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Abstract: The universal soil loss equation (USLE) is a widely used empirical model for estimating 

soil loss. Among the USLE model factors, the cover management factor (C-factor) is a critical factor 

that substantially impacts the estimation result. Assigning C-factor values according to a land-

use/land-cover (LULC) map from field surveys is a typical traditional approach. However, this ap-

proach may have limitations caused by the difficulty and cost in conducting field surveys and up-

dating the LULC map regularly, thus significantly affecting the feasibility of multi-temporal analy-

sis of soil erosion. To address this issue, this study uses data mining to build a random forest (RF) 

model between eight geospatial factors and the C-factor for the Shihmen Reservoir watershed in 

northern Taiwan for multi-temporal estimation of soil loss. The eight geospatial factors were col-

lected or derived from remotely sensed images taken in 2004, a digital elevation model, and related 

digital maps. Due to the memory size limitation of the R software, only 4% of the total data points 

(population dataset) in each C-factor class were selected as the sample dataset (input dataset) for 

analysis using the stratified random sampling method. Seventy percent of the input dataset was 

used to train the RF model, and the other 30% was used to test the model. The results show that the 

RF model could capture the trend of vegetation recovery and soil loss reduction after the destructive 

event of Typhoon Aere in 2004 for multi-temporal analysis. Although the RF model was biased by 

the majority class’s large sample size (C = 0.01 class), the estimated soil erosion rate was close to the 

measurement obtained by the erosion pins installed in the watershed (90.6 t/ha-year). After the 

model’s completion, we furthered our aim to address the input dataset’s imbalanced data problem 

to improve the model’s classification performance. An ad-hoc down-sampling of the majority class 

technique was used to reduce the majority class’s sampling rate to 2%, 1%, and 0.5% while keeping 

the other minority classes at a 4% sample rate. The results show an improvement of the Kappa 

coefficient from 0.574 to 0.732, the AUC from 0.780 to 0.891, and the true positive rate of all minority 

classes combined from 0.43 to 0.70. However, the overall accuracy decreases from 0.952 to 0.846, 

and the true positive rate of the majority class declines from 0.99 to 0.94. The best average C-factor 

was achieved when the sampling rate of the majority class was 1%. On the other hand, the best soil 

erosion estimate was obtained when the sampling rate was 2%. 
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1. Introduction 

Severe soil erosion will increase soil sedimentation and severely reduce the water 

storage and supply capabilities of reservoirs. A previous analysis revealed that 30% of US 

croplands had excessive soil erosion rates [1]. Soil erosion has been one of the core topics 

in agriculture, natural resources conservation, and other related fields since the end of the 

1920s [2]. A significant trend in soil erosion study was developing various measurements 

and prediction models for different locations and applications, such as the AGNPS (agri-

cultural non-point source pollution model [3]), CREAMS (chemicals, runoff and erosion 

from agricultural management systems [4]), EPIC (erosion-productivity impact calculator 

[5]), SWRRBWQ (simulator for water resources in rural basins-water quality [6]), WEPP 

(water erosion prediction project [7]), and USLE (universal soil loss equation [8,9]). De-

spite being the earliest developed model, USLE is still a widely used empirical model and 

has been used at the national and international levels to estimate soil loss throughout the 

world [10]. 

There are six crucial factors in the USLE model, including the rainfall erosivity factor 

(Rm-factor), soil erodibility factor (Km-factor), slope length factor (L-factor), slope steep-

ness factor (S-factor), cover management factor (C-factor), and support practice factor (P-

factor). The outcome of the USLE model represents the average annual soil loss (Am). 

However, the USLE calculation excludes landslides, gully erosions, riverbed or bank ero-

sions, and sediment depositions [11–13]. Among the USLE factors, the C-factor (ranging 

from 0 to 1) is related to the land-use/land-cover (LULC). Thus, it may cause a thousand-

fold difference in soil erosion estimation (0.001 vs. 1). 

A summary of past studies of soil erosion in a Taiwanese watershed showed that the 

calculated soil erosion rate varies from 1 to 3310 t/ha-year [14]. Another study also demon-

strated that the non-uniform distribution of the USLE factors might cause a substantial 

discrepancy in soil erosion estimation [15]. Therefore, it is necessary to develop a strategy 

to derive more consistent and reliable factors when applying the USLE model for soil loss 

evaluation. 

This study focused on the assessment of the C-factor. Traditionally, the C-factor was 

determined based on plot experiments or in-situ investigations [9]. However, such works 

were too time-consuming and uneconomical to apply everywhere [16]. Renard et al. [17] 

derived a function to simulate the long-term field experiments by using the prior-land-

use sub-factor, canopy-cover sub-factor, surface-cover sub-factor, surface-roughness sub-

factor, and soil-moisture sub-factor to evaluate the C-factor. Although the derived func-

tion improved the efficiency of the long-term field experiments, significant field works 

were still unavoidable. Nowadays, connecting the C-factor with the LULC map using a 

look-up table is an effective strategy [18]. However, this strategy is limited by the update 

period of the map, and therefore evaluating the multi-temporal soil erosion is difficult. 

Similarly, instead of the LULC map, a time-series result can be obtained using satellite 

remote sensing images and supervised classification techniques [19,20]. The limitations 

here are that ground truth points are needed to assess the accuracy of the image classifi-

cation, and the results are inferior to the LULC map produced from fieldwork. Performing 

regression analyses to connect features derived from remotely sensed images (e.g., nor-

malized difference vegetation index, NDVI) with the C-factor is another common ap-

proach [21,22]. Again, the developed relationships may have a large margin of error, fail 

to provide any physical meanings, and may be sensitive to vegetation phenology and soil 

conditions [23]. According to the comparison above, Table 1 summarizes the typical ap-

proaches for estimating the C-factor. 
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Table 1. Comparison of typical approaches for estimating the C-factor. 

 Approach Method Advantage Challenge 

1 
LULC map by 

field survey 

1. Conduct field surveys to 

generate a LULC map  

2. Convert the LULC clas-

ses to C-factors by a look-up 

table 

Most accurate 

LULC data 

Time-consuming 

with a lengthy 

update period 

2 

LULC map by 

remote 

sensing 

1. Use remote sensing im-

ages to generate a LULC map  

2. Convert the LULC clas-

ses to C-factors by a look-up 

table 

Multi-temporal 

evaluation 

Ground truthing 

needed to ensure 

accuracy 

3 

Empirical 

NDVI 

equation 

1. Establish an empirical 

equation between NDVI val-

ues and C-factors 

2. Use the equation to con-

vert NDVI values to C-factors 

Simple and multi-

temporal 

evaluation 

Sensitive to 

vegetation 

phenology and soil 

conditions 

4 This study 

1. Use the official LULC 

map and a look-up table to 

convert the LULC classes to C-

factor classes 

2. Use geospatial factors 

(including NDVI and SAVI) to 

train an RF model to predict 

C-factors 

More accurate 

model and multi-

temporal 

evaluation 

More complicated 

To improve upon previous research on this topic, the goal of this study was to con-

struct a model between the C-factor and related geospatial data (including but not limited 

to those derived from remotely sensed images) using a data mining approach. If a credible 

model can be constructed from official data collected in earlier years, then the model can 

be applied to predict the C-factors for later years by merely updating the remote sensing 

images, thus achieving multi-temporal analysis without having to update the LULC map 

every year. Furthermore, using this novel framework to assess and predict the C-factors 

based on geospatial factors, we will be able to better estimate the rate of soil erosion at a 

large scale, such as the watershed scale. As shown in Table 1, we used the official LULC 

map and a look-up table to determine the C-factors in this study. An RF model was then 

built to predict the C-factor values from the geospatial factors for use in the USLE model. 

The rest of the paper is organized as follows. Section 2 introduces the study area, the 

geospatial data, and the data mining algorithm. Section 3 presents the C-factor modeling 

and soil erosion estimation results and a discussion focusing on the class imbalance (im-

balanced data) problem. Finally, Section 4 concludes this paper and provides possible fu-

ture research directions. 

2. Methods 

To address the research goal, it is necessary to develop a strategy to derive more con-

sistent and reliable factors when applying the USLE model to evaluate soil loss. With the 

rapid development of geospatial technologies and data availability, there is a great poten-

tial to improve the USLE modeling based on geospatial data, such as remotely sensed 

images and geographic information system (GIS) data layers, to obtain a more accurate 

soil loss estimation at the regional scale, especially for long-term and multi-temporal stud-

ies. The data types, data processing, and data mining analysis are described in the follow-

ing sub-sections. 



ISPRS Int. J. Geo-Inf. 2021, 10, 19 4 of 19 
 

 

2.1. Study Area 

A mountainous area of 760 km2 of the Shihmen Reservoir watershed in northern Tai-

wan was selected as the study area (Figure 1). The elevation of the study area ranges ap-

proximately from 250 to 3500 m above sea level, measured from a 10-m digital elevation 

model (DEM). The terrain increases steeply from north to south, and steep slopes are ubiq-

uitous in the watershed. The average annual precipitation is approximately 2500 mm. 

There are 13 geological formations and six soil types in the study area [24]. The major 

land-cover is forest (both natural and artificial) and there is little agricultural activity. 

 

Figure 1. The location of the study area and a corresponding SPOT false-color satellite image. 

The Shihmen Reservoir watershed is one of the major reservoirs in Taiwan, providing 

drinking water to more than three million people in three northern cities. However, heavy 

rainfall induced by typhoons, such as Typhoon Aere in August 2004, may generate a large 

amount of debris and driftwood, resulting in a water supply shortage and causing various 

water resource management problems. Hence, a long-term land cover monitoring project 

from 2004 to 2009 was implemented using remote sensing technologies to support water 

resource and water supply management [25]. Based on the collected geospatial data, this 

study further explored the effectiveness of the USLE model by modeling the C-factor in 

the Shihmen Reservoir watershed to estimate the multi-temporal soil erosion rates. 

2.2. Materials and Data Preprocessing 

To connect the geospatial data to the C-factor, a total of eight attributes (as listed in 

Table 2) were considered in the modeling. They are elevation, slope, NDVI, soil adjusted 

vegetation index (SAVI), shortest distance to roads, shortest distance to rivers, geology, 

and soil type. In contrast to studies using many attributes, we used only eight attributes 

because research has shown that attribute reduction could improve the model perfor-

mance [26]. We also used fewer attributes because of the need to maximize the number of 

data points that can be processed by the R software (see Section 2.3). The purpose of pre-

processing is three-fold, including data collection, labeling, and feature derivation. Some 

of the derived features could be obtained by spatial analysis from the original data. For 

example, the elevation and slope information could be derived from the DEM. As for the 

multi-temporal satellite images listed in Table 3, this study generated the NDVI and SAVI 

indices year by year for modeling purposes. Equations (1) and (2) show the NDVI and 

SAVI equations, where NIR and RED represent the radiance or reflectance of near-infrared 

and red bands, respectively, and L indicates the soil correction factor that is commonly set 
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to 0.5 [27]. However, the mountainous topography might distort the spectral responses so 

that the same land cover types located on phototropic and apheliotropic areas might have 

significant variations. To reduce the topographic effect, this study applied a typical Min-

naert correction [28] to rectify the spectral responses based on a non-Lambertian assump-

tion before deriving the vegetative features. Similar to the use of DEM and SPOT images, 

the rest of the data, such as the distance information to roads and rivers, were generated 

by spatial analysis. Additionally, the vector data were rasterized to 10 × 10 m to be com-

patible with one another. 

���� =
�������

�������
  (1)

���� =
��� − ���

��� + ��� + �
(1 + �) (2)

where NIR and RED are the radiance or reflectance of near-infrared and red bands, and L 

is the soil correction factor (0.5). 

Table 2. Types of geospatial data that were used in this study. 

Original Data Derived Data Note 

DEM 
Elevation (numeric) 

Cell size: 10 m 
Slope (numeric) 

SPOT satellite 

images 
NDVI (numeric) 

See Table 3 for details 

 SAVI (numeric) 

Road map Distance to road (numeric) Measurement unit: meter 

Stream map Distance to river (numeric)  

Geology map 
Geological formation 

(categorical) 

1. Alluvium 

2. Hsitsun Formation 

3. Kueichulin Formation 

4. Mushan Formation 

5. Nanchuang Formation 

6. Nankang Formation 

7. Paling Formation 

8. Peiliao Formation 

9. Shihti Formation 

10. Szeleng Sandstone 

11. Taliao Formation 

12. Talu Shale 

13. Terrace Deposits 

Soil map Soil type (categorical) 

1. Silt/silty loam 

2. Loam 

3. Loamy fine sand/coarse sandy 

loam/sandy loam 

4. Very fine sand/loamy very fine 

sand 

5. Clay 

6. Fine sand/loamy sand/loamy coarse 

sand 

7. No data 
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Table 3. SPOT satellite images that were used in this study. 

Sensor Date 
Spatial Resolution 

(m) 

Spectral Bandwidth 

(um) 

Radiometric Resolution 

(bits) 

SPOT 5 

2004/10/12 

10 Green: 0.50–0.59 

Red: 0.61–0.68 

NIR: 0.79–0.89 

8 

2006/07/19 

2008/09/21 

SPOT 4 
2005/07/25 

20 
2007/07/19 

After feature derivation and assembly, a look-up table was used to assign C-factor 

values to the official 2004 LULC map (the only map available during the study period). 

The C-factor’s point values were based on the research of Jhan [29] and Lin [30], which in 

turn were based on the design manual of the Soil and Water Conservation Bureau of Tai-

wan. Without conducting numerous experiments in the field to determine the C-factors 

at various locations, the look-up table provides the next best option to assign credible C-

factor values to different LULC classes in the study area. As can be seen from Figure 2, 

there were 23 land use classes assigned to 12 different C-factor classes. The higher the C-

factor, the less the land cover and the higher the soil erosion. The correspondence between 

the LULC classes and the C-factor classes are summarized in Table 4. The geospatial data 

and the corresponding C-factor values of each grid cell in the study area were extracted 

and assembled as an analytic dataset (herein referred to as the population dataset) used 

by the data mining algorithm (after sampling) to create a C-factor model. The model is 

used for multi-temporal analysis of C-factor change and soil erosion. 

 

Figure 2. LULC classes of the study area (forests are labeled in white for contrasting other LULC classes). 
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Table 4. LULC classes merged by C-factor classes (revised from Jhan [29] and Lin [30]). 

C-Factor Class Land Use/Land Cover Class 

0 Waterbody, reef 

0.005 Railway related facility, weir, dam, cultural facility 

0.01 Natural forest, artificial forest, residential area 

0.025 Dike, ditch, aqueduct, shoal, beach, wetland 

0.03 Provincial road, road 

0.035 Unused land, land being converted 

0.05 Pastureland, logging land, grassland, shrubland 

0.133 Livestock house 

0.156 Abandoned farmland 

0.16 Orchard 

0.208 Dry-farming land 

1 Fire break, bare land 

2.3. Data Mining Analysis 

To extract useful, unknown, and potential information from the vast dataset, data 

mining is an efficient approach [31,32]. Random Forests (RF), one of the popular data min-

ing algorithms proposed by Breiman [33], has excellent performance in analyzing many 

complicated remote sensing issues [34–37]. The procedure for applying the data mining 

algorithm to construct a C-factor model for soil erosion estimation is illustrated in Figure 

3. We used the geospatial data derived from GIS and SPOT images and the official 2004 

LULC map (from field surveys) to construct the C-factor model using the randomForest() 

package of the R software. Among the data mining procedures, the RF algorithm is a su-

pervised approach that adopts multiple decision trees (DT), bootstrap aggregation (bag-

ging), and internal cross-validation techniques. It integrates all tree-based results into the 

best model for analysis [33]. Recent years have seen increased attention being given to the 

RF algorithm in the geo-informatics domain. Belgiu and Dragut [34] reviewed its applica-

tion and future direction in remote sensing. Nevertheless, constructing the C-factor model 

based on the RF algorithm and geospatial data has rarely been conducted until now. The 

primary benefit of the RF algorithm is that it can avoid the over-fitting issue to improve 

prediction accuracy [38]. The RF algorithm employs measures such as the Gini index, in-

formation gain (IG), or entropy to evaluate the degree of impurity of discrete or numeric 

input data. The smaller the Gini index of an attribute, the higher the priority should be 

selected to construct a conditional node and ignore the other attributes. The RF algorithm 

performs numerous iterations and randomly divides the training dataset (in terms of the 

number of data and the number of attributes) into many subsets to build many trees and 

generate better results than the DT method. The detailed steps can be seen in Guo et al. 

[39]. 
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Figure 3. Research steps of this study. 

Owing to the memory size limitation of R, only about 4% of the population dataset 

can be imported and used in the modeling (303,682 points out of 7,592,062 points). There-

fore, we used the stratified random sampling method to select the same percentage of data 

points from each of the 12 C-factor classes (herein referred to as the sample dataset or the 

input dataset), as shown in Table 5. Note that the input dataset is highly unbalanced, with 

92.5% of the data from the C = 0.01 class (forests). The percentage of the rest of the C-factor 

classes ranges from close to 0% to 2.9%. 

Table 5. The percentage composition of C-factor classes in the input datasets under different majority class sampling rates 

(C = 0.01 class). 

No. 
C-factor 

Class 

Total no. of Points 

(Population) 

4% of the Majority 

Class 

2% of the Majority 

Class 

1% of the Majority 

Class 

0.5% of the Majority 

Class 

% of the Total Sample (Input Dataset) 

1 0 216,970 8679 (2.9%) 8679 (5.3%) 8679 (9.3%) 8679 (15.0%) 

2 0.005 1110 44 (0.0%) 44 (0.0%) 44 (0.0%) 44 (0.1%) 

3 0.01 7,021,560 280,862 (92.5%) 140,431 (86.0%) 70,216 (75.5%) 35,108 (60.6%) 

4 0.025 47,629 1905 (0.6%) 1905 (1.2%) 1905 (2.0%) 1905 (3.3%) 

5 0.03 37,714 1509 (0.5%) 1509 (0.9%) 1509 (1.6%) 1509 (2.6%) 

6 0.035 4235 169 (0.1%) 169 (0.1%) 169 (0.2%) 169 (0.3%) 

7 0.05 46,598 1864 (0.6%) 1864 (1.1%) 1864 (2.0%) 1864 (3.2%) 

8 0.133 73 3 (0.0%) 3 (0.0%) 3 (0.0%) 3 (0.0%) 

9 0.156 342 14 (0.0%) 14 (0.0%) 14 (0.0%) 14 (0.0%) 

10 0.16 141,672 5667 (1.9%) 5667 (3.5%) 5667 (6.1%) 5667 (9.8%) 

11 0.208 60,060 2402 (0.8%) 2402 (1.5%) 2402 (2.6%) 2402 (4.1%) 
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12 1 14,099 564 (0.2%) 564 (0.3%) 564 (0.6%) 564 (1.0%) 

 Total  7,592,062 100.0% 100.0% 100.0% 100.0% 

After sampling, 70% of the input dataset was used as the training data and inputted 

into the RF algorithm to create the C-factor model. The remaining 30% was the test data 

and used to assess the performance of the model. Once the model was validated, it was 

applied to the population dataset to generate the C-factor maps from 2004 to 2008. Finally, 

the C-factor and the other USLE factors were combined in the USLE model to calculate 

the soil erosion rates from 2004 to 2008 (see Section 2.4 for details). 

Categorical and numerical data are two major geospatial data types. The random-

Forest() package of R uses the Gini index to split nodes in order to reduce impurity at each 

node [40]. We used 1000 trees in this study, and three variables were tried at each split. 

The Gini index of dataset D is defined in Equation (3), where m is the number of categories, 

ni is the number of data points in the ith category, and N is the total number of data points. 

If a binary split was performed on attribute A, the Gini index given the split was defined 

in Equation (4), where D1 and D2 are the datasets after the split [41]. 

����(�) = 1 −��
��
�
�
�

�

���

 (3)

�����(�) =
��
�
����(��) +

��
�
����(��) (4)

To verify the data mining-based C-factor model, this study calculated the confusion 

matrix (or error matrix), overall accuracy (OA), Kappa coefficient, and area under the 

curve (AUC) of the receiver operating characteristic (ROC) curve for the quantitative eval-

uation. Overall accuracy refers to the percentage of correctly classified samples as shown 

in Equation (5), where M represents the element in the confusion matrix; Mtotal is the sum 

of M; Mdiag is the sum of M on the diagonal line; Nc is the number of labels; and i and j are 

the row and column indices. The Kappa coefficient is shown in Equation (6), which reflects 

the reliability of the modeling results. When the Kappa coefficient is close to 1, it shows 

excellent agreement between prediction and observation. By contrast, the results are 

worse than random assignment when a negative Kappa value appears. 

�� =
∑ ���
��
���

∑ ∑ ���
��
���

��
���

=
�����

������
 (5)

����� =
����������� − ∑ (������)

��
���

������
� − ∑ (������)

��
���

 (6)

2.4. USLE Computation 

The USLE equation is shown in Equation (7), and the meanings of all USLE factors 

are listed in Table 6. Although the goal of the study is to evaluate the C-factor, other USLE 

factors are also needed to estimate the annual soil loss. For these factors, this study fol-

lowed the investigations of Chen et al. [14] and Liu et al. [42] to produce the rainfall ero-

sivity, soil erodibility, slope length, and slope steepness layers, respectively. We also as-

sumed that the support practice factor is 1. The generated Rm- and Km- factor distribution 

maps are shown in Figure 4a,b, and the L- and S-factors are combined as a topographic 

factor (LS-factor) shown in Figure 4c. 

�� = �� × �� × � × � × � × � (7)
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(a) Rm-factor (b) Km-factor (c) LS-factor 

Figure 4. The distribution maps of Rm-, Km-, and LS-factors. 

Table 6. The USLE factors and their definitions and units. 

Symbol Definition Unit 

Am Average annual soil loss t/ha-year 

Rm Rainfall erosivity factor MJ-mm/ha-hour-year 

Km Soil erodibility factor t-hour/MJ-mm 

L Slope length factor -- 

S Slope steepness factor -- 

C Cover management factor -- 

P Support practice factor -- 

3. Results and Discussion 

The results of this study are presented as tables, graphs, and statistical metrics in the 

following sub-sections. 

3.1. Cover-Management Factor Modeling 

According to the data preprocessing and study procedures described in previous sec-

tions, the C-factor RF model was constructed using the training data and tested with the 

test data. The C-factors were from the official 2004 LULC map (the only map available 

during the study period), and the results are shown in Table 7. Unlike a previous study 

[30], which only used at most 100 points from each C-factor class and substantially over-

estimated soil erosion, we tried to maximize the number of data points that could be pro-

cessed to train the RF model given the memory size limitation of R. Consequently, 4% of 

the total data points (population dataset) were used (303,682 points selected out of 

7,592,062 points). The training dataset result shows that OA = 1, Kappa = 1, and AUC = 1 

(the confusion matrix is not shown here to avoid redundancy). This indicates that the RF 

model can correctly distinguish all 212,578 data points in the training dataset. By contrast, 

Table 7 shows that the result of the test dataset has less remarkable metrics. While OA is 

still very high (0.9516), Kappa is only 0.5741, and AUC is 0.7804. Using this RF model, we 

predicted the C-factor distribution maps from 2004 to 2008 using SPOT images. The re-

sulting maps are shown in Figure 5b–f. 
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(a) 2004 LULC map (b) 2004 prediction (c) 2005 prediction 

   

(d) 2006 prediction (e) 2007 prediction (f) 2008 prediction 

Figure 5. The C-factor distribution maps of the (a) 2004 LULC map, (b) 2004 prediction, (c) 2005 prediction, (d) 2006 pre-

diction, (e) 2007 prediction, and (f) 2008 prediction (4% sampling rate of the majority class). 

Table 7. The confusion matrix of the test data (4% sampling rate of the majority class). 

Actual 
Predicted 

0 0.005 0.01 0.025 0.03 0.035 0.05 0.133 0.156 0.16 0.208 1 

0 1792 0 732 75 1 0 1 0 0 3 0 0 

0.005 0 3 8 0 0 0 2 0 0 0 0 0 

0.01 249 0 83,729 7 130 1 19 0 0 101 19 4 

0.025 109 0 89 372 0 0 1 0 0 0 0 0 

0.03 2 0 99 0 349 0 0 0 0 2 1 0 

0.035 2 0 32 3 3 8 0 0 0 2 1 0 

0.05 13 0 441 4 8 0 85 0 0 7 1 0 

0.133 0 0 1 0 0 0 0 0 0 0 0 0 

0.156 0 0 4 0 0 0 0 0 0 0 0 0 

0.16 6 0 1400 0 24 0 0 0 0 251 19 0 

0.208 5 0 559 0 17 1 0 0 0 58 81 0 

1 1 0 133 7 2 0 0 0 0 1 0 25 

Overall 

statistics 
OA = 0.952 Kappa = 0.574 AUC = 0.780 
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Figure 5a shows the true C-factor distribution from the official 2004 LULC map. The 

similarity between the prediction (Figure 5b–f) and the reference C-factor is evident. The 

red pixels (high C-factor values) of all maps cluster along the central river valley near the 

center and lower portions of the watershed. However, some of the C-factor cannot be dis-

tinguished reliably, and some omission and commission errors have occurred. As shown 

in column 4 (shaded) of Table 7, the most noticeable trend is a prediction bias towards the 

C = 0.01 class, representing natural and artificial forests. This result reflects the over-

whelming majority of the C = 0.01 class in the sample (92.5%) when building the RF model 

(Table 5). Hence, the RF model tends to classify pixels into the C = 0.01 class. Because of 

this bias towards a low C-factor value (0.01), the average of 2004 C-factors predicted by 

the RF model is only 0.0115 (Table 8), which is lower than the true average of 0.0164 (offi-

cial 2004 LULC map). Likewise, the predicted average C-factors are also lower in the sub-

sequent years from 2005 to 2008. 

Table 8. Comparison of C-factors between the official LULC map and the model predictions under 

different sampling rates of the majority class (C = 0.01 class). 

 

Official LULC Map 

(Mean) 
RF Model Prediction (Mean) 

2004 2004 2005 2006 2007 2008 

4% 

0.0164 

0.0115 0.0114 0.0110 0.0110 0.0115 

2% 0.0130 0.0132 0.0125 0.0124 0.0133 

1% 0.0156 0.0164 0.0149 0.0146 0.0169 

0.5% 0.0115 0.0114 0.0110 0.0109 0.0115 

To reduce the classification error, we experimented with an ad-hoc down-sampling 

of the majority class technique that used only 2% data from the majority class (C = 0.01 

class) while maintaining a 4% sample rate of the other minority C-factor classes. The per-

centages of data points from each of the 12 C-factor classes in the input dataset were pre-

viously shown in Table 5. Again, the result of the training dataset shows a perfect classi-

fication of OA = 1, Kappa = 1, and AUC = 1 (again, the confusion matrix is not shown here 

to avoid redundancy). The result of the test dataset (Table 9) shows that OA = 0.9230, 

Kappa = 0.6484, and AUC = 0.7807. Compared with Table 7, we can see that the OA de-

creases from 0.9516 to 0.9230, the Kappa increases from 0.5741 to 0.6484, and the AUC 

remains about the same. Using only 2% data from the C = 0.01 class, the predicted average 

C-factors from 2004 to 2008 range from 0.0124 to 0.0133 (Table 8), higher than the 4% case 

and closer to the true average C-factor value. In other words, the reduction of the sampling 

rate from 4% to 2% increases the Kappa coefficient at the expense of OA. Simultaneously, 

the reduction of the sampling rate also brings the predictions closer to the reference value 

(ground truth). Although we had adopted the stratified random sampling method to ob-

tain a representative sample of all C-factor classes, it did not completely avoid the imbal-

anced data problem. The next section will present how the sampling rate of the majority 

class affects soil erosion estimates. 

Table 9. The confusion matrix of the test data (2% sampling rate of the majority class). 

Actual 
Predicted 

0 0.005 0.01 0.025 0.03 0.035 0.05 0.133 0.156 0.16 0.208 1 

0 2034 0 494 62 0 0 3 0 0 4 6 1 

0.005 0 6 5 0 0 0 2 0 0 0 0 0 

0.01 234 0 41,551 4 83 1 21 0 0 188 41 6 

0.025 113 0 85 371 1 0 1 0 0 0 0 0 

0.03 1 0 37 0 401 4 0 0 0 9 1 0 

0.035 1 0 20 1 1 15 0 0 0 8 5 0 
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0.05 10 1 402 5 2 0 124 0 0 11 4 0 

0.133 0 0 1 0 0 0 0 0 0 0 0 0 

0.156 0 0 4 0 0 0 0 0 0 0 0 0 

0.16 7 0 1095 0 24 0 0 0 0 540 34 0 

0.208 9 0 440 0 19 0 0 0 0 123 130 0 

1 2 0 130 2 0 0 0 0 0 2 1 32 

Overall 

statistics 
OA = 0.923 Kappa = 0.648 AUC = 0.781 

3.2. Soil Erosion Estimation 

Up until 2017, the USLE model was the only method for estimating the amount of 

soil loss in the technical regulations for soil and water conservation in Taiwan [43]. Com-

bining the Rm-, Km-, and LS-factor layers (Figure 4) with the C-factor layer (Figure 5), the 

USLE model was used in this study to estimate the amount of soil erosion. The result 

based on the official 2004 LULC map is listed in the second column of Table 10 (116.3 t/ha-

year). The multi-temporal evaluations from 2004 to 2008 based on the RF models (4% and 

2%) are shown in columns 3–7 of the same table year by year. Comparing the results for 

2004 (columns 2 and 3), the RF models generate lower than expected (true) soil erosion 

rates (88.2 and 95.1 vs. 116.3 t/ha-year). Similarly, the soil erosion rates are lower in the 

subsequent years from 2005 to 2008. Using the 2% RF model, we prepared the predicted 

soil erosion maps in Figure 6b–f for the years 2004 through to 2008, while the soil erosion 

map based on the official 2004 LULC map is shown in Figure 6a. As such, a high resem-

blance between the predictions (Figure 6b–f) and the reference value (Figure 6a) is evident. 

The red pixels (high soil erosion rates) of all maps cluster near the center and lower por-

tions of the watershed, indicating good modeling results. The results of the 4% RF model 

are similar, but we did not include them here to avoid redundancy. 

   

(a) 2004 LULC map (b) 2004 prediction (c) 2005 prediction 
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(d) 2006 prediction (e) 2007 prediction (f) 2008 prediction 

Figure 6. The soil erosion maps of the (a) 2004 LULC map, (b) 2004 prediction, (c) 2005 prediction, (d) 2006 prediction, (e) 

2007 prediction, and (f) 2008 prediction (2% sampling rate of the majority class). 

Table 10. The estimation of annual soil loss based on C-factors of different years (4% and 2% sam-

pling rates). 

 

Official 

LULC Map 

(2004) 

RF Model Prediction  
Erosion Pins 

(2008–2011) 2004 2005 2006 2007 2008  

Am (t/ha-year) 116.3 

88.2 85.6 84.7 84.0 84.5 
(4% of C = 

0.01) 
90.6 

95.1 94.4 92.4 91.6 93.2 
(2% of C = 

0.01) 

Chen et al. [14] compiled a table of the calculated amounts of soil erosion of the Shih-

men Reservoir watershed from previous studies. The table shows that soil erosion ranges 

from 1 to 3310 t/ha-year. Our results are close to the lower end of the soil erosion range. 

By contrast, the only study using a similar methodology to this study [30], which related 

nine decision factors, including the gray level co-occurrence matrix (GLCM) to the C-fac-

tor, only used at most 100 points from each C-factor class. The study achieved a Kappa 

coefficient of 0.758, but estimated the soil erosion to be 359.4–629.9 t/ha-year. 

Based on the erosion pins installed in the Shihmen Reservoir watershed [44] and the 

measurements collected from 8 September 2008 to 10 October 2011, the soil erosion depth 

ranged from 2.17 to 13.03 mm/year [37]. The average erosion depth is 6.5 mm/year, which 

is equivalent to 90.6 t/ha-year if the unit weight of soil is assumed to be 1.4 t/m3 [42]. Thus, 

our results are more comparable with the erosion pin measurements. Specifically, it shows 

that the 4% sampling rate underestimates soil erosion, whereas the 2% sampling rate over-

estimates soil erosion. 

It is worth noting that the long-term land cover and landslide monitoring project [25] 

from 2004 to 2009 indicated that only typhoon Aere in 2004 induced significant land deg-

radation and mass movement in the period. Large amounts of debris and driftwood 

flowed into the Shihmen Reservoir. The high turbidity in the water caused the water dis-

tribution system to be shut down for an unprecedented 18 days. A similar situation has 

not happened since. The removal of land cover in the watershed is the reason why the 

calculated soil erosion based on the official 2004 LULC map is as high as 116.3 t/ha-year. 
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After Typhoon Aere, as the land stabilized and vegetation re-grew to provide new ground 

cover, soil erosion reduced substantially. This explains why the measured soil erosion is 

only 90.6 t/ha-year between 2008 and 2011 (Table 10). 

According to Table 10, both of the 4% and 2% C-factor models predict a peak of soil 

erosion in 2004, followed by a gradual decrease until a small rebound in 2008. This is con-

sistent with the vegetation recovery in the study area from 2005 to 2007 and the hike in 

rainfall brought by Typhoons Kalmaegi, Sinlaku, and Jangmi in 2008 [45]. However, the 

differences in soil erosion rates are not as marked as expected from year to year. Never-

theless, these results confirm that it is possible to develop a multi-temporal data mining 

model for the C-factor and the corresponding soil erosion. 

3.3. Discussion 

Although this study’s results demonstrated the feasibility of constructing a data min-

ing model for the USLE C-factor, the modeling results were affected by the majority class’s 

sampling rate (C = 0.01 class). At the beginning of the study, we used the stratified random 

sampling method (instead of the simple random sampling method) to ensure that each 

class (strata) of the population dataset (total data points) were represented. It helped to 

avoid incorrect analysis, but it did not solve the class imbalance problem entirely. So, we 

experimented with the down-sampling of the majority class (C = 0.01 class) to 2% and kept 

the other minority classes at a 4% sample rate. A better result was achieved as indicated 

by the higher Kappa coefficient (but at the expense of lower OA). To investigate if the 

classification performance can be further improved, we applied an ad-hoc down-sam-

pling of the majority class technique (similar to random under-sampling) to the popula-

tion dataset with 1% and 0.5% sampling rates. The resulting percentage compositions of 

each of the 12 C-factor classes in the input dataset were previously shown in Table 5. After 

building corresponding RF models, the overall results are summarized in Table 11, which 

shows the OA, the Kappa coefficient, the AUC, the true positive rate of all minority classes 

combined, the true positive rate of the majority class, the average C-factor of the LULC 

map, the predicted average C-factor of 2004, the predicted soil erosion rate of 2004, the 

predicted soil erosion rate of 2008, and the measured soil erosion rate by the erosion pins. 

Table 11. Comparison of typical metrics under different sampling rates of the majority class (C = 0.01 class). 

Sampling Rate 

of the 

Majority Class 

OA Kappa AUC 

True 

Positive 

Rate of All 

Minority 

Classes 

Combined 

True 

Positive 

Rate of 

the 

Majority 

Class 

Average 

C-factor 

of LULC 

Map 

Average 

C-factor 

(2004) 

Soil 

Erosion 

of 2004 

(t/ha-

Year) 

Soil 

Erosion 

of 2008 

(t/ha-

Year) 

Erosion 

Pins 

(2008–

2011) 

4% 0.952 0.574 0.780 0.43  0.99  

0.0164 

0.0115 88.2 84.5 

90.6 
2% 0.923 0.648 0.781 0.53  0.99  0.0130 95.1 93.2 

1% 0.880 0.687 0.845 0.61  0.97  0.0156 104.3 108.0 

0.5% 0.846 0.732 0.891 0.70  0.94  0.0115 88.2 84.5 

It was found that the down-sampling strategy works well. With the decrease in the 

majority class sampling rate, the Kappa coefficient increases from 0.574 to 0.732, and the 

AUC increases from 0.780 to 0.891. Moreover, the true positive rate of all minority classes 

combined also increases from 0.43 to 0.70. However, the overall accuracy decreases with 

the down-sampling from 0.952 to 0.846, and the true positive rate of the majority class 

declines from 0.99 to 0.94. 

At first, it appears that 0.5% is the best sampling rate in this study, but the average 

C-factor indicates otherwise. The C-factor value starts from 0.0115 at 4% and then becomes 

0.0130 at 2% and 0.0156 at 1%, gradually approaching the reference value of 0.0164. How-

ever, the average C-factor suddenly dips back down to 0.0115 at 0.5%, deviating from the 
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reference value again. Therefore, judging from the average C-factor, 1% is the majority 

class’s best sampling rate. 

The unexpected result of the average C-factor is further investigated in Figure 7, in 

which the predicted percentage compositions of four different sampling rates were plot-

ted for all minority classes. The red line indicates the “true” percentage composition from 

the 2004 official LULC map. As shown in the figure, the difference in the C = 0.16 class 

between the LULC map and the different sampling rates determines how accurate the 

final average C-factor is. As the sampling rate decreases from 4% to 2% and 1%, the re-

spective percentage of the C = 0.16 class approaches and then surpasses that of the LULC 

map. When the sampling rate is further reduced to 0.5%, the percentage of the C = 0.16 

class reverses course and drops back to the same level as that of the 4% sampling rate. 

This explains why the 0.5% sampling rate did not yield a better average C-factor, even 

though its other metrics (such as OA, Kappa, and AUC) were superior. 

 

Figure 7. The model predicted percentage compositions of the minority classes in the 2004 population dataset under dif-

ferent sampling rates of the majority class. The red line indicates the true percentage composition from the 2004 official 

LULC map. 

Finally, if we compare the predicted soil erosion rates with the rate measured by the 

erosion pins, we arrive at yet another different conclusion. The 2% sampling rate predicts 

a soil erosion rate of 93.2 t/ha-year, which is the closest to the measured rate of 90.6 t/ha-

year. In this scenario, 2% is the best sampling rate. The best sampling rates under different 

criteria are shaded in Table 11 for easy comparison. 

The results presented above suggest that, apart from the class imbalance problem, 

other factors are responsible for this study’s modeling performance. Using the overall 

evaluation metrics (such as OA, Kappa, and AUC) in this study is not entirely appropriate 

and could be misleading. Since our goal was a two-step approach to model the C-factor 
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and eventually the soil erosion, the predicted soil erosion rate is the most important indi-

cator. A more balanced dataset does not always yield a better modeling result in terms of 

soil loss, and we consider 2% to be the best sampling rate in this study. 

4. Conclusions 

Unlike previous studies, this research developed C-factor models based on data min-

ing techniques to improve the soil erosion assessment in the Shihmen Reservoir watershed 

in northern Taiwan. Eight geospatial data were selected and used in the modeling. The 

multi-temporal vegetative indices (NDVI and SAVI) derived from multispectral satellite 

images were rectified by a topographic correction to reduce variations over time and bet-

ter characterize the surface radiances of the same targets. The C-factor models built using 

the RF-based data mining algorithm were used with USLE to estimate the spatiotemporal 

soil losses from 2004 to 2008. The results were compared against past studies and the 

measurements of erosion pins. They showed promising classification performance. 

It is found that the soil erosion rate in 2004 was the highest because of the unprece-

dented destruction of Typhoon Aere in 2004. As the vegetation in the watershed re-grew 

after the typhoon to provide new ground cover, the soil erosion rate decreased steadily 

until 2008, when a surge of rainfall occurred due to Typhoons Kalmaegi, Sinlaku, and 

Jangmi. This trend was successfully captured by the RF models, which demonstrates the 

feasibility of the multi-temporal analysis. Furthermore, using an ad-hoc down-sampling 

of the majority class technique (at 2% sampling rate), the soil erosion rate was predicted 

to be 93.2 t/ha-year, very close to the 90.6 t/ha-year measured by the erosion pins installed 

in the watershed. 

In addition, this study provides a case of an imbalanced data problem that differs 

from other imbalanced data problems in that a more balanced dataset does not always 

yield a better modeling result. The best sampling rate of the majority class based on dif-

ferent metrics are summarized as follows: 

1. Overall accuracy and true positive rate of the majority class: 4% 

2. Kappa coefficient, AUC, and true positive rate of all minority classes combined: 0.5% 

3. Average C-factor: 1% 

4. Soil erosion rate: 2% 

In summary, the results show that the proposed novel framework for assessing and 

predicting C-factors and soil erosion based on geospatial factors is both viable and prac-

tical. The method also has promising classification performance even when faced with an 

imbalanced data problem. An imbalanced data problem cannot be easily eradicated by 

removing records from the majority class. Therefore, future research is necessary to im-

prove model performance and soil erosion estimates. 
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