Generic 3R arm anatomies are considered the open-chain manipulator mechanisms that show
two extra critical branches (straight lines) in configuration space (θ2, θ3). In this section, two different
trajectories are planned in two separate non-generic metamorphic anatomies.

4.2.1. Planning Closed Smooth and Continuous Path

A non-generic anatomy is chosen from 3D graphs subspace 2.1 (2, 1) in Figure 5 with two cusps
and one node and its singularities are shown in Figure 1. subsequently, the locations of cusp and node
points are taken into account to plan a closed path free of singularities. Besides, the appearance of cusp
points in half cross-section of the metamorphic anatomy workspace helps the engineer to locate the
task to be performed with non-singular posture changing.

The parameters used are:
[
θπ1= ±90◦, θπ2= ±90◦, d4= 0.23 m

]
. A circular path is chosen to be

performed in metamorphic half cross-section of the workspace (ρ, Z). According to the location of
cusp and node point in the workspace topology, the center and the radius of the circle are defined to
be as follows K(x, y, z) = (0.48, 0, 0.063 ) and R = 0.05 m. Then, an inner point in the region with the
maximum accessibility is selected as the initial point of the path such that A(x, y, z) = (0.48, 0, 0.013)
and the inverse kinematics is solved for this point.

The inverse kinematic solutions of Table 3 are distributed in various aspects in configuration
space. Only one couple of solutions seems to exist in a single aspect, namely in aspect A1, while the
rest of the IK solutions are placed in different c-sheets and hence a joint path could be executed joining
two inverse geometric radical generators.

Table 3. Four inverse kinematic solutions on the starting-ending point of trajectory.

# θ1 θ2 θ3

1 −1.8502 −3.0993 0.9560
2 −1.2824 −2.8118 2.1946
3 −1.1706 −0.8051 2.3190
4 −0.1677 −0.0435 −0.9986

The motion of the mechanism’s end-effector is described by the desired geometry such that: ρ =
R cos

(
λθ− 3π

2

)
+ K(1, 1) and Z = R sin

(
λθ− 3π

2

)
+ K(1, 3), where λ = ±1 for left-hand or right-hand

direction, ρ =
√

x2+y2.
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Right-hand rotation is selected (λ = −1) to perform the trajectory in the chosen aspect A1. So,
taking advantage of the notion of aspects, circles are performed in the characteristic topology of
metamorphic anatomy workspace as well as the corresponding joint path is illustrated in the joint
space as it is shown in Figure 12. Moreover, it is possible to perform non-singular trajectories even if
the end-effector cross internal boundaries in a radial section of the metamorphic anatomy workspace.
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ends the path with a different posture. This is very important for high precision tasks such as arc 
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Figure 12. (a) A continuous and smooth path for two inverse kinematic solutions without change of
posture, (b) Circle is performed in half cross-section of metamorphic workspace encircling a cusp point.

The corresponding variation of active joints is plotted as a function of the discrete steps for
a complete circular motion. The variation is smooth and the manipulator begins with one posture and
ends in a different one, as it is shown in Figure 13.
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Figure 13. Change of angular position when the metamorphic anatomy performs a non-singular
posture changing trajectory.

It is worth also mentioning that this allocation of solutions in joint space seems not to be actually
shown in generic manipulators as we see in Section 4.2.

Finally, the determinant of the geometric Jacobian matrix is displayed in Figure 14. The determinant’s
behavior is continuous and smooth. It presents a global minimum in 59th step of trajectory, where the
metamorphic anatomy switch inverse kinematic solution in this transition point. The metamorphic
manipulator changes inverse solution during the pre-programming trajectory and ends the path with
a different posture. This is very important for high precision tasks such as arc welding, cutting or painting
in complicated products.
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4.2.2. Rectilinear Trajectory

The 3R orthogonal arm can perform any arbitrary path in a radial section of a metamorphic
anatomy workspace. So, a rectilinear trajectory is performed which is important for a wide range of
industrial applications such as assembling, grinding, welding, object placement.

Anatomy is selected using the 3D graphs in Figure 15 and the kinematic singularities are displayed
in joint space and workspace (see Figure 15), respectively. The anatomy belongs to subspace 3 (4, 4) with
the respective design parameters

[
θπ1= ±15◦, θπ2= ±90◦, d4= 0.6 m

]
. The topological knowledge of

workspace helps the engineer to plan a linear, continuous and smooth path in metamorphic workspace.
For this reason, the region with 2 IKS is selected to perform straight lines (two IKS).

Robotics 2020, 9, x FOR PEER REVIEW 20 of 23 

Robotics 2020, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/robotics 

 

Figure 14. The behavior of determinant of Jacobian for non-generic metamorphic anatomy. 

4.2.2. Rectilinear Trajectory 

The 3R orthogonal arm can perform any arbitrary path in a radial section of a metamorphic 

anatomy workspace. So, a rectilinear trajectory is performed which is important for a wide range of 

industrial applications such as assembling, grinding, welding, object placement. 

Anatomy is selected using the 3D graphs in Figure 15 and the kinematic singularities are 

displayed in joint space and workspace (see Figure 15), respectively. The anatomy belongs to 

subspace 3 (4,4)  with the respective design parameters [θπ1
= ±15°, θπ2

= ±90°, d4 = 0.6 m] . The 

topological knowledge of workspace helps the engineer to plan a linear, continuous and smooth path 

in metamorphic workspace. For this reason, the region with 2 IKS is selected to perform straight  

lines (two IKS).  

The geometry of the path is defined using linear interpolation and the end-effector is driven with 

the following geometric motion such that z = -0.6ρ + 0.88. 

 

(a) 

 

(b) 

Figure 15. (a) Smooth curved joint path in aspect A1 and the respective kinematic singularities (b) 

Rectilinear motion of metamorphic mechanism in half cross-section of the workspace (ρ,Ζ) in the 

region with 2 IKS. 

The trajectory is divided into 100 steps and ρ takes values in [0.3,0.8]. Continuing the study of 

rectilinear motion, the joint variation is plotted in Figure 16. The active joints have almost linear 

behavior during the task execution.  

𝐴1 

Figure 15. (a) Smooth curved joint path in aspect A1 and the respective kinematic singularities
(b) Rectilinear motion of metamorphic mechanism in half cross-section of the workspace (ρ, Z) in the
region with 2 IKS.

The geometry of the path is defined using linear interpolation and the end-effector is driven with
the following geometric motion such that z = −0.6ρ+ 0.88.

The trajectory is divided into 100 steps and ρ takes values in [0.3, 0.8]. Continuing the study
of rectilinear motion, the joint variation is plotted in Figure 16. The active joints have almost linear
behavior during the task execution.
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Figure 16. Active Joints behavior during the rectilinear motion of end-effector.

Finally, the determinant of the geometric Jacobian is plotted in Figure 17 to show the continuous
non-singular configuration alteration of the selected anatomy as the end-effector performs the selected
rectilinear path in the operational space. In the first 60 steps, the determinant behaves as an increasing
function and then decreases until the end of the task.
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5. Conclusions

In this paper, the cuspidality investigation of a metamorphic manipulator is introduced.
It embodies the fundamental principles of metamorphosis and the corresponding method allows the
engineers to select anatomies from a predefined structure according to topological features such as
cusps and nodes.

However, the classification of all non-isomorphic regular or cuspidal metamorphic anatomies
revealed novel research results with respect to the metamorphic workspace topological features (cusp,
node, shape, volume, accessibility, kinematic dexterity, regular).

This paper revealed also interesting results with respect to kinematic positioning singularities in
3R orthogonal metamorphic manipulators that can be rapidly reconfigured to execute the desired tasks.

The current study shows that the mechanism can be rapidly reconfigured in its arm geometry in
order to perform smooth and continuous arbitrary trajectories. The engineers are able to select any
non-isomorphic arm geometry from the divided design parameter space

{
θπ1 , θπ2 , d4

}
thanks to the

closed-form solution for the determination of the bifurcating surfaces, that presented in this paper.
In this way, regular anatomies are always available for simple tasks as well as cuspidal anatomies
could be chosen especially for closed paths i.e., non-singular posture changing trajectory.

The proposed approach enhances the flexibility, extensibility, adaptability and versatility that
manufacturing demands can be easily met for a huge variety of reliable and quality products beyond the
limitations of well-known, regular fixed-anatomy robots that be able to achieve high task’s performance
only for which they were designed.
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As for future work, after the selection of the desired subspace based on the topological features,
the position of the task can be further optimized based on the methods presented in [14,16] for obstacle
avoidance as well as for increasing the kinematic dexterity of the metamorphic manipulator.
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