
 International Journal of

Geo-Information

Article

Analysis of Differences in the Spatial Distribution among
Terrestrial Mammals Using Geodetector—A Case Study
of China

Yao Chi 1 , Tianlu Qian 1, Caiying Sheng 1, Changbai Xi 1 and Jiechen Wang 1,2,*

����������
�������

Citation: Chi, Y.; Qian, T.; Sheng, C.;

Xi, C.; Wang, J. Analysis of

Differences in the Spatial Distribution

among Terrestrial Mammals Using

Geodetector—A Case Study of China.

ISPRS Int. J. Geo-Inf. 2021, 10, 21.

https://doi.org/10.3390/ijgi10010021

Received: 29 October 2020

Accepted: 6 January 2021

Published: 9 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for
Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and
Ocean Science, Nanjing University, Nanjing 210023, China; chiyao@smail.nju.edu.cn (Y.C.);
qiantl@smail.nju.edu.cn (T.Q.); shengcy@smail.nju.edu.cn (C.S.); xicb11@smail.nju.edu.cn (C.X.)

2 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and
Application, Nanjing University, Nanjing 210023, China

* Correspondence: wangjiechen@nju.edu.cn

Abstract: The survival and distribution of animals cannot be separated from a certain environment.
How patterns in mammalian species depend on the environment remain unclear. This study incorpo-
rating spatial data on climate, precipitation, topography, and vegetation quantitatively analyzed the
influence of specific geographical factors on the spatial distribution of terrestrial mammalian richness
using the Geodetector model. We used the spatial analysis method of geographical information
systems (GIS), separating the mammalian distribution of 621 species into 10 by 10 km grids to mea-
sure spatial richness. Our results showed that there were significant spatial differences in terrestrial
mammalian richness in China. There was a low richness in the east and west, but high richness in the
south. Individual factor detection results showed that annual precipitation (AP) and the minimum
temperature of the coldest month (MTCM) were the dominant factors affecting the spatial pattern of
mammal richness in China. Patterns in the distribution of species richness had distinct characteris-
tics for different mammalian orders and were influenced by different environmental factors. The
richness distribution of most orders was mainly affected by MTCM and AP. Interactive detection
results showed that interacting factors in pairs play much bigger roles in the spatial distribution of
species richness than individual factors. The synergistic effect of elevation with AP and MTCM best
explained the distribution differences of species richness. We found that the Geodetector model is a
valuable tool, hoping to be more widely used in biogeography.

Keywords: environmental factor; Geodetector; GIS; mammal richness; spatial distribution difference;
terrestrial mammals

1. Introduction

The survival and distribution of any animal cannot be separated from a certain
environment. The negative consequences of human activities restrict the development of
resources and the environment, consequently causing detrimental impacts on the natural
habitat [1]. Many species have been annihilated or are in a state of imminent danger.
However, how patterns in the distribution of species depend on the environment remain
unclear.

How species are distributed is the combined effect of abiotic factors and biotic interac-
tions [2–5]. Notably, many scholars have proposed hypotheses to explain the mechanisms
of influencing patterns in the geographical distribution of species. Such hypotheses include
the productivity hypothesis [6,7], ambient energy hypothesis [8,9], environmental stability
hypothesis [10,11], water–energy dynamic hypothesis [12,13], freezing tolerance hypoth-
esis [13,14], habitat heterogeneity hypothesis [15], and historical hypothesis [16]. These
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hypotheses reveal different forms of energy influencing the spatial patterns of animals
from different perspectives.

Landscape, climate, topography, and social processes may affect the distribution of
animals [4,17]. There have been many available methods in estimating the relationship
between the geographical distribution of species and environment variables. Correlation
analyses are used to test consistency in the geographical patterns of diversity for different
taxonomic groups [18]. Regression models are often used for quantifying the relationship
between one variable and others upon which it depends [19]. In particular, generalized
linear models (GLMs), including linear regression, logistic regression, and Poisson regres-
sion, are suitable for analyzing nonlinear relationships between species and environmental
variables [20]. With the development of computer technology, complex models such as
machine learning have a strong predictive ability in simulating distributions of species,
which can handle complex response relations [20–25]. Classification and regression tree
(CART) can reveal the interaction between complex predictors [20]. Multivariate regression
trees (MRTs) can be used to explore and predict relationships between species data and
environmental characteristics [21]. Random forests or boosted regression trees (BRTs) are
often used to explore and predict which environmental factors influence the distribution of
animals [22,23]. Ecological niche models also identify the importance of the variables, pro-
vide response curves for each variable, and provide a potential distribution range according
to the environmental variables associated with species occurrence records [24,25].

Geodetector is a new statistical model to analyze geographical phenomena with
spatial stratified heterogeneity, which consists of four detectors [26]: factor, ecological,
interaction, and risk. The factor detector can reveal the relative importance or influence
intensity among these key factors without any assumptions or limitations compared to
the traditional statistical methods [26–28]. The ecological detector identifies the difference
in impact between two explanatory variables [26,28]. The interaction detector can also
analyze the interactions between factors that influence response variables [26,28]. The
risk detector analyzes whether the mean of the attributes between the two subareas of
factors is significantly different [26,28]. Geodetector can explore more comprehensively
the determinants of stratified heterogeneity of dependent variables from four aspects. It
has been utilized in numerous studies, including public health [28], land use [29], and
ecological environment [30], and it has been gradually adopted for the research of animal-
related fields. Shen et al. [31] used the Geodetector model to detect the suitability of
grasshopper habitat in steppe habitats of Inner Mongolia. Fan et al. [32] used Geodetector
software to study the influence of habitat factors on the distribution pattern of Spermophilus
dauricus in the Manchuria City of China. Chen et al. [33] analyzed the relationships among
the biogeographic patterns of the α-diversity of mangrove mollusks and environmental
factors and spatial variables by using the Geodetector software. Liu et al. [34] assessed the
influence of soil, land use, vegetation, and normalized difference vegetation index (NDVI)
layers on the distribution of rodent density using Geodetector. Liu et al. [35,36] tested the
q statistic by Geodetector to avoid the possible confounding caused by spatial stratified
heterogeneity.

In China, quantitative studies of the mechanisms influencing the formation of mam-
malian distribution patterns remain limited due to the limited availability of macrolevel
data. In this paper, we aim to present possibilities of using the Geodetector by ecologists,
demonstrating its use in an analysis of relationships between mammalian distribution and
environments. We used the Geodetector model combined with geospatial data and recent
animal taxonomic data to explore the intrinsic relationship between the spatial pattern of
terrestrial mammalian richness and environmental factors. The Geodetector model is based
on spatial differentiation analysis by combining spatial overlay technology of geographical
information systems (GIS). Our study systematically analyzed the relationship between
different geographical environmental factors influencing the distribution of species rich-
ness to more accurately understand the extent to which species distributions are affected
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by environmental factors. Our analysis was expected to provide an important reference
and scientific basis for the conservation policy of species diversity in China.

2. Materials and Methods
2.1. Study Area

The study encompassed the entire area of China (9.6 million km2; 73◦29′ east (E)–
135◦2′ E, 3◦31′ north (N)–53◦33′ N), see Figure 1. From east to west, the country extends
about 5200 km; from north to south, it spans about 5500 km. The country is characterized by
diverse terrain, different climate types, and complex natural conditions. It is the diversity
of habitat environments that leads to incredible species abundance. China is one of the
countries with the richest biodiversity globally [37]. The geological environment has been
subject to events, including tectonic movement and the uplifting of the Qinghai–Tibetan
Plateau, which has resulted in clear regional differences to the natural environment and
has influenced the geographical pattern in the distribution of animals [38].
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Figure 1. Topography of China.

2.2. Data Materials
2.2.1. Distribution Data of Terrestrial Mammals

Data on the distribution of mammals were represented as polygons, from China’s
Mammal Diversity and Geographic Distribution [39], which supplements and revises basic
information in the species list. The published database contained terrestrial mammals
comprising 11 orders and 625 species. For this study, humans and three locally extinct
species (Sumatran rhinoceros, Javan rhinoceros, Indian rhinoceros) were excluded. The
final analysis included 11 orders and 621 species. Preprocessing revealed that species
distribution maps exhibit uniform Albers equal-area conic projection.

The distribution ranges of terrestrial mammals overlap in space. We divided the whole
study area into grids with 10 by 10 km to quantify the distribution patterns of terrestrial
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mammals on the grid scale. We superimposed the distribution ranges of 621 terrestrial
mammals using multilayer overlap statistics of GIS. They were recorded as “1” and “0”
by counting the presence or absence of mammals in each 10 × 10 km grid. All individual
species in each grid were added up to represent the species richness. The individual species
within each taxonomic category per grid were as the richness of that particular taxon. A
total of 94,860 grids were used for the analysis.

2.2.2. Data Resources of Environmental Factors

To explore how specific factors of the natural environment affect mammalian distri-
bution in China, we selected 11 variables as environmental factors according to primary
explanatory variables among hypotheses. The minimum temperature of the coldest month
(MTCM) and maximum temperature of the warmest month (MTWM) reflect the freezing
tolerance hypothesis [13,14]. The MTCM and MTWM were obtained from 1 km monthly
temperature datasets for China from 2012 to 2014 of the National Earth System Science Data
Center, National Science and Technology Infrastructure of China (http://www.geodata.cn).
Annual mean temperature (AMT) is a natural factor representing the environmental heat
hypothesis [40]. Annual precipitation (AP), normalized difference vegetation index (NDVI),
and actual evapotranspiration (AET) reflect the productivity level of the region [41,42].
AMT was obtained from the annual average temperature dataset of China in 2015. AP was
obtained from the annual precipitation data set of China in 2015. NDVI was obtained from
the spatial distribution dataset of the normalized difference vegetation index of China in
2015. The datasets were obtained from the Data Center for Resources and Environmental
Sciences, the Chinese Academy of Sciences (RESDC) (http://www.resdc.cn/DOI). The
actual evapotranspiration was derived from the terrestrial evapotranspiration dataset
across China in 2015. The dataset was provided by the National Tibetan Plateau Data
Center (http://data.tpdc.ac.cn). Elevation (Ele), altitude relief (AR), soil type (ST), ge-
omorphic type (GT), and land-use type (LT) represent habitat heterogeneity [43]. The
digital elevation model with a spatial resolution of 30 m was derived from Aster GDEM.
Soil type was derived from the distribution data of 1:1 million soil types in China, which
consist of 13 soil orders. Geomorphic type data were derived from the spatial distribution
dataset of 1:1 million geomorphic types in China, which have 8 categories. Land-use data
were obtained from the remote sensing monitoring methods of land-use/cover changes of
China in 2015, which have 8 categories. The datasets were provided by the Data Center
for Resources and Environmental Sciences, the Chinese Academy of Sciences (RESDC) (
http://www.resdc.cn). All maps of environmental factors were clipped and transformed
uniform Albers equal-area conic projection and converted to grid squares, as well as joining
the corresponding species distribution data. Due to the analysis being done in grids of
10 × 10 km, the information from the original layers was transformed into the resolution
of 10 × 10 km. The MTCM, MTWM, AMT, AP, NDVI, AET, and Ele were the average of
corresponding variables in each grid cell. Altitude relief (AR) was the height difference
between the highest point and the lowest point in each grid. The Geodetector model
uses categorical variables rather than numerical. Here, we converted numerical factors to
categorial factors according to the algorithm of Natural Breaks [44], which is a classifica-
tion method to divide similar values into one class and maximize the difference between
classes [45]. We classified the values of eight numerical variables into 10 classes (shown in
Supplementary Materials Table S1). According to the area-dominant method, the types of
categorical variables with the largest coverage area were selected as the types for each grid
cell. The spatial distributions of classifications for 11 variables are shown in Figure 2.

http://www.geodata.cn
http://www.resdc.cn/DOI
http://data.tpdc.ac.cn
http://www.resdc.cn
http://www.resdc.cn
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2.3. Methods

Spatial stratification heterogeneity (SSH) is one of the basic characteristics of geograph-
ical phenomena, which refers to the difference of a certain attribute value in different types
or regions. Spatial data tend to be considerably more heterogeneous when the size of data
becomes large [27]. Geodetector is a novel tool that utilizes spatial attributes to measure
SSH, which consists of four detectors [26].

The factor detector in the Geodetector models focuses on the heterogeneity between
the factor attributes. The extent to which factor X is detected explains the spatial differenti-
ation of attribute Y. Measured with the q-statistic, it is expressed as follows [27]:

q = 1− 1
Nσ2 ∑L

h=1 Nhσh
2 = 1− SSW

SST
(1)

SSW = ∑L
h=1 Nhσh

2 (2)

SST = Nσ2 (3)
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where h is the strata of variable Y or factor X (h = 1, 2, . . . , L). Nh and N are the unit
numbers of layer h and the whole area. σh

2 and σ2 are the variances of Y in layer h and
the whole area. SSW and SST represent the sum of variance within the layer and the total
variance of the whole area. A larger value of q denotes a more obvious spatial heterogeneity
of Y and a stronger explanatory power of factor X to variable Y, q ∈ [0, 1].

The ecological detector compares whether there is a significant difference between the
two factors on the spatial distribution of attribute Y, measured by the F-statistic.

F =
NX1(NX2 − 1)SSWX1

NX2(NX1 − 1)SSTX2
(4)

SSWX1 = ∑L1
h=1 Nhσh

2 (5)

SSWX2 = ∑L2
h=1 Nhσh

2 (6)

NX1 and NX2 represent sample sizes of the two factors X1 and X2, respectively; L1 and
L2 represent the number of layers of X1 and X2, respectively, where the null hypothesis H0
is SSWX1= SSWX2. If H0 is rejected at the level of significance of α, this indicates that there
is a significant difference in the effect of the two factors on the spatial distribution of Y.

The interaction detector investigates the general interaction between different explana-
tory risk factors XS to a dependent variable Y. It investigates whether the influence of
factors XS on variable Y are independent and whether they work together to increase or
weaken the explanatory power of the Y. First, the q values of the two factors X1 and X2
for Y are calculated separately: q(X1) and q(X2). The q value of their interactions is then
calculated (by superimposing the new polygon distribution formed by the tangent of the
two layers X1 and X2): q(X1∩X2). Then, q(X1), q(X2), and q(X1∩X2) are compared. If the
q(X1∩X2) is less than the minimum of q(X1) and q(X2), the result is nonlinear weakened.
If the q(X1∩X2) is between q(X1) and q(X2), the result is univariate nonlinear weaken. If
the q(X1∩X2) is greater than the maximum of q(X1) and q(X2) and less than their sum,
it is bivariate enhanced. If the q(X1∩X2) is the sum of q(X1) and q(X2), X1 and X2 are
independent. If the q(X1∩X2) is the maximum value, it is nonlinear enhanced.

The risk detector can give the average Y in each subarea of a factor X. It uses the t
statistic testing to determine whether the mean of the attributes between the two subareas
is significantly different.

tyh = 1 − yh = 2 =
Yh = 2 −Yh = 2√

[
Var(Yh = 1)

nh = 1
+

Var(Yh = 2)
nh = 2

]

(7)

where Yh is the mean value of the attribute in layer h, nh represents the number of samples
in layer h, and Var is the variance. The statistic t approximately obeys the Student’s t
distribution [46]. The calculation method of degrees of freedom is

d f =

Var(Yh = 1)
nh = 1

+ Var(Yh = 2)
nh = 2

1
nh = 1−1

[
Var(Yh = 1)

nh = 1

]2
+ 1

nh = 2−1

[
Var(Yh = 2)

nh = 2

]2 (8)

where the null hypothesis H0 is Yh = 1 = Yh = 2. If H0 is rejected at the level of significance
of α, there is a significant difference in the mean value of attributes between the two
subareas [46].

3. Results
3.1. Influencing Factors on the Spatial Distribution of Terrestrial Mammalian Richness

Terrestrial mammals were widely distributed throughout the provinces of China
(Figure 3). Noticeable spatial heterogeneity in mammalian distribution was detected in
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China, with low richness in the east, west, and north, but high richness in the south.
Southern China, especially the Hengduan Mountains in Yunnan Province, supported the
greatest richness in terrestrial mammalian species. On the contrary, the species richness
was low in western and eastern China. Mammalian richness was lowest, with few species,
in northern China.
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The factor detector in the Geodetector models could test how environmental factors
explained the spatial distribution of terrestrial mammal richness in China. The powers of
determinant values (q) of 11 factors at the 5% significant level (p < 0.05) were calculated
using the factor detector (Table 1). The q values of environmental factors were sorted in
the order AP > MTCM > MTWM > AET > NDVI > ST > LT > AMT > Ele > GT > AR. We
used the ecological detector to show that there were significant differences in the effects of
various environmental factors on the distribution of species richness.

Table 1. Association of each environmental factor with species richness (q values).

AP MTCM MTWM AET NDVI ST LT AMT Ele GT AR

q-statistic 0.57 0.53 0.47 0.44 0.42 0.40 0.37 0.37 0.19 0.16 0.15
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Effect direction + + + + + + − + − + +

Notes: significance level, p < 0.05. “+” and “−” stand for the positive and negative correlation between driving factor and species richness
according to Pearson correlation analysis.

AP had a q value of 0.57, revealing a significant impact on the distribution of mammal
richness in China. The relatively high q values of MTCM indicated that there is a remark-
able positive association between MTCM and mammal richness. MTWM contributed a
rather significant positive impact on mammal richness compared to other factors, with
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q statistics as high as 47% (Table 1). The q values of AET showed the influence of actual
evapotranspiration on mammal richness distributions, meaning that AET can explain about
44% of the mammal richness pattern. NDVI was the leading factor affecting the distribution
of mammalian richness in China, accounting for 42% of the variation on mammal richness.
The soil type (ST) was the key factor impacting mammal richness, which explained 40%
of the variation of mammalian richness distribution. The effect of LT (land-use type) was
secondary on the distribution of terrestrial mammal richness, explaining 37% of mammal
richness variation. It was found that AMT plays a key role in mammal richness distribution.
The explanatory power of AMT was 37%, which indicates that AMT largely contributes to
the distribution of mammal richness. The elevation was positively and weakly correlated
with mammal richness, with q statistics of 19%, whereas the elevation posed a negative
effect on mammalian richness. Geomorphic type (GT) and altitude relief (AR) exerted
relatively weak effects on mammal richness distribution, explaining 16% and 15% of the
variance on mammalian richness respectively.

The interaction detector identified the interaction between pairs of environmental
factors and tested whether two environmental variables work individually or interact with
each other. If they interacted, the effect was enhanced or weakened. The interactions of each
paired factor at a 5% explanatory power level are shown in Table 2. Elevation only explained
19% of the distribution of mammal richness. The interaction of the annual precipitation
and elevation can be used to better explain the distribution differences in mammal richness
in China, with a q statistic of 80% (AP ∩ Ele = 0.80 > 0.76 = AP (0.57) + Ele (0.19)). The
interaction between minimum temperature of the coldest month and elevation (MTCM ∩
Ele = 0.80 > 0.72 = MTCM (0.53) + Ele (0.19)) had a significant influence on the distribution
differences of mammal richness, being nonlinear enhanced. Furthermore, the interactions
between elevation and any factors among precipitation and climate were found to be the
primary causes of the distribution of mammal richness. We also found that some factors
have relatively little effects on mammalian richness, but presented significant impacts with
the interaction of precipitation and climate factors. For example, the proportion of altitude
relief and annual precipitation (AR ∩ AP = 0.70 < 0.72 = AR (0.15) + AP (0.57)) was also
dominant in terms of mammalian richness, being bivariate enhanced. Geomorphic type
and annual mean temperature (GT ∩ AMT = 0.63 > 0.53 = GT (0.16) + AMT (0.37)) was
found to enhance each other with respect to the distribution of mammal richness. This
indicated that precipitation and climate factors play important roles in enhancing other
influencing factors on mammal distribution.

Table 2. Interaction of pairs of environmental factors (q values) on species richness.

q(X2) 0.57 0.53 0.47 0.44 0.42 0.40 0.37 0.37 0.19 0.16 0.15

q(X1) q(X1 ∩ X2) AP MTCM MTWM AET NDVI ST LT AMT Ele GT AR
0.57 AP bi-E bi-E bi-E bi-E bi-E bi-E bi-E non-E bi-E bi-E
0.53 MTCM 0.66 bi-E bi-E bi-E bi-E bi-E bi-E non-E bi-E non-E
0.47 MTWM 0.66 0.57 bi-E bi-E bi-E bi-E bi-E non-E non-E non-E
0.44 AET 0.62 0.58 0.57 bi-E bi-E bi-E bi-E non-E bi-E bi-E
0.42 NDVI 0.61 0.63 0.63 0.56 bi-E bi-E bi-E bi-E bi-E non-E
0.40 ST 0.69 0.66 0.64 0.60 0.60 bi-E bi-E non-E bi-E non-E
0.37 LT 0.66 0.65 0.63 0.56 0.51 0.55 bi-E bi-E bi-E bi-E
0.37 AMT 0.63 0.64 0.57 0.54 0.56 0.59 0.57 non-E non-E non-E
0.19 Ele 0.80 0.80 0.73 0.67 0.59 0.61 0.54 0.74 non-E non-E
0.16 GT 0.69 0.68 0.66 0.55 0.56 0.55 0.45 0.63 0.47 bi-E
0.15 AR 0.70 0.69 0.67 0.56 0.59 0.58 0.48 0.64 0.48 0.20

Notes: significance level, p < 0.05. Lower is the interaction value, whereas upper is the interaction type; non-E denotes nonlinear enhanced,
whereas bi-E denotes bivariate enhanced.
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3.2. Influencing Factors on the Distribution of Mammalian Orders

We analyzed 11 orders of terrestrial mammals, and their distribution ranges are
shown in Figure S1 (Supplementary Materials). The overall characteristics of orders were
similar, with most of them showing lower species richness in the north and higher species
richness in southwest China. We utilized the factor detector to determine the influence of
environmental factors on different order richness.

The richness distribution of most orders was mainly affected by MTCM and AP.
Chiroptera is mostly concentrated in southern China and low in most regions in the north.
The geographical environment factors that mainly influenced the distribution of species
richness of Chiroptera (Figure 4) were MTCM, AP, and MTWM. AR minimally affected
distribution. The order of Pholidota has few species with a small distribution in China.
The environmental factors affecting the richness distribution of Pholidota were similar to
those of Chiroptera. The species in Primates are only distributed in southern China. The
richness distribution of primates was significantly affected by MTCM and AP. Carnivora
have a wide distribution of richness in China. AP and AET were the main factors affecting
species richness distribution. Eulipotyphla are spread all over the country, except for the
Qinghai–Tibetan Plateau. AP, with the largest q value, had a remarkable effect on the
spatial distribution of species richness of Eulipotyphla, followed by NDVI.
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The species richness of Rodentia, Perissodactyla, and Lagomorpha was affected by
elevation, soil type, and AMT. Rodentia is widespread all over the country. The species
distribution of Rodentia was affected by the elevation and soil type. Perissodactyla is only
distributed in western China, strongly influenced by the elevation and ST. The species
richness of Lagomorpha is highest in the eastern Qinghai–Tibetan Plateau. Elevation had
a marked impact on the distribution of species richness of Lagomorpha. The q value
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of Ele was 0.50, followed 0.42 for AMT. However, the environmental factors influencing
the species richness of Cetartiodactyla, Scandentia, and Proboscidea were different from
other orders. Cetartiodactyla species richness in the north is lower than that in the south.
Cetartiodactyla with differences in distribution richness was mainly related to AR and GT.
The distribution range of Scandentia is too small, with species being significantly affected
by AET. Proboscidea is distributed in a small area, not affected by any of the environmental
variables except for AET.

We used the interaction detector to identify the interaction effect between environ-
mental factors on the distribution of species richness of different orders. The interaction
effects of pairs of environmental factors were nonlinear enhanced and bivariate enhanced.
The results showed that the interaction relationships for the two factors enhanced the
influence of species richness (Figure 5). The species richness distribution of Chiroptera was
significantly influenced by MTCM, and the interaction between MTCM and other factors
enhanced the influence effect. The influence of environmental factors on the distribution
of Chiroptera and Pholidota was similar. MTCM was a significant single factor, while the
influence of the interaction between MTCM and other factors was more significant on
the species richness of Pholidota. The species richness distribution of Primates was more
affected by MTCM and less affected by Ele. However, the interaction between Ele and any
of MTCM, AP, and AMT had a more obvious impact on the species richness of Primates.
AP was the main factor affecting the species distribution of Carnivora, and the interaction
with other factors enhanced the effect. The influence of Ele on species richness of Carnivora
was minimal, but the interaction of Ele with AP, MTCM, and AMT was more significant.
The environmental factors affecting the richness distribution of Eulipotyphla were similar
to Carnivora. AP was the main influencing factor, but the interaction of Ele with other
factors had a more obvious influence on richness, especially the interaction between MTCM
and Ele. The species distribution of Perissodactyla was significantly affected by Ele. The
interaction of Ele with other factors enhanced the influence on species richness of Peris-
sodactyla but was less than the combined effect of NDVI and AMT. The environmental
factors influencing the richness distribution of Lagomorpha and Rodentia were similar. Ele
was the main influence factor, and the interaction with other factors enhanced the influence.
The distribution of species richness of Cetartiodactyla was significantly affected by AR, but
the interaction of Ele and other factors strengthened the influence. The richness distribu-
tion of Scandentia was mainly affected by the single factor of MTWM. However, the Ele
interaction with AMT, MTCM, and MTWM had a greater impact on richness distribution,
followed by the MTWM interaction with other factors. The species richness of Proboscidea
was most affected by AET. AET combined with other factors had a greater influence on the
distribution of Proboscidea. GT and AR had little influence on species richness distribution
of different orders, but the interaction with other factors could enhance the influence on
species richness. The interaction between the two factors was greater than the influence of
a single factor on species richness.

3.3. Indication of Environment Factors on the Distribution of Mammal Richness

Analysis of factor detector models allowed factors to be screened out that had signifi-
cant effects on the distribution of animals among many environmental indicators. Each
species has its unique range of habitats, with the risk detector allowing the appropriate
types and ranges of mammalian species in environmental factors to be analyzed (confidence
level 95%).
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In areas where the annual precipitation was 897.83–1146.46 mm, species richness was
the most abundant. However, below the level of 305.96–480.55 mm of the AP, less precipi-
tation was not conducive to the aggregation of many species. For the terrestrial mammal
richness, most of the species richness was in the AMT range of 20.28–28.23 ◦C (Figure 6).
However, when the annual mean temperature was below zero, the species richness was low.
The species richness was most abundant in the range 13.28–23.65 ◦C of MTWM and the
range 6.39–17.64 ◦C of MTCM. Extremely low ambient temperatures had negative impacts
on the distribution of animals. In areas where the actual evapotranspiration was large, the
species richness was high. A higher vegetation index denoted a higher species richness.
Mammalian species richness was the most abundant in forest land, with some mammals
mainly distributed in shrub wood. However, the species richness was low on unused land,
including bare areas, where land is difficult to be used. Terrestrial mammals were mainly
distributed in areas with ferralsols. These soils were mainly distributed in humid tropical
and subtropical regions. At the elevation range of 1905.60–2562.62 m, species richness was
greatest but then decreased with increasing altitude. Species richness was abundant at
2613–3816 m of altitude relief, but richness declined when altitude relief was too flat. There
was a high level of species richness in the extremely undulating mountains, and there were
significant differences among the landform types.
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4. Discussion

Our analysis showed that annual precipitation served as the most influential factor on
the spatial distribution of mammalian richness in China. Of note, this view is also supported
by Medellín, who suggested that annual precipitation is an essential cause of mammal
richness [3]. Precipitation and vegetation are generally considered to have non-negligible
influences on mammal distribution. Most animals in the world depend mainly on grassland
vegetation as their source of food [47]. It is known that plant productivity is influenced by
precipitation [48,49]. Changes in vegetation in turn affect the distribution and abundance of
mammals [50]. Our findings are similar to those of Lin et al. [51], who identified that NDVI
has an important influence on the spatial pattern of species richness of various groups
according to the optimal linear model. The minimum temperature of the coldest month
and the maximum temperature of the warmest month (MTWM) have a rather significant
positive impact on mammal richness. Most mammals as endothermic vertebrates are
dependent on productivity or the environmental climate, partly because of the mechanisms
used to regulate temperature. For instance, as the ambient temperature changes, this group
needs to consume a lot of energy to maintain a constant body temperature [52]. At present,
much research has shown that MTCM is a remarkable factor affecting the distribution
of animals [13,14]. Schap et al. [53] analyzed the relationships between Rodentia and
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Lagomorpha crown height and diversity with current climate conditions, finding strong
correlations of community structure parameters with the maximum temperature of the
warmest month and minimum temperature of the coldest month. We found that AET
played an important role in the distribution of species richness. As revealed in Torres-
Romero and Olalla-Tarraga [54], actual evapotranspiration is the key factor that affects the
distribution of mammalian species richness worldwide.

Our result indicated that most mammalian orders were mainly affected by regional
freezing tolerance and productivity levels (especially MTCM and AP). Topography, climate,
vegetation, and other factors act together on mammals, resulting in different types of
mammals adapting to various environments, in terms of morphological structure and living
habits. The Chiroptera are not poikilothermic animals, divided into Megachiroptera and
Microchiroptera. All species of Megachiroptera studied are homeothermic animals, with
constant body temperatures regardless of the temperature of the surrounding environment
to a large extent. Species of Microchiroptera on the other hand show different degrees of
heterothermy [55]. In many species of Microchiroptera, body temperature and metabolic
rate rise only during activity. This makes them homeothermic when they are active and
poikilothermic when they are at rest [56]. Thus, the survival of Microchiroptera is closely
related to the environment, especially temperature. Primates are widely distributed in
tropical and subtropical regions, mostly inhabiting forests [57], and the extremely low
temperature limits their activities. In reverse, Perissodactyla was mainly affected by
habitat heterogeneity, and regional productivity levels had less impact on Lagomorpha.
Perissodactyla includes mainly large-scale herbivores [58], which occur in the steppe, semi-
desert, and desert environments. They inhabit mountainous areas or open areas of plateaus,
which are strongly influenced by elevation and soil type. Most species of Lagomorpha
occupy alpine habitats, mainly affected by elevation. The degree of influence was higher
than the environmental heat factor. Most species of Eulipotyphla feed on insects and small
animals, while others feed on plant rhizome and leaf fruits, which are closely associated
with the vegetation index.

Analyses of the spatial distribution of animals have shifted from qualitative to quan-
titative by combining GIS spatial analysis with statistical methods. By taking advantage
of GIS spatial data analysis, we used the latest data and measured the spatial distribution
patterns of terrestrial mammals in China on 10 by 10 km geographic grids. Compared with
previous studies limited to administrative districts or smaller areas, the area of the study
unit eliminated the influence of area on species richness, controlled for single variables,
and we compared other factors to animal distribution under the same conditions.

The main distinctions among methods involve the type of data they use. Ecological
niche models perform well in predicting species potential distribution and provide response
curves for each variable. However, most of them are based on the presence data of species.
We aimed to quantitatively analyze the influence of geographical factors on the spatial
distribution of terrestrial mammalian richness in China. However, there is no systematic
collection of the presence–absence data of China’s mammals. In the study, mammal
species distribution data were obtained from China’s Mammal Diversity and Geographic
Distribution [39], which is more systematic, organized by many zoologists. At the same time,
we selected categorical variables, including soil, landform, and land use as environmental
factors. Geodetector analysis is based on a statistical relationship [59], which does not
provide a spatial output. There are differences with ecological niche models. However,
the Geodetector model is more conducive to the spatial stratification of different types of
qualitative data. It can quantify the type of soil, landform, and land use to explain the
stratification of mammalian distribution.

We aimed to present possibilities of using Geodetector to analyze the environmental
factors that influence the distribution of species richness. Geodetector can identify ap-
propriate types and ranges of the determinants of stratified heterogeneity of dependent
variables more comprehensively. The factor detector in Geodetector reveals the relative
importance or influence of variables related to the species richness without any assump-
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tions or limitations compared to the traditional statistical methods. The ecological detector
in Geodetector identifies the difference in impact between the two explanatory variables.
The risk detector in Geodetector can screen out the range of geographical environments
suitable for the survival of multiple animals. It provides a better comparison of species
distribution with different stratifications of different environmental factors. Using the
interaction detector in Geodetector to explore the interaction of two factors, a new perspec-
tive is provided in studies of mammalian distributions. The results show that two-factor
interaction significantly enhances the influence of independent environmental factors on
mammalian richness distribution.

The variable must be categorical in the Geodetector models. However, to compre-
hensively analyze the effects of environmental factors on mammalian species richness, we
must select numerical variables and categorical variables. Numerical variables should be
transformed to a category, which inevitably leads to information loss. A more detailed
stratification of numerical environmental factors leads to less information loss and denote
a more significant impact on the target factor. We divided the numerical variables into
10 categories, 20 categories, 30 categories, and 50 categories, and the q value of each numer-
ical variable did not change much. The results show that, no matter how each numerical
variable is classified, its influence on species richness is within a certain range. The relative
influence of various numerical variables on species richness did not change. The soil type
consisted of 13 soil orders, and the landform type and land-use type had eight categories. To
keep small differences in categories between numerical variables and categorical variables,
we classified the values of eight numerical variables into 10 classes. There are also other
potential factors having major effects on mammalian richness. In subsequent analysis, more
variables will be selected for a more detailed discrete classification to comprehensively
evaluate the influence of environmental factors on the distribution of mammalian species
richness. In conclusion, we discovered that Geodetector is an important and promising
tool for ecologists to analyze and study species richness.

5. Conclusions

We evaluated the spatial distribution patterns of terrestrial mammal richness and
analyzed the main factors influencing distribution differences in species richness. This
research contributes to identifying spatial differences in mammalian richness, comprehen-
sively considering climate, precipitation, topography, and vegetation factors, using the
Geodetector model to discuss the influence strength and synergistic effect between key
factors. The main conclusions are as follows:

(1) The spatial pattern of terrestrial mammals in China showed a low east–west trend
and distinct heterogeneity to the north and south. AP and MTCM were the dominant
factors affecting the spatial differentiation of mammal richness in China.

(2) The characteristics of the distribution of species richness across taxonomic groups
were influenced by different environmental factors. Many mammalian orders were
affected by regional freezing tolerance and productivity levels (mainly MTCM and
AP). Perissodactyla was mainly influenced by habitat heterogeneity, while regional
productivity levels had less impact on Lagomorpha.

(3) Extremely low ambient temperatures had negative impacts on the distribution of
animals, with too little precipitation not being conducive to the aggregation of many
species. At a certain altitude, mammalian taxonomic richness decreased with increas-
ing altitude. Fewer mammals were present in regions where the altitude was too flat,
with most mammals occurring in forest land.

(4) The interactions of any two environmental factors had remarkable bivariate enhance-
ment or nonlinear enhancement effects on the spatial distribution of species richness
with respect to individual variables. The synergies of elevation with the minimum
temperature of the coldest month and annual precipitation can best explain the re-
gional distribution differences in mammal richness in China.
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Our study provides a more accurate understanding of the extent to which species
distributions are influenced by individual environmental factors and their pairs. We
aim to facilitate the wider use of Geodetector by ecologists. Consequently, our findings
can be used for the remote sensing monitoring of animal protection, which could help
toward understanding the distribution range of terrestrial mammals and key control zones
in protected areas from the macro perspective. It could also help give some reference
evidence for the conservation policy of species diversity. Furthermore, some human
activities such as overgrazing and deforestation might affect the distribution of animals
by destroying existing habitats. The effects of human activities on the spatial distribution
patterns of terrestrial mammals must be accounted for in future studies to mitigate the loss
of biodiversity.

Supplementary Materials: The following are available online at https://www.mdpi.com/2220-996
4/10/1/21/s1, Figure S1: Spatial distribution of different terrestrial mammalian orders; Table S1:
Environmental factor grading standards.
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