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Abstract: Digital images, and in particular satellite images acquired by different sensors, may present
defects due to many causes. Since 2013, the Landsat 7 mission has been affected by a well-known
issue related to the malfunctioning of the Scan Line Corrector producing very characteristic strips
of missing data in the imagery bands. Within the vast and interdisciplinary image reconstruction
application field, many works have been presented in the last few decades to tackle the specific
Landsat 7 gap-filling problem. This work proposes another contribution in this field presenting
an original procedure based on a variational image segmentation model coupled with radiometric
analysis to reconstruct damaged images acquired in a multi-temporal scenario, typical in satellite
remote sensing. The key idea is to exploit some specific features of the Mumford–Shah variational
model for image segmentation in order to ease the detection of homogeneous regions which will then
be used to form a set of coherent data necessary for the radiometric reconstruction of damaged regions.
Two reconstruction approaches are presented and applied to SLC-off Landsat 7 data. One approach
is based on the well-known histogram matching transformation, the other approach is based on
eigendecomposition of the bands covariance matrix and on the sampling from Gaussian distributions.
The performance of the procedure is assessed by application to artificially damaged images for self-
validation testing. Both of the proposed reconstruction approaches had led to remarkable results. An
application to very high resolution WorldView-3 data shows how the procedure based on variational
segmentation allows an effective reconstruction of images presenting a great level of geometric
complexity.

Keywords: image segmentation; image reconstruction; variational model; histogram matching;
satellite imagery; free and open source software

1. Introduction

Digital imaging is becoming increasingly common and is now being used in a growing
variety of fields spanning from computer vision to medical imaging and remote sensing,
just to mention a few. Due to various causes, be they technological or natural, images
may often contain radiometric distortions or partial lack of information. The need to
recover lost or distorted information led to important development of image restoration
and reconstruction algorithms.

This work presents a new approach to image reconstruction based on the coupling of
an image segmentation variational model and the radiometric analysis of multi-temporal
satellite imagery. The reconstruction of satellite imagery is crucial to improve the perfor-
mance of further image processing tasks such as classification, spectral unmixing, and
object detection.

Among the many past and active satellite missions for Earth Observation (EO) pur-
poses, the Landsat 7 mission presents a specific data-loss issue that attracted and still
attracts a lot of interest in the image reconstruction field. The Landsat 7 mission, opera-
tive since 1999 within the NASA’s ESE (Earth Science Enterprise) program, exploits the
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Enhanced Thematic Mapper Plus (ETM+) sensor. The ETM+ sensors cover visible red,
green, and blue (RGB), Near-InfraRed (NIR), Short-Wave InfraRed (SWIR), Mid-InfraRed
(MIR), and Thermal InfraRed (TIR) spectral bands with a 8-bit radiometric resolution
(transmitted) and spatial resolutions of 30, 60, and 15 m for RGB/NIR/SWIR/MIR, TIR,
and panchromatic bands, respectively. Imagery bands are acquired with a repeat cycle of
16 days. The science mission will continue until mid-2021 (https://www.usgs.gov/news/
successful-maneuver-spells-beginning-end-landsat-7).

On 31 May 2003, the Scan Line Corrector (SLC), the on-board instrument that manages
the direction of the scan line in order to compensate for the forward satellite movement
during scanning, encountered a permanent failure. From that date, Landsat 7 scenes are
called SLC-off. Without SLC, the line of sight of the instrument cannot make the correct
U-turn at the end of the scan line, tracing instead a zig-zag pattern. This results in scenes
partly being scanned twice and partly not being scanned at all. The data-loss due to SLC
failure does not affect the segment in the central 22 km of the captured scene, but produces
instead cross-track data-loss stripes, swelling from the center of the image to its edges.
SLC-off images lack about 22% of the data, and the maximum width of the data gap is
about 15 pixels, corresponding to about 450 m of data loss at the edges. SLC-off stripes are
not located exactly in the same position in different scenes, and also in the same scene they
can be misaligned by one pixel between different bands, which is the cause of the clearly
visible dark red, yellow, and green pixels and the edges of the SLC-off bands.

Research in satellite image restoration received a boost especially since Landsat 7 Scan
Line Corrector failure, an event that left a critical and permanent degradation in one of
the most important remote sensing missions. Even thought Landsat 8 was launched on 11
February 2013, its predecessor is still functioning and a ten-year period of damaged images
ought to be recovered.

As a matter of fact, a plethora of different reconstruction algorithms were presented,
each with its own peculiar characteristics that highlight the similarities and differences
between them [1–10].

On a general basis, image reconstruction algorithms can be distinguished into two
main classes:

• single-image reconstruction;
• multi-image reconstruction

Single-image reconstruction algorithms are mainly applied in medical imaging and
computer vision fields, whereas multi-image reconstruction algorithms are better suited
for multi-temporal or multi-source applications in satellites for the image processing field.
In the following pages, a damaged or corrupted image will be called target image and an
image from which any kind of information is derived for the reconstruction of the damaged
regions of a target image will be called base image.

Approaches to the multi-image reconstruction problem can be classified as:

• compositing approach: filling data gaps in target image directly with values from
other base images, sometimes rescaled using a linear transformation based on global
mean values of base and target images;

• nearest-neighbor approach: making use of values in pixels near the one to be inpainted
in order to obtain statistics of a reference data-pool from which the reconstructed
values are calculated;

• geostatistics approach: using kriging to explicitly take into account spatial correlation
to predict reconstructed values and estimation errors;

• segmentation approach: identifying clusters of homogeneous pixels automatically
to build reference data-pools from which statistics for calculation of values to be
reconstructed are extracted.

The original solution presented in this work exploits only geometric and radiometric
information derived from target and base images acquired in a multi-temporal scenario
and does not rely on other externals of ancillary information, such as land cover maps.

https://www.usgs.gov/news/successful-maneuver-spells-beginning-end-landsat-7
https://www.usgs.gov/news/successful-maneuver-spells-beginning-end-landsat-7
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The proposed procedure permits the reconstruction of complex geometric features, even
when completely damaged, under the reasonable hypothesis that in the time span between
the acquisition epochs of target and base images such features did not undergo significant
modifications. The procedure exploits an image segmentation variational model proposed
by Mumford and Shah [11] which eases the identification of coherent regions within a seg-
mented image followed by radiometric analysis of correspondent coherent regions detected
on target and base images. Intuitively, the main advantage of the Mumford–Shah varia-
tional model is that the image undergoes a smoothing process that respects discontinuities
in the image. For this reason, on the one hand, the radiometric variability of segmented
regions is reduced because of noise reduction associated with the smoothing process,
and, on the other hand, the geometric quality of segmented regions is not compromised by
the same smoothing process because its action is automatically suppressed on the region
boundaries. As a consequence, segmented regions of high quality led to an improved
identification of coherent regions. Two different approaches for radiometric analyses are
considered for reconstruction: the first approach is based on the Histogram Matching
(HM) transformation and the second one is based on the eigendecomposition (ED) of the
covariance matrix of a set of imagery bands and on sampling of Gaussian distributions.
The entire procedure was implemented using free and open source software and by means
of original programs. Segmentation and detection of coherent regions were carried out
using GRASS GIS while radiometric analyses and reconstructions were implemented by
means of Python code and the PyGRASS Application Programming Interface (API) [12].
The proposed procedure was applied to synthetically damaged imagery for self-validation
purposes. WorldView-3 and Landsat 7 bands were processed, using different values of
variational model parameters, the quality of reconstructed bands was statistically assessed
using original not-damaged imagery as reference information. Results for Landsat 7 8-bit
Digital Numbers (DNs) show error means around 10−2 with standard deviation of a few
units of intensity (error variances in the range (100, 101) and R2 coefficient of determina-
tion very close to 1, see Tables 2 and 4. Applications to real-damaged Landsat 7 confirm
the quality of the reconstructions obtained by the application of the methodology, see
Figures 19 and 20.

The content of the manuscript is the following: some existing algorithms for satellite
imagery reconstruction are introduced in Section 2; a brief presentation of the Mumford–
Shah variational model for image segmentation and its analytical aspects is given in
Section 3; the proposed methodology is detailed in Section 4; results of application of the
procedure to WorldView-3 and Landsat 7 data are presented in Section 5 and discussed in
Section 6 along with open problems and perspectives.

2. Overview of Selected Standard Algorithms
2.1. Histogram Matching Methods

Histogram matching consists of transforming the values of a data set by aligning the
empirical cumulative distribution function (ECDF) of the data set to the ECDF of another
data set; it is widely used in different fields of image processing. Scaramuzza et al. [13]
proposed a first algorithm to tackle the Landsat 7 SLC-off problem; the algorithm was later
assumed as a Phase 1 methodology by USGS in order to produce Landsat 7 SLC gap-filled
products. The algorithm consists of mapping which pixels in an SLC-off image are valid
and which have to be filled, creating a gap mask for each band. A linear relation between a
base scene and the target scene is identified and used to transform the target histogram.
The identification of the model parameter is computationally expensive and therefore
replaced by the so-called method of moments to estimate gain and bias values on the basis
of mean and standard deviation of the two data sets. This latter method, once applied to
the whole images, is known as Global Linear Histogram Matching (GLHM). The method
performs well on homogeneous scenes, it is not effective on scenes of heterogeneous
landscapes, and useless on scenes with snow or clouds. For these reasons, GLHM was
substituted by a Local Linear Histogram Matching (LLHM) model in which gain and
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bias are calculated only from those values in a moving window. This algorithm performs
generally well and requires very little computational effort, but creates some striping or
shading around sharp edges or abrupt land cover changes. The Phase 1 algorithm was
further enhanced and updated by USGS [14] and hence officially adopted as a Phase 2
methodology. The enhancement allows for the use of a set of base scenes instead of just
one. After defining a preference order in the available base images, the LLHM algorithm
is applied to the smallest window containing a minimum number of valid pixels in both
base and target data. Other enhancements are made in order to correct unreasonable gains
and outliers, mitigating the effect of clouds and snow. Results of the Phase 2 algorithm
are sensitive to the order of the base images, and all these enhancements lead in any case
to poor results in scenes characterized by sun glint, snow, clouds, or high heterogeneity,
and especially in scenes consisting of numerous small features. Aghamohamadnia and
Abedini [15] proposed an improved algorithm aimed at enhancing the results of moving
neighbor selection algorithms by coupling them with a morphology selection scheme. In the
first step, the LLHM method is used to mask the SLC-off stripes, then a morphological
operator is exploited to extract the outer pixels of SLC-off stripes. For each pixel, a stitch line
is then created using an algorithm that searches for the most radiometrically similar pixels
from either filled or non-filled adjacent pixels groups. The stitch lines can be extended
iterating this procedure using the newly found pixels as center points. The borderline
pixels are then updated using a local weighted mean. The whole method can be iterated
considering the updated values as non-filled, and then updating the inner pixels of stitch
lines. This method was proven useful for improving the result of any method smoothing
edges of different land cover areas even if, it being based on mean estimators, filled stripe’s
borders result smoothed out.

2.2. Neighborhood Similar Pixel Interpolation Method

The Neighborhood Similar Pixel Interpolation (NSPI) method, proposed by
Chen et al. [7], is based on the assumption that pixels of the same land cover, within a
determined neighborhood of a pixel to be restored, present similar spectral features and
temporal patterns. The basic assumption of NSPI is that no significant large scale land
cover change applies between the acquisition of a base and a target image. Firstly, outside
the gaps common pixels are selected in both the base and target images, then the search
for similar neighboring pixels is operated on the base image with an adaptive moving
window based searching procedure. After the evaluation of a given measure of spectral
similarity of the neighbor pixels within the moving window, the value of the target pixel is
estimated in all bands, applying a weighted mean based on the similarity measure and on
the Euclidean distance of each valid pixel from the target pixel. Two different methods are
then used to estimate the value of a target pixel. The first method is based on a weighted
mean of radiometrically similar neighbor pixels while the second tries to take into account
the temporal variation of the target pixels, using the calculated weights to estimate the
change of pixel values that occurred between two acquisition epochs. The accuracy of the
two methods depends on the heterogeneity of the observed areas: the first method should
be used for images with relative homogeneity and slow temporal change, the second
method is more suitable for images with heterogeneous regions. A combination of the two
methods is also feasible and aimed at finding a compromise between synchronous spatial
homogeneity and diachronic evolution. The NSPI method performs generally better than
LLHM, in particular for large temporal intervals between base and target images.

2.3. Geostatistical Method

Zhang et al. [16] proposed to use a geostatistical technique to exploit spatial correla-
tion for the reconstruction of missing values in a damaged image. Geostatistical kriging
models are interpolation algorithms providing unbiased estimations with minimum error
variance. Spatial correlation is described by means of specific models fitting the so-called
empirical semivariograms. The least squares method is involved in the estimation of the
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parameters of the model adopted to predict the value of the modeled variable in a specific
location. In satellite imagery gap-filling algorithms, different geostatistics techniques can
be considered, in particular, single variable models can be used when a base image is not at
hand, whereas multiple variable models can be adopted to gain statistical information from
a non-corrupted base image as done in Direct Sampling methods (e.g., [17]). In general,
kriging techniques are used to interpolate the variable values at arbitrary locations. In the
specific case of SLC-off data loss, the gaps have a peculiar pattern, and this ensures that the
model parameters need to be estimated only once for each pattern, so that computational
time is drastically reduced. Moreover, a normal score transformation is commonly applied
to reduce negative impacts of strong skewness in the data set. Compared to the LLHM
model, results of kriging based approaches present reduced striping and visual artifacts
almost everywhere except on boundaries between different land covers. In general, kriging
models predict data with less spatial variability than that of observed data, so, while
analyzing reconstructed stripes, a stronger homogeneity can be noticed and the reconstruc-
tion of different land cover regions and boundaries is not easily achievable. Moreover,
kriging models are usually applied to one band at time excluding the possibility to take
into account the possibly relevant band covariance.

3. Mumford–Shah Variational Model for Image Segmentation

Mumford and Shah (1989) proposed to tackle the segmentation problem in computer
science by finding a decomposition R = R1 ∪ R2 ∪ · · · ∪ Rn of an input data g given in a
two-dimensional domain Ω by means of the minimization of a functional depending on
a piece-wise smooth approximation u of g. The approximating function varies smoothly
within each Ri, and it is allowed to be discontinuous over a measurable one-dimensional
set K of curves, e.g., the boundaries of the elements of R but not strictly only those.

The MS segmentation is achieved by the minimization of the functional:

MS(u, K) :=
∫

Ω
|u− g|2 dx + λ

∫
Ω\K
|∇u|2 dx + αH(K ∩Ω), (1)

where: u ∈ C1(Ω \ K) andH is the 1-dimensional Hausdorff measure.
The parameters λ and α act as weights balancing contributions of the three terms of

the Mumford–Shah functional; the roles of the three terms being:
to keep u as close as possible to g;
to keep u as smooth as possible everywhere but over K;
to keep the length of the discontinuity set of u as short as possible,

where the last action is required to avoid trivial over-segmented solutions.
The Mumford–Shah functional Equation (1) represents a classical example of so-called

free discontinuity problems as introduced by De Giorgi [18] and nowadays widely adopted
also in one-dimension signal processing and in three-dimensional domains such as those
involved in fracture analysis.

Despite its clear structure, analytical results for the Mumford–Shah functional (1) are
very difficult to obtain because both surface and line energies are involved and because the
support of the line energy depends on an unknown set.

After [19], Ambrosio et al. [20] and Modica and Mortola [21] proposed an equiva-
lent relaxed functional was proposed, which is analytically solvable and simpler from
a computational point of view. In short, a different class of approximating functions is
considered so that the new functional no longer depends on the unknown set k. Moreover,
an auxiliary two-dimensional function s is introduced whose integral converges to the
length of the one-dimensional, discontinuity set Su of the approximating function. In this
way, the new functional depends only on the approximating function u and involves only
surface energies:

Fε(u, s) :=
∫

Ω
|u− g|2 + λs2|∇u|2 + α

[
ε|∇s|2 + 1

4ε
(s− 1)2

]
dx, (2)
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where now u belongs to the space of Special Functions of Bounded Variation SBV(Ω) [20],
ε is the convergence parameter, s : Ω→ [0, 1] approximates the indicator function of the
discontinuity set Su, and it is equal to 0 on Su and 1 elsewhere.

From a practical point of view, λ can be seen as a scale parameter controlling the
smoothness of the solution. The larger the value of λ, the more the approximating function
is close to a piece-wise constant solution. The parameter α instead can be seen as a noise
sensitivity parameter which influences the discontinuity detection process; for α values
close to 0, a high number of small segmented regions, and hence many discontinuities,
are found.

More information about analytical and numerical aspects of Mumford–Shah functional
and its implementation can be found in [22].

4. Coupling Variational Segmentation and Radiometric Analysis for Multi-Temporal
Images Reconstruction

The proposed procedure consists of a set of steps to be applied in a sequential order:

1. variational segmentation of base and target imagery bands;
2. composition of integer rounded segmented bands;
3. identification and labeling of connected components (clumps) of composite values;
4. calculation of cross product of base and target clump labels;
5. radiometric reconstruction.

A flowchart of the proposed procedure is shown in Figure 1; every step is
detailed hereafter.

Step 1
Base bands

segmentation
r.smooth.seg

Step 2
Base bands
composite
r.composite

Step 3
Base bands
clumping

r.clump

Step 1
Target bands
segmentation
r.smooth.seg

Step 2
Target bands

composite
r.composite

Step 3
Target bands

clumping
r.clump

Step 4
Base and target

clumps cross product
r.cross

Step 5
Radiometric re-

construction
PyGRASS code

Figure 1. Flowchart of the proposed procedure for image reconstruction.

Step 1 Mumford–Shah variational segmentation is applied to base and target imagery
bands at hand. In this work, the processing was carried out on digital numbers.
A unique mask of SLC-off stripes is used for the processing of target bands. The val-
ues of model parameters α and λ are selected on an empirical base after a few test;
when working with Landsat 7 and DNs, one can start with α = 500 and λ = 8.
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The same parameter values were used in the processing bands of each single scene,
either base or target. Parameter values different between scenes, i.e., acquisition
epochs, are conveniently selected to take into account inter-epochs radiometric
differences. To verify if different parameter values yield consistent inter-epoch
results, i.e., segmented regions of comparable dimension and shape, segmented
base and target bands can be either visually or automatically compared. At this
stage, the choice of very different parameter values may depend on very high
radiometric differences between base and target bands suggesting the need to look
for better base imagery to ease the radiometric reconstruction of the damaged
target regions. The Mumford–Shah variational segmentation outputs a real valued
piece-wise smooth approximation. Segmented values are rounded to restore inte-
ger consistency with input DN. Rounding introduces minor changes with respect
to typical DN variances in satellite imagery and much less than the amount of
noise-reduction that occurred in segmented regions.

Step 2 Composition of integer segmented bands is an easy way to classify the outputs of
the previous step. In practice, a total of 32 intensity levels per band are used in
the composition, resulting in a 15 bit composed image with 32,768 possible values
when, for example, the composition of three bands is performed.

Step 3 Dealing with integer composed imagery greatly simplifies the identification and la-
beling of connected components. Otherwise, if real values were processed, a thresh-
old based fuzzy clumping or an even more sophisticated classification algorithm
would be necessary to identify and label segmented regions in a suitable way.

Step 4 The cross product of base and target clump labels produces all possible combina-
tions of inter-scene clump labels. Each combination found is associated with the
values of the base and target clump labels, allowing for returning to the original
integer segmentation values.
The output of this step serves as a basic information layer for the reconstruction
step. The SLC-off strips mask permits to separate regions to be reconstructed from
those from which radiometric analysis will be conducted.
For each clump following within the regions to be reconstructed, the reconstruction
data set is made of all the pixels belonging to every non-corrupted base clump that
shares the same intensity level in the base composite map.
Given the value of the intensity level in the base composite map, it is possible to
go back to the original integer segmentation values to be used as a data set for
radiometric reconstruction.
If no identical intensity level can be found, the reconstruction database consists of
all clumps with an intensity level as close as possible to the input intensity level.
The distance measure is the Euclidean distance in the integer segmented band
space and a threshold-based proximity criterion adopted to build the reconstruc-
tion database.

Step 5 Two different criteria were considered for the final radiometric reconstruction.
The first approach is based on the HM transformation. The ECDFs of base and target
images are computed considering only non-corrupted regions and the parameters
of the HM transformation are estimated. For each pixel to be reconstructed, its
value in the base image xb is read and its cumulative frequency value Fb(xb) is
evaluated. The reconstructed value in the target image x̂t is the one that holds the
equality Ft(x̂t) = Fb(xb).
The second approach is based on ED and Gaussian distribution sampling. For base
homogeneous regions, the band covariance matrix is computed. The data set is
transformed according to ED to permit statistical sampling from uncorrelated Gaus-
sian distributions with known mean and variance. The sampling is drawn once
for each pixel to be reconstructed. For the sets of base non-corrupted regions with
a total count below 30 units, ED and Gaussian sampling are not performed and
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reconstructed values are set to the mean value of the set of base non-corrupted re-
gions.

The procedure was developed considering the processing of DNs. Performing ra-
diometric reconstruction of DNs permits to deal with satellite detectors raw observations
before other standard processing is performed. Moreover, dealing with integer quanti-
ties opens the possibility to effectively use simple tools, such as band composition and
connected component analysis, for forming coherent homogeneous regions to be used
in the statistically based radiometric reconstruction approaches which run at the target
image level. In fact, when the HM approach is involved, the matching of the histograms is
based on the correspondent of base and target clumps, and also, when the ED approach is
involved, the statistics analysis for the reconstruction is actually performed at the target
level as well. Nevertheless, the procedure can be easily adapted for processing both Top
Of Atmosphere (TOA) and Bottom Of Atmosphere (BOA) physical quantities derived
from DN values. In these cases, a more sophisticated classification method should be
used to produce clumps because of the float nature of reflectance/radiance values. Once
the clumps are at hand, the following steps of the procedure remain unaffected by the
reduction of DNs to physical quantities as it is for their initial variational segmentation.

5. Results
5.1. Applications for Self-Validation

Some applications were conducted to verify the procedure implementation and to as-
sess the procedure performance in the absence of radiometric alterations in a self-validation
scenario. For that, in each of the following applications, base images were artificially
corrupted to produce synthetic target images. Many self-validation tests were conducted,
varying band combinations, (α, λ) parameters and using both ED and HM based reconstruc-
tion methods. In the following sections, results of two self-validation tests are described.
Application to a real case is presented later in the dedicated section.

5.1.1. Self-Validation Test on a Single Worldview-3 Band

The procedure was applied to a single WorldView-3 band (Panchromatic, 11-bit
radiometric resolution, 40 cm spatial resolution, 5870× 3660 pixels). The test was conceived
to demonstrate the performance in reconstructing spatially complex structures.

Band: Panchromatic (P)—segmentation parameters α = 4000, λ = 20

Figure 2 shows the base image, and the artificially degraded target image is shown
in Figure 3. The results obtained by variational segmentation with HM and ED based
radiometric reconstructions are shown in Figures 4 and 5, respectively. In Table 1, error
statistics of HM and ED reconstructions are reported. For each reconstruction approach,
mean, variance, and coefficient of determination R2 of the differences between original and
reconstructed values are given. Scatter plots of the differences are shown in Figure 6a,b.
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Figure 2. Base image.

Figure 3. Target image.
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Figure 4. HM reconstruction.

Figure 5. ED reconstruction.
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Table 1. Error characteristics of panchromatic self-validation tests with (α, λ) = (4000, 20); mean of
intensity differences, variance of intensity differences, coefficient of determination.

HM ED

µE σ2
E R2 µE σ2

E R2

P 0.002 0.013 0.999 −0.423 256.313 0.932

B

R

(a)

B

R

(b)

Figure 6. Panchromatic self-validation test—radiometric reconstructions; B = Base intensity values, R = Reconstructed
intensity values. (a) Scatter plot of Panchromatic values—HM based reconstruction; (b) scatter plot of Panchromatic
values—ED based reconstruction.

Figure 7 shows a portion of the WorldView-3 scene, and its corresponding varia-
tional approximation u on the first and second rows, respectively; in the third row, the
discontinuity function s is plotted along with the base clumps.

Figure 7. Cont.
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(b)

(c)
Figure 7. WorldView-3 image and intermediate maps. (a) panchromatic band; (b) variational approximation u of WorldView-
3 Panchromatic band Figure 7a; (c) discontinuity function s with clumps of the variational approximation of the base image
Figure 7a.

In the left columns of Figures 8 and 9, two details of the WorldView-3 scene are shown,
and the results of the HM and SVM reconstructions are plotted on the center and on the
right columns, respectively.

As can be seen in Figures 8 and 9, the quality of the reconstruction is very high
essentially because of the geometrical and radiometric information enhancement produced
by the Mumford–Shah segmentation and the following detection of coherent regions used
in the radiometric analysis.
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(a) (b) (c)
Figure 8. Panchromatic band and radiometric reconstructions—Detail 1. (a) WorldView-3 Panchromatic band; (b) HM
reconstruction; (c) ED reconstruction.

(a) (b) (c)
Figure 9. Panchromatic band and radiometric reconstructions—Detail 2. (a) WorldView-3 Panchromatic band; (b) HM
reconstruction; (c) ED reconstruction.

5.1.2. Self-Validation Tests on a Set of Landsat 7 Bands

The procedure was applied to the Landsat 7 LE71920282000332NSG00 scene which
does not present SLC-off defects (Data acquired in mid 2000, before SLC failure). The scene
that served as base imagery was artificially damaged by applying SLC-off like gaps to
produce target imagery. Original and reconstructed data for a couple of three-band subsets
are hereafter presented in order to evaluate the performance of the procedure. In the
segmentation phase, about ten tests were performed with different values of the parameters
(α, λ). In each test reported hereafter, the same values of the parameters (α, λ) were used
for segmentation of base and target bands. The selected parameters are those which led to
the best results in the tests. For comparison, each test is complemented by the statistics of
results obtained using different pairs of parameter values; for these tests, the reconstructed
imagery were qualitatively very similar to those reported in this section.

Band set: Red, Green, Blue (RGB)—segmentation parameters α = 500, λ = 8

Figure 10 shows base, target, HM, and ED reconstructions. In the figure, colors were
artificially altered only after processing and just to facilitate the visual interpretation; the
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pixel brightness level in RGB space was manually modified using the GNU Image Ma-
nipulation Program (GIMP). In Table 2, error statistics of HM and ED reconstructions are
reported. For each reconstruction approach, mean, variance, and coefficient of determi-
nation R2 of the differences between original and reconstructed values are given. Scatter
plots of the differences are shown in Figures 11 and 12. For comparison, error statistics of
HM and ED reconstructions obtained with different values of the segmentation parameters
(α, λ) = (1200, 8) and leading to worse results are reported in Table 3.

(a) (b)

(c) (d)
Figure 10. Base, target, HM, and ED reconstructions of the RGB band set of Landsat 7 LE71920282000332NSG00 scene. (a)
base image; (b) target image; (c) HM reconstruction; (d) ED reconstruction.
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Table 2. Error characteristics of RGB self-validation tests with (α, λ) = (500, 8); mean of intensity
differences, variance of intensity differences, coefficient of determination.

HM ED

µE σ2
E R2 µE σ2

E R2

R −0.013 0.555 0.999 0.037 6.020 0.989
G −0.009 0.542 0.999 −0.037 8.196 0.986
B −0.008 0.867 0.999 −0.054 18.071 0.996

Table 3. Error characteristics of RGB self-validation tests with (α, λ) = (1200, 8), reported for com-
parison with Table 2; mean of intensity differences, variance of intensity differences, and coefficient
of determination.

HM ED

µE σ2
E R2 µE σ2

E R2

R −0.015 1.542 0.998 −0.054 21.942 0.968
G −0.013 1.003 0.998 −0.034 10.039 0.982
B −0.012 0.955 0.998 −0.056 7.330 0.969

B

R

(a)

B

R

(b)

B

R

(c)
Figure 11. RGB self-validation test—HM based reconstruction; B = Base intensity values, R = Reconstructed intensity values.
(a) scatter plot of red values; (b) scatter plot of green values; (c) scatter plot of blue values.

B

R

(a)

B

R

(b)

B

R

(c)
Figure 12. RGB self-validation test—ED based reconstruction; B = Base intensity values, R = Reconstructed intensity values.
(a) scatter plot of red values; (b) scatter plot of green values; (c) scatter plot of blue values.

Band set: Near-infrared, Red, Green (NRG)—segmentation parameters α = 500, λ = 8

Figure 13 shows base, target, and HM reconstruction. In Table 4, error statistics of HM
and ED reconstructions are reported. For each reconstruction approach, mean, variance,
and coefficient of determination R2 of the differences between original and reconstructed
values are given. Scatter plots of the differences are shown in Figures 14 and 15. For
comparison, error statistics of HM and ED reconstructions obtained with different values of
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the segmentation parameters (α, λ) = (1600, 12) and leading to worse results are reported
in Table 5.

(a) (b) (c)
Figure 13. Base, target, HM reconstruction of the NRG band set of Landsat 7 LE71920282000332NSG00 scene. (a) base image;
(b) target image; (c) HM reconstruction.

B

R

(a)

B

R

(b)

B

R

(c)
Figure 14. NRG self-validation test—HM based reconstruction; B = Base intensity values, R = Reconstructed intensity
values. (a) scatter plot of Near-infrared values; (b) scatter plot of Red values; (c) scatter plot of Green values.

B

R

(a)

B

R

(b)

B

R

(c)
Figure 15. NRG self-validation test—ED based reconstruction; B = Base intensity values, R = Reconstructed intensity values.
(a) scatter plot of near-infrared values; (b) scatter plot of red values; (c) scatter plot of green values.
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Table 4. Error characteristics of NRG self-validation tests with (α, λ) = (500, 8); mean of intensity
differences, variance of intensity differences, and coefficient of determination.

HM ED

µE σ2
E R2 µE σ2

E R2

N 0.022 2.579 0.996 −0.071 26.062 0.947
R −0.031 1.774 0.997 0.090 16.773 0.976
G 0.021 1.080 0.998 0.072 7.456 0.987

Table 5. Error characteristics of NRG self-validation tests with (α, λ) = (1600, 12), reported for com-
parison with Table 4; mean of intensity differences, variance of intensity differences, and coefficient
of determination.

HM ED

µE σ2
E R2 µE σ2

E R2

N 0.010 3.718 0.995 −0.134 62.845 0.910
R 0.003 2.819 0.996 −0.127 24.728 0.964
G 0.001 1.790 0.997 −0.102 11.243 0.980

5.2. Real Case Applications

The procedure was applied to the Landsat 7 target scene LE71920282014306NSG100
affected by SLC-off disturbances and considering the disturbances-free Landsat 7 scene
LE71920282002257EDC00 as base imagery, see Figure 16.

(a) (b)
Figure 16. Base and target images from LE71920282002257EDC00 and LE71920282014306NSG100 Landsat 7 scenes. (a) base
image; (b) target image.

Variational segmentation was applied to base and target bands, the Mumford–Shah
parameters (α, λ) were set to (500, 8) for base bands and to (100, 4) for target bands, Step 1
in Figure 1.

Figure 17 shows the labeled connected components (clumps) of the base and target
RGB three-band sets, Step 3 in Figure 1.
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(a) (b)
Figure 17. Clump maps for base and target images of Figure 16. (a) base clumps; (b) target clumps.

In Figure 18, the scheme behind the radiometric reconstruction approaches is rep-
resented: base image (B) is shown on the left in Figure 18a, target image (T) is on the
right; in Figure 18b, region boundaries, built after connected components identification,
are overlaid to base and target images, and one region to be reconstructed is plotted in
green; in Figure 18c, coherent regions corresponding to the region to be reconstructed are
plotted in light green in the base image; in Figure 18d, coherent regions corresponding to
the region to be reconstructed are plotted in light blue in the target image.

Figure 19 shows the target and the HM reconstructed RGB images, a zoomed region
is shown in Figure 20. In the figure, colors were artificially altered only after processing
and just to facilitate the visual comparison; the pixel brightness curve in RGB space was
manually modified using the GNU Image Manipulation Program (GIMP).

(a)
Figure 18. Cont.
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(b)

(c)

(d)
Figure 18. Scheme for the construction of radiometric data set for reconstruction. (a) base and target images; (b) base and
target images with red region boundaries and one region in green; (c) base and target images with red region boundaries
and one region in green and with base coherent regions in light green; (d) base and target images with red region boundaries
and one region in green, base coherent regions in light green and with target coherent regions in light blue.
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(a) (b)
Figure 19. Target and HM reconstruction, see Figure 16. (a) target image; (b) HM reconstruction.

(a) (b)
Figure 20. Target and HM reconstruction (portion of), see Figure 16. (a) target image; (b) HM reconstruction.

6. Discussion

Variational image segmentation has proven instrumental in image restoration: the
smoothing action, by reducing the noise level of input data, and the discontinuity-preserving
feature eases the identification of homogeneous regions and hence the forming of coherent
region sets to be used in the radiometric analysis on which the reconstruction is based. Iden-
tification of coherent region sets is carried out by means of bands composition, clumping,
and cross products of intensity levels of base and target images. Together, these features
also allow the reconstruction of geometrically complex scenes (see Figure 5). In the varia-
tional segmentation, for a given spatial resolution, the use of high parameter values will
lead to better results when processing lowly fragmented scenes, lower values are instead
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recommended for more complex scenes, such as mountain and urban areas. To guide
the selection of suitable parameter values, it can be suggested to execute some tests on a
not-damaged portion of a scene and to assess the results on the basis of a self-validation
like scenario.

Two different applications have been proposed, both fulfilling their purposes with
valid results as reported in Tables 2 and 4 where small mean errors are essentially due to the
rounding integer necessary to respect data type of DNs. Reconstruction is not operated by
simply picking data from neighboring pixels but by relying on a procedure that links differ-
ent coherent regions on a radiometric basis. Applications showed a better performance of
the HM based reconstruction approach when compared to the ED one. Differences increase
when just a single band is processed and when high spatial resolution data are considered.
This is essentially due to the capability of the HM approach to reproduce inter-region
radiometric patterns, to the choice of Gaussian distribution sampling, and to the lower
sensitivity of HM transformation to non Gaussian-like ECDFs. In this framework, the use of
power transform could be considered [23,24]. Power transform is a family of functions that
are applied to create a monotonic transformation of data using power functions. This is a
useful data transformation technique that stabilizes variance and produces more normally
distributed samples.

From a practical point of view, the proposed procedure could be incorporated in a
more articulated satellite image processing framework involving cloud, cloud shadow, and
snow detection algorithms [25,26]. Preliminary results also showed a strong positive impact
of variational segmentation as a preprocess step in pansharpening and super resolution
mapping applications.

From the analytical point of view, a possible development regards the adoption
of an advanced and more complex variational model for image segmentation. In the
Mumford–Shah model, the presence of the gradient norm (the smoothing term) permits
only near-constant piece-wise solutions. In satellite images, regions with radiometric steep
gradients are common and the Mumford–Shah approximation may present staircase-like
artifacts in such regions. Owen [27] proposed a second order variational model to overcome
limitations of the Mumford–Shah model. Solutions produced by the Blake–Zisserman
model are basically nearly-linear piece-wise approximations of the data [22,28–32].
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