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Abstract: Modern mobile robots tend to be used in numerous exploration and search and
rescue applications. Essentially they are coordinated by human operators and collaborate with
inspection or rescue teams. Over the time, robots became more advanced and capable for various
autonomous collaborative scenarios. Recent advances in the field of collaborative exploration and
coverage provide different approaches to solve this objective. Thus scope of this article is to present a
novel collaborative approach for multi-agent coordination in exploration and coverage of unknown
complex indoor environments. Fundamentally, the task of collaborative exploration can be divided
into two core components. The principal one is a sensor based exploration scheme that aims to
guarantee complete area exploration and coverage. The second core component proposed is a staying
alive policy that takes under consideration the battery charge level limitation of the agents. From this
perspective the path planner assigns feasible tasks to each of the agents, including the capability
of providing reachable, collision free paths. The overall efficacy of the proposed approach was
extensively evaluated by multiple simulation results in a complex unknown environments.

Keywords: area coverage; boustrophedon motion; collaborative exploration; multi-agent;
algorithmic robotics

1. Introduction

For the last years, the number of applications where mobile robots collaborate with humans [1]
dramatically increased. Mainly, this is due to advances in batteries, powerful computation boards,
and miniaturization of sensors. Robust and sophisticated mobile robots became a vital tool in human
life, such as smart wheelchairs for disabled people [2], in autism therapy [3], and for tour-guiding [4].
Moreover, they are used in disaster search and rescue missions [5], utility inspection [6],
crop monitoring [7], etc. Depending on mission requirements, mobile robots could be equipped
with different types of sensors or actuators that depend on the mission objectives. Their assistance in
inspection, search, and rescue missions, and the exploration of unknown areas plays crucial role and
provides benefits to human operator safety, decision making, fast exploration, three-dimensional (3D)
reconstruction of the environment, and providing localization [5]. In these contexts, mobile robots could
be equipped with depth cameras or laser range finders that are used for navigation and situational
awareness [8,9].

Most of previous works study the deployment of single robot scenarios [10–12]; however, in the
majority of the real worlds size problems, such as exploration and coverage of large areas [13], there is
a need of multiple robots for guaranteeing successful mission [14]. This arises multiple challenges
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and increases the complexity of the problem such as collision free deployment of team of robots [15],
guaranteeing the full coverage of the explored area, while taking into account the physical limitation
of each robot, such as the remaining battery operating time and defining coordination between robots.
This requires theoretical, practical, and technological contributions towards the deployment of team of
robots in real-life scenarios.

Nowadays, exploration and complete coverage of unknown areas is receiving a considerable high
research attention. In the following survey articles [16,17], numerous approaches have been proposed
for solving this demanding task, while, in general, the task of exploration could be divided into online
and offline approaches. The offline algorithms typically require prior knowledge of the environment
that in many real life use-cases is not available. On the contrary, online algorithms or sensor-based
algorithms can operate without prior knowledge of the environment; however, the outcome in this
case is reaching sub-optimal solutions.

Towards the second direction, one of the most known online algorithms for achieving a complete
area coverage is based on the Boustrophedon motion [18]. For example, in [19], this algorithm
was utilized together with the dynamic programming for a single mobile root. The authors in [20]
proposed an algorithm that incrementally decomposed the unknown environment into cells and the
corresponding online path planning relied on data from a laser scanner. In [21] it was suggested
the worst case scenario model for planning coverage paths that could be applicable for GPS
enabled robots, while the work in [22] suggested using a genetic algorithm for achieving a coverage
based path planning. In [23], a path planning algorithm was proposed that was able to minimize the
number of turns or repetitions in order to increase the overall algorithmic efficiency. However, one of
the main shortcomings of these works was the fact that the physical limitations of the utilized robots,
from a power consumption point of view, have not been taken under consideration, while, at the same
time, was focusing on the single robot use-case. On the contrary, studies as those in [24–26] suggested
approaches that considered limited robot resources, but were still solving the coverage problem only
for the case of a single agent.

In the field of collaborative area coverage, significant contributions have been reported in [27–30],
where it was suggested an online coverage algorithm and a cost function was proposed based
on distance measurements; however, the reality of a limited battery operating time has not been
taken under consideration. In [31], it was proposed a cooperative mapping algorithm, based on
heterogeneous robots and the established algorithm in [18,32,33] with an explorer-coverer architecture.
As was presented, during the stage of the cooperative exploration, the agents discover the unknown
region boundaries, while the task finishes when the Reeb Graph [34] is complete. In this approach,
the coverers execute a back-and-forth motion (sweeping motion). For this scenario, an auctioning
mechanism is used for the task re-allocation. However, in both works the authors do not consider a
limited battery operating time. Moreover, the approach suggested in [35] uses multiple heterogeneous
unmanned aerial vehicles for the area partitioning, while, in this case, the proposed computational
algorithm requires future optimizations and it is an offline approach.

In this article, the multi-agent area coverage of the unknown two-dimensional (2D) environment
is studied, while taking under consideration the limited battery operating time of the agents.
The main contribution of this article stems from the deployment of multiple agents in complex indoor
environment with a sensor based approach, where the online exploration method is inspired from the
Boustrophedon motion (BM) proposed in [18,28] and expanded by considering multiple agents with a
limited battery operating time. Additionally, in order to determine backtracking points, the detection
conditions in [36] have been adapted to meet the overall mission requirements. The evaluation
of the proposed online method in computer simulation scenarios, inspired from real-world
non-convex areas with multiple branches will demonstrate its efficacy for online area coverage of the
unknown environment, while providing well-balanced work distribution between agents.

The rest of the article is structured, as follows. Initially, the notations and preliminaries are
presented in Section 2, while the proposed multi-agent based cooperative exploration and coverage
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scheme is established in Section 3. The simulation results are presented in Section 4, and finally the
article is concluded in Section 5.

2. Notation and Preliminaries

In the proposed method, each agent covers a squared area with a l ∈ R>0 length, where it
is assumed that the agent is placed in the middle of it and as the result of the exploration task a
grid map is obtained with the same resolution. Furthermore, and without a loss of generality, it is
assumed that the movement of the agent is defined with four directions, specifically North, South,
East, and West, and rotation around its geometric centre. In each step, the agents can move in a
fixed distance l and rotate by α = {±π

2 , ±π}. The pose of the agent i ∈ N can be defined by the
qi,k = [xi,k, yi,k, θi,k]

T vector, where x, y ∈ R2 are the coordinates and θ is the heading at the time instant
k ∈ N, with the corresponding kinematic equations being denoted by:

qi,k+1 =

xi,k
yi,k
θi,k

+

l sin θ

l cos θ

α

 (1)

The workspace W and its coverage model M are in R2, while the sets C within the workspace
are denoted as R2×m and C ⊂W and C f

i,k, Co
i,k, and Cglobal

k denote the free space, obstacles, and global
backtracking points sets, respectively. The transpose of a matrix A ∈ Ra×b is denoted as AT ∈ Rb×a.
The superscripts chp, BTP and min, denote a charging point (station), a backtracking point and a
minimum value correspondingly. The energy E ∈ R≥0 is denoted as a scalar value, while Ei,k is the
energy level of the agent i and, at the k time instant, Etr

i,k is the energy spent for the translation from qi,k to
qi,k+1. Furthermore, a lost agent is defined as qi,k = ∅, a blocked position as qi,k = ∞, and an unblocked
position as qi,k 6= ∞. The path from qi,k to qi,k+1 is defined as Pi,k = {pi,k|pi,k = (xi,k, yi,k) ∈ R2},
where pi,k is the position of the agent and Pi,k is set of all the agent positions. Furthermore, di,k denotes
the Euler distance between the position qi,k and qi,k+1. With n ∈ N will be denoted the number
of agents. Finally, sj, j ∈ {1, 2, ..., 8} is the sensor model and operator \ denotes set subtraction.

3. Cooperative Exploration and Coverage Scheme

In the proposed methodology, it is assumed that the environment has only one entrance, which is
considered to be the starting point. It is also assumed that the discovered branches/areas have at least
the same width as the agent’s sweep step. At the starting point, all of the agents are looking towards
the unknown area and in each iteration the agent completely covers the next cell. The overall proposed
exploration scheme contains three components: (a) an exploration method, (b) a staying alive policy,
and (c) a path planner, while these parts will be analysed in the sequel.

3.1. Exploration Method

In the proposed methodology, the unknown areas of the workspace W are incrementally
discovered through the Boustrophedon motion [28], so that the agent translates forward or backward,
exploring the surrounding space, until it reaches a blocked position and rotates to alter the direction
of the translation. During exploration, each agent at each step performs sensing of the surrounding
environment, denoted by si,k, according to the sensor model that is defined as:

sj =

{
1, i f sj ∈ C f

i,k
0, i f sj ∈ Co

i,k
(2)

where j ∈ [1, 2, . . . , 8]—corresponds to each adjacent area around the agent. After the completion of the
overall unknown area, it will be represented as a grid map (global map, coverage model) M [36] with
discovered free space C f

k and obstacles Co
k , with the overall architecture being depicted in Figure 1.
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Figure 1. General scheme of the proposed approach, where q denotes the agents and their positions,
C f

k denotes the free area, CBTP
k denotes the backtracking points, Co

k denotes the obstacles, and the
undiscovered area is presented in a white colour.

Relying on the si,k, the agents perform the BM according to the algorithm presented in Algorithm 1
and detect the corresponding backtracking points (BTPs) that generally can be any agent’s
neighbouring point that satisfies the following statement CBTP

i,k 6⊂ (C f
i,k ∪ Co

i,k), while it should be
mentioned that these points are utilized for the detection of the adjacent unknown regions if existing.

Algorithm 1 Boustrophedon motion (BM) algorithm

Require: qi,k, M
1: Outputs: M ∪ Co

i,k ∪ C f
i,k, CBTP

i,k , qi,k+1
2: Step 1. Find North, South, East or West direction from si,k = sj
3: Step 2. Motion according to (1)
4: Step 3. Update M ∪ Co

i,k ∪ C f
i,k

5: Step 4. Obtain CBTP
i,k , qi,k+1

6: Step 5. Go to Step 1.

Without a proper selection mechanism for the BTPs, the total agent’s path can have a lot of
unnecessary transitions that will increase the overall distance and exploration time. This article
proposes the novel idea in order to reduce the number of BTPs unlike, as appeared in [18,36], where a
robot detects BTPs from the accumulated knowledge (covered path) only when it reaches blocked
condition and uses all eight neighbouring cells of a tile to detect BTP. In the proposed approach,
sensor measurements are used to detect BTPs at each step, but novel detection conditions are proposed,
as depicted in Figure 2, where the black tiles denote obstacles, the red tiles correspond to BTPs, and the
grey tiles are free areas that are not considered for detection, while the green arrows indicate the agent’s
motion direction, when the BTP can be detected. The agent is placed in the middle (white tile) and
the neighbouring cells are sensor measurements, unlike the approach proposed in [18,36], where the
backtracking point is in the middle. For making the overall approach more clear, let us consider left
condition in the middle row of Figure 2, which uses three out of the eight measured points to calculate
the BTP. In this case, the green arrows indicate that the BTP can be detected, while moving to the North
or to the South. After obtaining the sensor measurements sj, it results that s7 ∈ Co

i,k and {sj \ s7} ∈ C f
i,k.

To obtain the motion direction, the s2 should be considered and, of the forward or backward direction
is not blocked, then s8 ∈ CBTP

i,k . Depending on the complexity of the unknown area, the number of
backtracking points could be proportional to the number of agent steps. Therefore, in the proposed
work, we consider that, while the agent performs BM, it discovers and covers BTPs, so the already
visited BTPs are removed from the agent’s BTP stack, and this operation can be defined as:

CBTP
i,k = CBTP

i,k \ C f
i,k (3)
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Figure 2. The conditions of backtracking point (BTP) detection.

At the same time, each agent locally operates based on his own BTP stack CBTP
i,k and it globally

uses data from the global BTP stack shared among the agents as Cglobal
k if CBTP

i,k = ∅, and it relies
on its sensor measurements si,k to provide non-overlapping coverage paths. In case there are more
agents than BTPs, a free agent is waiting for the first available BTP in the global stack. The global
map of discovered area M (coverage model) is updated in each iteration from all agents, unless the
agent makes a turn or holds its position. The full coverage of the unknown area is achieved when the
Cglobal

k = ∅ and presented as map model M.
In the proposed approach, it is considered that, while performing BM, the agents never revisit

discovered areas unless they reach a blocked position qi,k = ∞. Such an example is depicted on the
Figure 3, where the different blocked conditions are shown and there is a need for generating the path
from the actual agent’s position to the next available BTP.

Figure 3. The blocked conditions for the agent with forward motion. Green arrow depicts motion
direction, white tiles denote agent’s discovered path, grey tiles denote free space. The left image
describes the case when the agent is blocked by obstacles (black tiles), the middle image depicts the
case when the agent is blocked with obstacles on the left and the neighbouring areas are covered by
other agents. The image on the right depicts the case when all neighbouring regions were discovered
by other agents.

3.2. Staying Alive Policy

In the proposed scheme, it is considered that all of the agents are battery powered and have
limited operation time [37]. Mission planning without considering this limitation may result in the
loss of agents [38] and even result in a mission failure. Thus, in this work, the policy for staying alive
for all agents is introduced.

Agent’s transition energy is defined as Etr
i,k and it is evaluated at each BM step (iteration), as:

Etr
i,k = eidi,k, (4)

where ei corresponds to the agent’s minimum energy spent per one iteration. The energy consumption
for each agent can be defined as:

Ei,k+1 = Ei,k − Etr
i,k, (5)

where Ei,k ∈ [0, 100] corresponds to the actual battery energy level, where a full charge denotes a value
of 100% and the critical charge denotes value that is below 20%. The overall algorithm for staying
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alive policy (SAP) is shown in Algorithm 2, where the required energies Echp
i,k and EBTP

i,k are calculated
using Equation (4).

Algorithm 2 Staying alive policy algorithm

Require: di,k, qi,k, qchp
i

1: for di,k = {d
chp
i,k , dBTP

i,k } do
2: if qi,k 6= ∞ then
3: if Ei,k ≤ Echp

i,k then
4: qi,k+1 = qchp

i
5: end if
6: else
7: if Ei,k < Echp

i,k + EBTP
i,k then

8: qi,k+1 = qchp
i

9: else
10: qi,k+1 = qBTP

i,k
11: end if
12: end if
13: end for

Moreover, in case the agent requires charging qi,k+1 = qchp
i , the path planner that is presented in

the Section 3.3 will generate a collision free path to BTP or to the charging station.

3.3. Path Planner

In general, the agents perform an exploration task that is based on BM. However, when the battery
level of an agent is low, which is denoted from Ei,k < Emin

i or the agent is blocked qi,k = ∞, the agent

should navigate to the charging station qi,k+1 = qchp
i , or the closest BTP qi,k+1 = CBTP

i,k , respectively.
Thus, a Probabilistic Roadmap (PRM) planner [39] is implemented in order to generate collision free
paths Pi,k from qi,k to qi,k+1 based on the discovered map M.

The PRM is based on a non-directed graph that contains all possible trajectories that are derived
from the occupancy grid. Generally, the PRM path planner has two phases: learning and query.
During first phase it constructs a roadmap of a free space as an non directed graph, while in the second
phase the method tries to connect the qi,k and the qi,k+1 positions by a corresponding path. Figure 4
shows the generated non-direct graph by blue lines and corresponding path in the orange.

Figure 4. Example of the Probabilistic Roadmap (PRM) planner, applied on a time instant of the
explored area, where free (discovered) space is in white, undiscovered area is in grey, obstacles are in
black, and the generated path is in orange. In this Figure, the graph with all of the PRM based potential
paths is indicated by blue.

Furthermore, the path planner algorithm is presented in Algorithm 3, where “==”
denotes equality. It requires the current position of the agent qi,k, the position of charging station qchp

i ,
and the set of BTPs CBTP

i,k . Subsequently, in the case of qi,k = ∞ all paths to BTPs are calculated
(Figure 5a),while the BTP with a minimum length of the path is selected for the agent to visit.
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However, if the agent’s battery level is not sufficient, for reaching to qi,k+1 based on Algorithm 2,

the agent should navigate to the charging station (Figure 5b). In this case qi,k+1 = qchp
i , only one path

from qi,k to the charging station is obtained.

Algorithm 3 Path planner

Require: qi,k, qchp
i , CBTP

i,k
1: dmin

i,k = inf
2: if qi,k == ∞ then
3: for each CBTP

i,k do
4: (Pi,k, di,k) = PRM
5: if di,k ≤ dmin

i,k then
6: dmin

i,k = di,k
7: Pmin

i,k = Pi,k
8: Check Algorithm 2
9: end if

10: end for
11: end if
12: if qi,k+1 == qchp

i then
13: (Pi,k, di,k) = PRM
14: end if

Figure 5 depicts examples of these two cases. On the left image (corresponds to the first case)
the agent starts BM and while moving discovers free space and BTPs. Accordingly, at first it
discovers CBTP

1 , after CBTP
2 , CBTP

3 and finally CBTP
4 . After a while, the agent reaches its blocked

position qi,k = ∞, which means that this BM is finished. From this point, there are four possibilities
to continue exploration. The PRM planner will calculate paths and their distances to each BTP and
will send an agent to the nearest one to continue exploration. On the right image (corresponds to
the second case), while conducting BM agents’ charge level became low (signalized from the staying
alive policy), so the agent has to visit charging point qi,k = qchp

i . The path is generated by a PRM planner.
After recharging, PRM planner will provide the shortest path to the agent to continue exploration from
three available possibilities (CBTP

1 , CBTP
2 , and CBTP

3 ).

(a) (b)
Figure 5. Example of cases for collision free path generation by PRM planner. (a)—corresponds to
the blocked case, where the further exploration directions are shown by dashed orange arrows and
(b)—is low battery level case where the path to the charging point is indicated by dotted green arrow.
Where, BM is shown in blue colour. Green circle corresponds to the start point or qchp and brown circle
corresponds to finish of the BM, e.g., qi,k = ∞ (blocked position). Red squares correspond to detected
BTPs (CBTP

i ). The discovered area is depicted in white, unknown area is depicted in grey, and obstacles
are in black.
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Overall, the final cooperative exploration and coverage scheme is summarized in Algorithm 4
and Figure 6 represents block diagram of the suggested approach, where PP and SAP stand for path
planner and staying alive policy, respectively.

Algorithm 4 Cooperative exploration and coverage algorithm with multiple agents

Require: qi,k, qchp
i , M ,n

1: while Cglobal
k 6= ∅ do

2: Find path according to Algorithm 3
3: Estimate charge level according to Algorithm 2
4: if qi,k 6= {∅, qchp

i,k } then
5: Motion according to BM Algorithm 1
6: Update BTP stacks according to (3)
7: if qi,k ∈ C f

k then
8: if Cglobal

k = ∅ then
9: End of mission.

10: end if
11: for i ∈ n do
12: if CBTP

i,k = ∅ then
13: CBTP

i,k = Cglobal
k

14: end if
15: Find path according to Algorithm 3
16: end for
17: else if qi,k = ∞ then
18: if Cglobal

k = ∅ then
19: End of mission.
20: else if CBTP

i,k = ∅ then
21: CBTP

i,k = Cglobal
k

22: end if
23: Find path according to Algorithm 3
24: end if
25: else if qi,k == ∅ then
26: Agent is lost.
27: Launch new agent.
28: else if qi,k == qchp

i,k then
29: Find path according to Algorithm 3
30: Go to Step 4.
31: end if
32: end while

Figure 6. The entire system design for multi-agent cooperative exploration and coverage.
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4. Simulation Results

The proposed methodology is evaluated in simulation studies, where all of the algorithms have
been implemented in MATLAB R2018a, (in a single thread) on a platform with Intel Core i5-8250U
and 16 GB of RAM. Furthermore, the charging time for each agent is not considered. As will be
presented further, in all of the scenarios, the suggested cooperative exploration and coverage algorithm,
succeeded in providing a complete area coverage.

In all the simulations, we assume that all agents are modelled by a square with side l = 1 m and
have no prior knowledge about the workspace. The workspaces are randomly generated binary images,
where pixels marked zero belong to free space and all the remained pixels are marked with one belong
to occupied space. All regions within workspace are accessible by agents and are discovered by them
in an incremental manner increasing their knowledge of the environment. All of the discovered pixels
are added to the grid map with the cell size equal agent’s side l. All of the agents always detect
obstacles and have communication with the base station.

At first, the multi-agent algorithm was evaluated with teams of one to 11 agents in simulations
for three environments with different size and complexity, which were chosen to evaluate the complete
coverage of the proposed method in relation to the size of the area, scenarios with obstacles inside the
exploration area, and complexity of the environments. In all scenarios, all of the agents were deployed
from the same starting location (blue square at the bottom of the figures), which also stands as a
charging point, while the discovered obstacles are shown in black. The red squares with white faces
correspond to backtracking points. When they are covered with an agent, the face colour changes to
the corresponding agent’s colour. Moreover, the BTPs in the middle of the exploration area (points that
are not adjacent to the obstacles) depict that the agent went to the charging point according to the
staying alive policy.

The area in the first scenario has a size of 2068 m2 and it contains multiple branches. Figure 7
depicts the evolution of the explored area for 25%, 50%, 75%, and 100% of the time from left to right
with a team of 5 agents. It can be observed from changing the BTP face colours that each agent uses its
own BTP stack until it is empty, and then uses the BTP from the global BTP stack. As an example the
agent4 in 25% of the simulation execution time utilized its own local BTP (red squares); however, in 50%
of the simulation time and after completing the local BTP, it moves to the global BTPs which were
discovered with another agents.

Figure 7. Scenario 1. Area discovered with five agents, launched from the same location. The black
areas are obstacles, while the red squares are backtracking points (BTPs).

In the second case environment with size of 2029 m2 with obstacles inside the exploration area is
considered. Same as first case the exploration evolution over time with a team of five agents is shown
in Figure 8. It can be seen that the proposed method results in the full coverage of the area.
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Figure 8. Scenario 2. Area discovered with five agents, launched from the same location. The black
areas are obstacles, while the red squares are BTPs.

Furthermore, in the third case, environment with size of 3631 m2, has higher complexity and
number of branches is explored with team of five agents. Figure 9 depicts the exploration expansion
over time.

Figure 9. Scenario 3. Area discovered with five agents, launched from the same location. The black
areas are obstacles, while the red squares are backtracking points (BTPs).

The simulations for scenarios 1–3 demonstrated that the proposed method succeeds in completing
coverage task. In order to analyze how well the work load is distributed between the agents the overall
travelled path length of all agents in each scenario was analyzed. Figure 10 depicts the lengths of the
coverage paths of the agents for each scenario. The proposed approach provides well balanced path
lengths for each agent, as can be seen. Worth noting that the average path length for one agent in
scenarios 1 and 2 represents a balanced workload for exploration areas of equivalent size, while the
average path length for one agent in scenario 3 is bigger due to the larger size of the exploration area.
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Figure 10. The length of coverage paths per agent in a team of five agents for three
simulated scenarios, respectively.
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In order to assess how the exploration area size impacts on the algorithm performance with
regards to the number of agents, the average time required to execute one step for one agent
was calculated, as depicted in Figure 11. As one can see, the computation time for each scenario
could be approximated linearly. Accordingly, the overall method is O(n), which means that the rate
of the computation time grows with the number of utilized agents. It can also be noted that the
average computation time for exploration areas of the same sizes (Scenario 1 and 2) is around 1 s.
This also means that, on average, the number of BTPs utilized to get trajectories by PRM planner
in both scenarios is equal. For the scenario 3 with larger exploration area as compared to first two
scenarios, agents discover more BTPs, thus path planning requires more computation time.
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Figure 11. Average computation time of the proposed Algorithm 4 per one step for teams of
{1, 3, 5, 7, 9, 11} agents for three scenarios.

The further analysis will describe how the number of agents will influence the exploration process
and the performance of the staying alive policy. In order to avoid data redundancy, the following
results will only be presented for the first scenario.

In Figure 12 the relation between number of agents and the explored area over the time
is presented. As expected, the larger team of agents results in less exploration time. However, it can be
seen that the difference of exploration time between 9 and 11 agents is much less than difference of
exploration time between 9 and 5. This shows that larger number of agents is not always necessary
due to the size or structure of the environment; nonetheless, future study is required in order to find
optimal number of agents.
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Figure 12. Explored area with teams of {1, 3, 5, 7, 9, 11} agents.

Figure 13 depicts the variation of agent’s charge level over the iteration process. The lower
bound of the agent’s battery level Emin is depicted as solid horizontal line in red colour. As it can
be observed at the top and the middle images, the charge level Ei,k goes below the stated bound.
This means that, due to the large traveling distance from the charging point, the battery level dropped
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below 20%. Thus, the introduced staying alive policy proved its viability in all conducted simulations
by guaranteeing 0% of agent loss. Further analysis revealed that the total number of charges per agent
were reduced with a growth of the utilized agents.
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Figure 13. Charge level time evolution for one, three, and five agents.

In Figure 14 a comparison of the total number of charges required to explore the current
simulation scenario, where for the case of 1 agent, the total and average number of charges are
the same, is depicted. However, for larger teams, we observe fluctuations, e.g. in some cases the
utilized team will have more charges than a single agent, but, on average, it will be more efficient and
require less time for the entire exploration objective. Additionally, the average number of charges per
agent varies, so, for example, in Figure 13 agent1 made five charges and agent3 made three charges.
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Figure 14. The total and average number of charges for teams of {1, 3, 5, 7, 9, 11} agents.

Table 1 shows the summarized results of simulations for scenario 1.

Table 1. Simulation results of area exploration with proposed algorithm.

Environment
Size of
Environment, m2

Number of
Agents

Total Number
of Charges for
One Agent

Average Computation
Time for 1 Step, s

Number of
Iterations

1 22 0.13 2365
3 7 0.36 804

Scenario 1 2068 5 5 0.59 491
7 3 0.81 363
9 3 1.09 314

11 2 1.39 259

In order to evaluate the performance of our approach with respect to other algorithms,
two methods were chose [29]. One is the nonbacktracking multi-robot spanning tree coverage
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(NB-MSTC), an offline method that has proven to provide the smallest total length of the coverage
paths and boustrophedon and backtracking mechanism (BoB) algorithm, which an online method
developed for multi-robot systems. The criteria for comparison are the complete area coverage and the
total length of the coverage paths. The workspace for evaluation was designed, as in Figure 9a in [29].
It has size of 30× 30 m square cells and each cell has a size of 1× 1 m and 13 obstacles, where each
obstacle has cell width and a random length four to nine times the square cell.

The simulation results are presented in Figure 15, where the figure to the left is replotted Figure 9b
from [29] that depicts the coverage path with four agents with NB-MSTC approach, while the figure to
the right depicts the coverage path for the same number of agents with the proposed approach.
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Figure 15. The coverage path of four agents. NB-MSTC to the left, proposed approach to the right.

Table 2 summarizes the coverage paths for four agents by each method. As it can be seen,
the NB-MSTC provides the shortest paths with the total coverage length of 617 m; however, as it can
be seen from Figure 15, it does not provide a complete coverage and the workload between agents
is not equally distributed. The BoB approach provides the total path length of 871 m, while keeping
balanced work load distribution between agents. Unlike these two methods, the proposed algorithm
created the total exploration path length of 716 m, while providing complete area coverage along with
the balanced workload between agents.

Table 2. The coverage path length achieved by NB-MSTC, backtracking mechanism (BoB), and
proposed algorithm.

Algorithm Coverage Path Length by Agent, [m]

1 2 3 4

NB-MSTC 172 400 24 21
BoB 199 215 224 233

Proposed approach 171 187 178 180

Overall, the simulation results showed that the proposed approach works well in all simulated
scenarios. Additionally, it outperforms NB-MSTC in area coverage and equally distributed work load
among agents, and it outperforms BoB in terms of shorter total coverage path length of agents.

4.1. Discussions of the Design Choices

This article studied online multi-agent collaborative exploration and coverage of the
unknown environment. Due to real-life challenges, such as search and rescue mission where the
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time of operation is important for situational assessments, this online approach selected and designed
components of the presented algorithm.

The exploration method that is presented in Section 3.1 was selected according to conducted
analysis of existing online exploration and coverage strategies. Among which, the Boustrophedon
motion algorithm showed reasonable performance and capability for collaborative multi-agent work
implementation in unknown environments.

The second method in Section 3.2 of the proposed algorithm was intentionally selected in order
to bring it closer to the real life applications. Because, presently all platforms have limited operation
time. This consideration allowed for us to implement the staying alive policy, which, according to
conducted simulations, guarantees that all agents do not run out of energy within entire exploration
and coverage mission.

Accordingly, the first two methods allow for conducting online exploration considering limited
operation time. However, they cannot handle transitions when the agent reaches its blocked condition
depicted at Figure 3 or runs out of charge. To overcome it and continue exploration (Figure 5), the path
planner was used to generate collision free trajectories. Generally, for this, any path planner with such
a capability can be used.

4.2. Design of Experiments

The transition from simulations to actual experiments will be done by the means of the
Robot Operating System (ROS) [40], a framework for developing robotic applications, in which
implementation of the designed algorithm together with robot control package will be implemented
and tested. The assumptions that were taken in simulation, like robot dynamics, perfect localization,
perfect sensor model, and communication, are the limitations that will be considered in planning
the experiment. As a robotic platform, we selected turtlebot3, a standard ROS robot that provides
full access to its on-board sensors for obtaining information about robot’s state and it can be remotely
controlled from a laptop. The robot is equipped with 360 Laser Distance Sensor LDS-01 with maximum
detection distance that is equal to 3500 mm. The lidar data will be processed in a way to reflect the
sensing model that is used in simulation. The communication link between robots and laptop will be
established while using WiFi connection. The Ubuntu based laptop will have ROS on-board and it will
stand as a base station for controlling robots. The workspace will be designed when considering the
turtlebot’s dimensions and, generally, will be smaller and less complicated than in the simulations.
When considering its size and platform’s operating time of about 2 h, will be developed commands
that will simulate low battery and full charge events for robot agents. Validation of the coverage and
position tracking will be done while using motion capture system Vicon. During the experiment,
all sensory information from the turtlebots’ and Vicon will be recorded by the means of ROS and
processed afterwards. The obtained results from the experiments and simulations will be compared.

5. Conclusions

In this study, we introduced a novel online coverage approach for multi-agent systems in an
unknown environment that can be used in inspection, search and rescue missions, and the exploration
of the unknown areas of different complexitym and it considers deployment and coordination of
multiple agents in close to real-life scenarios. The additional novelty of the proposed algorithm is that
it couples the agent’s limited battery operation time with the path planner in order to guarantee a
staying alive path planning for the multi-agent team. Moreover, a novel BTP point detection scheme for
exploration task, while performing Boustrophedon motion, has been presented. The overall proposed
online algorithm was successfully evaluated in simulations in complex environments by providing
complete coverage of the exploration area and equally distributing the workload between agents.
The overall provided path length of the proposed approach outperformed the BoB algorithm with
716 m against 871 m. Trajectories that were provided by the PRM planner were not always optimal
and it requires more investigation towards local optimal path planning and remains to be part of
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future research. The influence of the exploration area size on the calculation time was demonstrated.
This indicates that the larger exploration area, on average, has more BTPs, which, in turn, requires more
trajectories to be calculated by the path planner. The implemented staying alive policy in all of the
simulations guaranteed achieving a zero agent loss. The observed number of total charges required
per agent for the simulated scenario is generally decreasing with a larger team, but there could be no
guarantee that the total number of charges will be less than those for the one agent case. Part of the
future research includes the enhancement and fusion of the presented staying alive policy by the path
planning algorithm that is based on a real discharging model and the full experimental verification
of the suggested scheme with mobile and aerial robots. Besides that, it is planned to investigate the
feasibility of the agent in order to reach the end-point of the exploration area with a possibility to
return safely to the starting point.
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