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Abstract: Optical remote sensing data are freely available on a global scale. However, the satellite
image processing and analysis for quick, accurate, and precise forest above ground biomass (AGB)
evaluation are still challenging and difficult. This paper is aimed to develop a novel method for
precise, accurate, and quick evaluation of the forest AGB from optical remote sensing data. Typically,
the ground forest AGB was calculated using an empirical model from ground data for biophysical
parameters such as tree density, height, and diameter at breast height (DBH) collected from the
field at different elevation strata. The ground fraction of vegetation cover (FVC) in each ground
sample location was calculated. Then, the fraction of vegetation cover (FVC) from optical remote
sensing imagery was calculated. In the first stage of method implementation, the relation model
between the ground FVC and ground forest AGB was developed. In the second stage, the relational
model was established between image FVC and ground FVC. Finally, both models were fused to
derive the relational model between image FVC and forest AGB. The validation of the developed
method was demonstrated utilizing Sentinel-2 imagery as test data and the Tundi reserved forest
area located in the Dhanbad district of Jharkhand state in eastern India was used as the test site.
The result from the developed model was ground validated and also compared with the result from
a previously developed crown projected area (CPA)-based forest AGB estimation approach. The
results from the developed approach demonstrated superior capabilities in precision compared to
the CPA-based method. The average forest AGB estimation of the test site obtained by this approach
revealed 463 tons per hectare, which matches the previous estimate from this test site.

Keywords: Sentinel-2; regression modeling; fraction of vegetation cover; forest AGB

1. Introduction

Forests are ecosystems maintaining bioresources and providing a range of products
and services to meet human needs [1,2]. As reported, 31% of the total Earth’s land surface
is covered by forests that play a significant role in maintaining ecosystems and providing
food, fodder, and shelter. Forests are also instrumental in controlling land degradation
by minimizing soil erosion and desertification. Furthermore, even biological diversity in
a regional ecosystem is directly affected by surrounding forest cover [3]. Forest biomass
is considered reservoirs of carbon. Forests directly have a crucial role in the carbon and
water cycle, gross and net primary production (GPP and NPP), climate changes and global
warming, radiation and environment balance, even air quality, and human activities [1,4].
Accurate forest above ground biomass (AGB) assessment is crucial for forest resources
evaluation, carbon cycle assessment, and sustainable forest management [1-4]. Therefore,
forest AGB evaluation is essential to recognize possible climate change due to deforestation
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and global ecological balance, as well as promoting global biological evolution, community
succession, and mitigation processes [1,5,6]. Globally, the rapidly deteriorating forest
might be a big threat not only for forest resources but also for future ecological balance [1].
Thus, accurate assessment and monitoring of forest AGB for sustainable management
and mitigation, and also to recognize climate change scenario due to deforestation are
important and crucial [1,5,6]. Forests have great potential to fuel the next generation by
harvesting byproducts (e.g., brushwood, lumber, firewood) and supplying a large portion of
renewable materials (e.g., edible fruits, nuts, paper, medicinal herbs) that can be converted
into renewable energy [1-4,7-9]. The forest biomass evaluation is extremely important to
assess renewable energy sources and future planning to keep balance in our environment,
economy, and energy security [1-4]. Therefore, forest biomass evaluation and monitoring
are crucial to assess the bioresources and terrestrial ecosystem. Forests are considered
to be a carbon sink. Forests absorb carbon from the atmosphere through photosynthesis
and store it in plant tissue. At a regional as well as global level, estimating the biomass
of forest vegetation is an important exercise in determining the storage of carbon in the
dominant tree component and computing carbon cycling. It then becomes deposited in
forest biomass (that is, trunks, branches, roots, and leaves), in dead organic matter (litter
and deadwood), and in soils. This process of carbon absorption and deposition by the forest
vegetation is known as carbon sequestration, which can help sustainable management
of natural resources. For mitigating CO, emissions through carbon sequestration, this
driver of climate change has drawn considerable attention to forest ecosystems as a viable
option [10].

Globally, the advanced and rapid global observation systems and analyses of geospa-
tial natural resources using remote sensing techniques are being developed. Remote
sensing is state-of-the-art, fast, cost-effective, and ecofriendly technique for monitoring and
mapping many geospatial natural resources and climate including forest, vegetation water
dynamics and change monitoring, and biomass evaluations [1,6,11-14]. Advanced and
high-quality data acquisition and distribution facilities are offered by different space orga-
nizations, including the National Aeronautics and Space Administration (NASA), Canada
Centre for Remote Science (CCRS) and the European Space Agency (ESA) [1,15]. Generally,
remote sensing techniques do not derive forest biomass directly but enable acquisition of
parameters for forest biomass estimation, such as forest height, leaf area index, the fraction
of vegetation cover (FVC), or net primary production. Today, due to relatively higher accu-
racy than conventional systems, fast and cost-effective performance remote sensing systems
have gained much attention in the evaluation of the forest biomass and change assessment.
Remote sensing technique usually evaluates biomass and change detection/information
indirectly rather than directly by retrieving remotely sensed parameters. These extracted
parameters help in evaluating AGB, forest, and vegetation mapping and monitoring by
integration, inversion, and modeling approaches [1,6,13,14]. Further, high-quality data
available from the state-of-the-art sensors onboard recently launched satellites by various
space agencies are helpful in modeling ecosystems in an innovative manner, as well as to
derive new improved land-based inventory systems for estimation of forest canopy height,
biomass, carbon stocks, and spatiotemporal changes with relatively high accuracy [6,13,14].
The availability of Sentinel-2 imagery at high spatial resolution (10 to 60 m) from the
Copernicus programme offers a new opportunity to study and evaluate forest bioresources
and natural carbon stocks. Currently, remotely sensed multiple datasets through passive
and active sources are being acquired from different platforms including spaceborne, air-
borne, and ground data. These data are being used for the noted applications by utilizing
innovative processing approaches with advanced statistical, mathematical, and machine
learning skills [11,16,17]. Usually, data from active sensors contain a high signal-to-noise
ratio (S:N) and better penetration compared to passive sensors. Thus, active systems such
as synthetic aperture radar (SAR), light detection and ranging (LIDAR) can penetrate the
canopy of the forests, vegetations, and land covers. Consequently, active remote sensing
has become a powerful tool for vertical structural and volumetric measurements of the
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forests and biomass. Data from passive sensors have great potential for identification,
classification, and mapping of forest cover, types, and vegetation classifications [14,18-20].

Since the last decade, forest resource evaluation and atmospheric investigation were
remarkably boosted by remote sensing techniques [11]. These techniques are frequently
used for forest AGB estimation utilizing various datasets. Microwave data such as SAR is
useful for texture characteristics and backscattered coefficient information extraction, and
optical data such as Sentinel-2 are used for vegetation indices and leaf area index (LAI)
information extraction [1,14,21]. For example, Sentinel-1 as SAR data C-band and Sentinel-2
optical imagery at high spatial resolution (10 to 60 m) are available freely from the Euro-
pean Copernicus Programme for effective vegetation and forest mapping and monitoring,
biomass estimation, and natural resources assessments [1,11]. Similarly, there are plenty
of remote sensing datasets freely available from NASA, ESA, and other space agencies for
the above applications. Different modeling and regression approaches between remote
sensing microwave data (viz., Sentinel-1—vertical-vertical (V'V) and vertical-horizontal
(VH) polarizations) and optical data (viz., Sentinel-2—LAI and normalized difference vege-
tation index (NDVI)) and field data are being developed at present for biomass assessments
and ground truth validation [22]. For biophysical structure estimation, microwave data of
Sentinel-1 were used to derive [nSAR-based tree height estimation of a hilly forest. This
study indicated a reduction in tree height estimation uncertainty even from an undulated
terrain [23]. The optical images provide great potential for multitemporal monitoring,
improvement in the classification of the forest type with high spatial resolution, and quick
revisit time availability [24]. For example, optical remote sensing images viz. Sentinel-2 have
been used by various researchers in forest classification, mapping, and monitoring [18-20,25].
Various approaches and experiments are available to extract different parameters in for-
est AGB estimation using optical and microwave remote sensing datasets, including tree
height, tree diameter at breast height (DBH), and tree volume [25,26]. There are various
empirical models and allometric equations developed to estimate forest AGB from field
data at plot level using hand-measured techniques, viz., tree DBH, height, and sometimes
wood density to improve accuracy [27]. There are various relational models developed
between basal area or tree diameter, weighted height (also known as Lorey’s height) pa-
rameters, and AGB for more accurate biomass evaluation [28-30], and direct forest AGB
achieved from SAR and LiDAR data using the above models from large areas [7,31-33].
Similarly, optical remote sensing studies show that LAI, FVC, and vegetation indices have
significant potential to evaluate forest AGB [34]. The FVC and LAI have proved useful in
leaf biomass evaluation through a proportionality function [35]. Usually, AGB using field
data at the plot level calculates the sum of foliage and wood biomass [36]. To calculate
the LAI or FVC, several vegetation indices have been experimented [37-39], which are
still challenging for specific forest types. Furthermore, the accuracy of the AGB estimation
from both optical and microwave remote sensing data is limited by the accuracy level of
data processing and parameter extraction, including ecological, biotic, and topographic
factors [6,13,14,22-26,40-42]. In this study, an empirical model based on field AGB and
FVC from optical remote sensing has been worked to simplify and more rapidly evaluate
forest AGB. The field information (tree height, tree DBH, number of trees at plot level (30
by 30 m), tree stem density, and FVC) were collected for field AGB calculation from a test
site within the Tundi reserved forest, Jharkhand state of eastern India.

2. Materials and Methods

For the test site within the Tundi reserved forest, the forest AGB was assessed us-
ing Sentinel-2 imagery. Brief description of the test site, data details, and the proposed
methodology respectively follow.

2.1. Study Area

The study area covers 144 km? within Tundi reserved forest in Dhanbad District,
Jharkhand state, India. This Indian state is one of the richest in biodiversity due to diverse
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climatic and physiographic conditions. It spreads from a northwest to northeast direction
with the Domunda hills having two heads (tops) on its eastern fringe.

There are a few isolated hills of varying dimensions scattered in the northern half
of this district. The area is a typical deciduous forest that has a total forested area of
23,605 km? constituting about 29.61% of the total land area of Jharkhand. In India, reserved
and protected forests are declared by the respective state governments. In reserved forests,
all activities are prohibited unless permitted; it is vice versa in protected forests, i.e., specific
activities such as hunting, grazing, etc., are permitted unless prohibited. Out of the total
forest land of Jharkhand, 81.28% is under the protected forest and 18.58% is under the
reserved forest category.

Geographically, Jharkhand has two major forest categories, namely tropical zone dry
forests and tropical zone wet forests [43]. The test site falls under the tropical zone dry
forest category and is covered with Shorea robusta (local name Sal) as the most predominant
tree species, lies within 23°45'40” to 24°05'50” N and 85°57'30” to 86°35'55” E (Figure 1a).
Tundi reserved forests under Dhanbad Forest Division fall under subgroup 5-B, namely
northern tropical dry deciduous forest [8]. The Tundi reserve forest cover contains an
almost pure crop of Shorea robusta saplings and poles. The test site is dominated by minor
hillocks with undulating topography; Shorea robusta is dominant and constitutes the top
story of the forest, with an average height up to 12 m in the test site. Humus is absent
except in remote areas where the forest cover is well protected. The area receives typical
monsoon-type climate with three marked seasons: hot, rainy, and winter. Humidity is
very high during the rainy season and very low during the hot weather. The maximum
temperature rises above 45 °C and a hot wind known as “Loo” blows frequently from April
to June, until the onset of monsoon. Thunderstorms usually occur in May, accompanied by
a temporary fall of a few degrees. Due to heavy industrialization and mining activities,
abundant suspended particles and specks of dust are found in the atmosphere during this
season. The monsoon usually breaks in the middle of June and continues until the end of
September. The average rainfall is between 1100 to 1200 mm.

Geologically, Tundi comprises Precambrian rock, the country rock being quartz-
feldspathic schist intruded rather profusely by some igneous bodies, viz., metadolorites
and amphibolites. The prominent hill and hillocks in the area comprise mostly dark color,
hard, and compact intrusive rocks (mainly amphibolite and metadolorite). The soil and
alluvium are derived largely from gneisses and quartz-feldspathic schist. The soil forma-
tion in the forest area is shallow to very shallow, and depth on the plain to undulating land
rarely exceeds 60 cm (24 inches). It is generally red loam with pockets of clay. Erosion
occurs and varies with slope. The topsoil is hard and compact [44].

2.2. Datasets

Sentinel-2 multispectral image (MSI)-level-1C product acquired on 4 December 2019,
covering the study area has been chosen as test data of optical remote sensing. Figure 1b
shows the false-color composite (FCC) image from Sentinel-2 (L1C) that encompasses the
selected test site within the study area. The spatial resolutions vary between 10 to 60 m
and spectral resolutions vary between 15 to 180 nm for different bands of the collected
Sentinel-2 image (Table 1).
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Figure 1. (a) Geographic location, (b) field photographs, (c) false-color composite (FCC) image from
Sentinel-2 of the study area.
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Table 1. Band specification of the Sentinel-2 image.

Wavelength Band Central . Spatial
Subsystem Band Number Range (um) Wavelength (um) Bandwidth (nm) Resolution (m)
1 0.43-0.45 0.443 (Coastal 20 60
aerosol)
2 0.46-0.52 0.490 (BLUE) 65
3 0.54-0.58 0.560 (GREEN) 35 10
4 0.65-0.68 0.665 (RED) 30
g 0.705 (Vegetation
5 0.70-0.71 RED edge) 15
0.749 (Vegetation
VNIR 6 0.73-0.75 RED edge) 15 20
0.783 (Vegetation
7 0.77-0.79 RED edge) 20
8 0.78-0.90 0.842 (NIR) 115 10
0.865 (Vegetation
8a 0.86-0.88 RED edge) 20 20
9 0.93-0.95 0.945 (Water 20
vapor)
1.375 ®0
10 1.37-1.39 (SWIR—Cirrus) 30
11 1.57-1.66 1.610 (SWIR) 90
SWIR 20
12 2.10-2.28 2.190 (SWIR) 180

Note: VNIR, visible and near infrared; SWIR, short-wave infrared; NIR, near infrared.

Sentinel-2 outperforms other available spaceborne datasets when using near-equivalent
image bands when Sentinel-2 data are downsampled to 30 m pixel resolution (for example,
Landsat 8). Additionally, Sentinel-2 includes high quality red edge band. Prediction of
forest AGB using Sentinel-2 confirmed better accuracy compared to Landsat 8 [45]. The
field survey was carried out to collect ground forest information for remote sensing-based
method development and result validation. In order to cover the complete forest variability
of the study area, ground truth locations were chosen randomly based on accessibility
in the forest and irrespective to tree height categories. Moreover, ground samples were
collected from different locations in such a pattern to cover the entire forest diversity of the
study area.

The sample plots selected are a representation of the whole study area. The ground
samples were collected from three different profiles separated by nearly 1 km. The distance
between samples was also set at approximately 1 km. The ground samples were collected
randomly from these profiles based on accessibility into the forest with independent
directions. Field data collection was conducted using a global positioning system (GPS),
altimeter, and ancillary field equipment. The ground samples, including tree height, tree
DBH and the number of trees per sample plot, tree stem density, and FVC from 22 different
locations with plot size approximately 30 m x 30 m (approx. 0.09 hectare), were collected
from the study site. The field samples from 22 locations comprised approximately 550
individual trees, and an average of 25 trees per plot were measured in different elevation
strata. The average measured tree height for each field location was used as tree height
of the location for further study. In the ground FVC estimation at each sample location,
initially, the total number of trees and the radius of each tree cover were calculated. The
surface cover of individual trees was assumed circular. Therefore, surface area cover by
individual trees was calculated using their covering radius. The total tree cover area at each
sample location was estimated by summing individual tree cover area. Lastly, field FVC
was calculated by taking the ratio of area covered by trees to the total area of the sample
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location. Consequently, ground data and FVC were utilized for ground AGB calculation
and validation of the modeled AGB from Sentinel-2 data. Further details of the ground
data and locations are provided in Table 2. The ground samples sequence provided in
Table 2 is the order of data collection regardless of profile composition. Therefore, the
sample sequence provided in Table 2 shows random sample location irrespective to spatial
pattern of the profile.

Table 2. Details of the ground data from the study area.

Sample Location Average Tree Average DBH (cm)
Easting Northing Number of Trees . (at 4.5 ft Above
Number Height (m)
Ground)
SL1 23°57'53.10” 86°28/23.80” 17 10.9 71.01
SL2 23°58'06.38” 86°23/08.47” 19 23.33 142.49
SL3 23°54'49.91” 86°19/30.53” 24 15.8 80.57
SL4 23°57'58.28” 86°24/18.87” 23 19.7 91.64
SL5 23°57/21.22” 86°22/35.17” 22 17.8 104.33
SL6 23°57'40.13” 86°23'06.37” 20 19.84 95.18
SL7 23°57'05.10” 86°22/26.32” 16 15.55 104.23
SL8 23°53/59.99” 86°18/55.75” 15 17.4 97.02
SL9 23°5651.50” 86°22/22.10” 16 12.6 92.76
SL10 23°54/53.80” 86°19/35.49” 22 12.86 87.76
SL11 23°58'26.81” 86°25'03.14” 15 9.65 82.56
SL12 23°58'27.79” 86°26'25.76” 17 10.5 77.59
SL13 23°54/51.86” 86°17'49.35” 21 9.8 73.48
SL14 23°58'04.77” 86°27'31.11” 18 13.4 75.88
SL15 23°58'19.68” 86°25'56.25” 19 12.8 75.34
SL16 23°57'39.16” 86°22/51.61” 18 13.6 78.12
SL17 23°57'02.19” 86°19'53.71” 22 14.35 77.62
SL18 23°58'04.77” 86°23/01.88” 27 8.75 67.34
SL19 23°57'37.53” 86°27'11.29” 24 10.8 68.41
SL20 23°56/41.77” 86°2056.10” 18 13.6 77.78
SL21 23°57'34.62” 86°20'45.56” 16 11.9 71.27
SL22 23°58/18.06” 86°23/36.30” 25 11.85 66.6

2.3. Methodology

The methodology is presented in two phases. In the first phase, a developed general
model for forest AGB assessment from optical remote sensing imagery is presented, whereas
the second phase shows the experimentation of the approach developed specific to the
Sentinel-2 image, vegetation indices, and statistical parameters used in this study.

Phase I. Standard procedure for forest AGB estimation using optical remote sens-
ing data.

The procedure for estimation of the forest AGB was articulated into the following
six steps and the flow diagram of the method is shown in Figure 2.
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Figure 2. Flow diagram of the proposed methodology.

Step 1: Preprocessing—In this step, the optical remote sensing image was prepro-
cessed for noise reduction, radiometric correction and calibration, atmospheric correction,
and spatial resampling. The noise persists in most of the satellite images due to sensor
malfunctioning and heating, and environmental influences reduce the quality of the data.
Hence, suppression of noise contents in an image is essential to enhance the quality of the
data. The distributed remote sensing images usually contain the digital number, which is a
calibrated radiance value by sensor-specific gain and offset. Thus, radiometric correction
and calibration are required to convert digital numbers to radiance.

Further, atmospheric correction is performed to reduce the effects of atmospheric
scattering and absorptions in the radiance data and convert the radiance into reflectance
data. The Sentinel-2 image contains different spatial resolution in various spectral bands.
Spatial resampling was used to achieve a single spatial resolution from different spatial
resolutions in different spectral bands. In preprocessing, noise reduction and radiometric
correction were performed using image statistics-based algorithms developed using the
gain and offset of the sensor. A combined flat-field and dark object subtraction method
was developed for atmospheric correction and conversion of a radiometric image into a
reflectance image. The Gram-Schmidt pan sharpening algorithm was used to achieve the
entire spectral bands into a single high spatial resolution.

Step 2: Forest FVC calculation—In this step, the forest FVC at each pixel level was
calculated from optical remote sensing imagery using the FVC model proposed by Zhang
et al. [46] as follows:

Suppose spectral information of pure vegetation pixel and pure soil pixel are repre-
sented as S, and Ss. Then spectral information (S) of an image at each pixel is composed of
spectral information of vegetation cover (Syeq) and nonvegetation cover (S,). If forest FVC
in a pixel is represented as F, then a fraction of nonvegetation cover should be 1—F,. Thus,
mathematically, forest FVC at a pixel level can be calculated as follows:

Sveg = So X F, 1)

Sp=5sx (1—F.) @)

S = (Sveg + So) ¢ {(So x E.) 4+ (Ss x (1 —F.))}, 3)
hence, F, — - — 4)

Sy*Ss
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Using the Equation (4), the FVC is calculated from both the optical remote sensing
image and field data.

Step 3: Field forest AGB estimation—In this step, the field forest AGB was calculated
from the collected field data. The field forest AGB was obtained at individual plot level in
kilogram (kg) using the following simplified empirical model proposed by Chave et al. [27]
as follows:

AGB = x x uD*H, (5)

where y is specific gravity (g cm ) of tree stem, D is the DBH (cm), H is the tree height (m),
and « is the constant for forest type.

Step 4: Model development between FVC and AGB—In this step, linear regression
modeling is performed to find the best fit curve between the calculated ground forest AGB
from field data using Step 3 and the image forest FVC obtained using Step 2.

The best fit linear model between the field forest AGB and the corresponding image
forest FVC is represented as follows:

AGB =a x FVC+ B (6)

where « and B are the gain and offset, respectively, for image forest FVC used to calculate
the forest AGB.

Step 5: Forest AGB image generation using the forest FVC image—Suppose the forest
FVC image is presented as FVC(i,j) and the image of forest AGB is represented as AGB(i}),
where (7)) is the pixel location. Then the pixelwise forest AGB in kg is calculated as follows:

AGB(i,j) = a x {FVC(i,j)} + B @)

Step 6: Accuracy assessment—The accuracy of the forest AGB calculated from the
optical remote sensing image was evaluated by ground validation. The ground valida-
tion was performed by comparing the AGB value between the field calculated and the
image estimate at different ground locations. The accuracy of the result in percentage is
represented as:

Accuracy (%) = % x 100, 8)

where N is the total number of validation points, and 7 is the number of validation
points agreed with when equal or less than one standard deviation between image and
field measurements.

Finally, the generalized forest AGB obtained by individual plot level in kg are stan-
dardized into tons per hectare (t ha™1!).

Phase II. Forest AGB model evaluation using Sentinel-2 data.

To test and verify the effectiveness of the proposed method, experimentation in
sequential procedure was applied on Sentinel-2 as an optical remote sensing image to
calculate the forest AGB from the Tundi reserved forest test site, Jharkhand, India. The
sequential steps in the forest AGB calculation are given below.

After preprocessing, the spatial resampling was initially performed to bring all of the
spectral bands to 10 m spatial resolution (e.g., bands 2—4 with spatial resolution 10 m and
bands 5-7, 8a with spatial resolution 20 m) and then resampled to 30 m spatial resolution,
i.e., approximately equal to the field data spatial resolution.

The direct vegetation and nonvegetation (soil) spectral information extraction for the
forest FVC calculation is tricky. Thus, different vegetation indices were used to quantify
the vegetation information within the pixel of an image. In our experiment, for quanti-
fying vegetation amount in a pixel of Sentinel-2, four vegetation indices were assessed:
normalized difference vegetation index (NDVI), modified vegetation index (MVI), soil-
adjusted vegetation index (SAVI), and modified soil-adjusted vegetation index (MSAVI).
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The NDVI, MVI, SAVI, and MSAVI images were produced from the Sentinel-2 image using
the following equations:

NIR — RED
NDVI= (NIR+RED>’ ©)
[ (NIR-RED)

MVI= \/(NIR —RED) +05 (10)

(1+L) x (NIR — RED)
AVI = 11
S (NIR+RED + L) 2 (11)

<2>< NIR+1— /(2 x NIR+1)* —8 (NIR—RED))

MSAVI = (12)

2

where L is the canopy background adjustment factor (L value as 0.5 in reflectance data) and
NIR and RED are the reflectance values in near infrared and red bands of the multiband
remote sensing image.

In our experiment, NIR (band 8) and RED (band 4) were carefully chosen from the
Sentinel-2 reflectance image to calculate these vegetation indices. The highest vegetation
index value in an image was considered as a pure vegetation pixel whereas the lowest
value was decided as a pure soil pixel. Consequently, pure pixels for vegetation and
nonvegetation (soil) information were identified to calculate the forest FVC images from
the vegetation indices calculated using Equation (4). The best vegetation index among
vegetation indices for the forest AGB calculation was selected based on the correlation
coefficient (R) and mean absolute error (MAE) between the ground forest FVC and image
forest FVC. R is the degree of statistical similarity between a pair of variables, whereas
MAE is a measure of errors between paired observations. R and MAE were calculated
between the ground FVC and the FVC from Sentinel-2 by NDVI, MVI, SAVI, and MSAVI
corresponding to ground sample locations. Based on the highest correlation and lowest
MAE criteria, the MSAVI-based image FVC was chosen in AGB calculation. Further, the
trend line by linear regression between the ground and MSAVI-based FVC was fitted,
which is shown in Equation (13):

FVCipage = 0.7314 X FVCiroung +0.0432 and R* = 0.9995 (13)

In Tundi reserved forest, the predominant tree species is Shorea robusta (Sal). Accord-
ingly, based on [27], the ground forest AGB was calculated using the following equation
from the field data (Table 2):

AGB = 0.509 x uD*H (14)

where AGB is the forest above ground biomass (kg), i (0.667) is specific gravity (tree stem
density) (g cm~3), D is the DBH (cm), H is the tree height (m), and the constant 0.509
obtained from [27]. The calculated ground forest AGB from field data and the selected
image forest FVC are shown in Table 5.

A trend line is obtained between calculated ground forest AGB and image-retrieved
forest FVC by linear regression. The following model (Equation (15)) was obtained from
15 ground training samples (Table 5) and the remaining 7 ground samples were used for
validation of the results obtained from the developed model (Table 6).

AGB(i,j) = 92361 x {FVC(i,j)}, and R?* = 0.7494 (15)

The accuracy of the forest AGB based on Sentinel-2 was assessed by comparing the
remaining seven field measurements to the corresponding locations. Kindly note that the
samples selected for training were not chosen for the validation to avoid the biasness in
the accuracy assessment. Thus, training and validation samples were separated before
trend modeling. For data processing and implementation of the proposed procedure and
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experimentation in forest AGB assessment, mainly the Interactive Data Language (IDL)
programing and Environment for Visualizing Images (ENVI) software were used.

3. Results and Discussion

The forest AGB evaluation results from the study area using the methodology and
experimental analysis described in Section 2 are produced below.

The estimated forest FVC images based on NDVI, MV1, SAVI, and MSAVI, respectively,
are shown in Figure 3. The ground and image FVC calculated from field data and Sentinel-2
respectively, for each vegetation indices extracted from the corresponding locations, are
shown in Table 3. The R and MAE were analyzed between the ground FVC and the FVC
estimated using vegetation indices from Sentinel-2. The estimated R and MAE values are
shown in Table 4. The results show that MSAVI-based image FVC delivered the highest
correlation and lowest MAE. Based on the AGB empirical model [27], the calculated ground
forest AGB from field data and the selected image forest FVC are shown in Table 5.

Table 3. Ground forest FVC and image forest FVC calculated from different vegetation indices.

Sample Location

Number FVC (GROUND) FVC (NDVI) FVC (MVI) FVC (SAVI) FVC (MSAVI)
SL1 0.29 0.58 0.56 0.57 0.26
SL2 0.99 0.98 0.97 0.97 0.77
SL3 0.67 0.78 0.77 0.77 0.54
SL4 0.91 0.90 0.90 0.89 0.71
SL5 0.90 0.93 0.92 0.92 0.71
SL6 0.84 0.90 0.90 0.89 0.66
SL7 0.57 0.80 0.80 0.78 0.47
SL8 0.56 0.78 0.77 0.77 0.46
SL9 0.41 0.71 0.70 0.70 0.35
SL10 0.55 0.70 0.68 0.69 0.44
SL11 0.26 0.59 0.56 0.57 0.24
SL12 0.31 0.59 0.57 0.58 0.27
SL13 0.33 0.61 0.57 0.58 0.29
SL14 0.40 0.62 0.60 0.61 0.34
SL15 0.41 0.63 0.60 0.61 0.34
SL16 0.42 0.67 0.64 0.64 0.35
SL17 0.54 0.70 0.67 0.68 0.44
SL18 0.35 0.55 0.50 0.53 0.29
SL19 0.39 0.60 0.56 0.58 0.33
SL20 0.42 0.64 0.62 0.63 0.35
SL21 0.30 0.59 0.56 0.57 0.26
SL22 0.44 0.63 0.59 0.61 0.36
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Figure 3. Calculated forest fraction of vegetation cover (FVC) images based on (a) normalized
difference vegetation index (NDVI), (b) modified vegetation index (MVI), (c) soil-adjusted vegetation

index (SAVI), and (d) modified soil-adjusted vegetation index (MSAVI), from the study area.
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Table 4. Correlation coefficient (R) and mean absolute error (MAE) of image-based forest FVC from
different vegetation indices with ground forest FVC.

Vegetation

R NDVI MVI SAVI MSAVI
Indices
R 0.9696 0.9599 0.9677 0.9981
MAE 0.1941 0.1729 0.1793 0.0947

Table 5. Ground forest AGB and selected image forest FVC.

Sample Location Number AGB (kg) (Ground) FVC (MSAVI)
SL1 18659.89 0.26
SL2 160815.21 0.77
SL3 34821.50 0.54
SL4 56166.84 0.71
SL5 65778.21 0.70
SL6 61020.63 0.66
SL7 57353.44 0.47
SL8 55605.20 0.46
SL9 36807.44 0.35
SL10 33626.20 0.44
SL11 22331.11 0.24
SL12 21460.73 0.27
SL13 17964.20 0.29
SL14 26194.07 0.34
SL15 24666.35 0.34
SL16 28177.79 0.35
SL17 29352.34 0.44
SL18 13470.94 0.29
SL19 17159.58 0.33
SL20 27933.05 0.35
SL21 20521.26 0.26
SL22 17844.75 0.36

As per the derived results from the experimentation using the satellite data together
with ground-based primary data, the image-based forest FVC was calculated through
MSAVI. This demonstrated the highest correlation and least mean absolute error with
respect to ground FVC compared to the other vegetation indices used in this study
(Table 4; Figure 3). These comparisons revealed that the MSAVI was the best vegetation in-
dex for image-based forest FVC calculation. Further, image-based forest FVC demonstrated
a linear relation with a high correlation value of 0.9995 derived using Equation (13).

The empirical model (Equation (14)) was useful in calculating ground forest AGB.
Further, the linear model between the ground forest AGB and selected image-based forest
FVC showed a good correlation value of 0.75 (Equation (15)). The derived model was
applied to the image-based forest FVC to calculate image-based AGB of the study area
(Figure 4). This model was trained using 15 among the 22 samples collected from the field.
The accuracy of the Sentinel-2-based forest AGB was assessed by comparing the remaining
seven field measurements to the corresponding locations. The standard deviation was
3166.50 kg per plot, which was calculated from the forest AGB estimate from all 22 locations.
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The result shows that all the evaluation between the image-derived and the field calculated
forest AGB agreed within one standard deviation. The above evaluation was performed
based on a single tree species, i.e., Shorea robusta. This tree species dominates in the study

area by approximately 90%.
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Figure 4. The forest AGB calculated from Sentinel-2 imagery in kg per pixel (a) and tons per hectare
(b) for the Tundi reserved forest, Jharkhand, India.

In this study, we have ignored the other tree species to avoid the complexity in the
developed method. Thus, we can consider that this study provided approximately more
than 90% accuracy. The uncertainty of the final outcome was tested using the chi-squared
test. The chi-squared test value was 0.19, i.e., 19% of uncertainty in the estimate.

Finally, the developed model was used to calculate the forest AGB of the study area
using the Sentinel-2 image (Figure 4). Based on the forest AGB map produced, the total
calculated forest AGB of the study area is estimated at 7,914,875,916.57 kg (7,914,875.92
tons) in 170,704,500 m? (17,070.45 hectares). Consequently, the study area contains forest
AGB on an average of 463.66 tons per hectare.

Further, the efficacy of the method was compared to the Qazi et al. model [47] in
forest AGB estimates. The Qazi et al. model for forest AGB estimate is a linear relationship
between crown projected area (CPA) achieved from an optical remote sensing image and
field based AGB.
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The model above was derived for Sentinel-2 and ground AGB obtained from the study
area, which is shown in Equation (16):

AGB(i,j) = 17419 x {CPA(i,j)} — 74302, and R? = 0.667 (16)

Likewise, the effectiveness of the developed method was compared to the Pandit et al.
model [9]. This model was developed based on random forest regression for forest AGB
estimation. These models were applied to calculated forest AGB for the validation, which
is shown in Tables 5 and 6.

Table 6. Comparison and validation of the image retrieved forest AGB with ground forest AGB.

Smre Gmniicn  medcs (@il imeddh

Number (in kg) (Proposed) Model) Model)
SL1 18659.89 18840.10 17989.54 18469.38
SL17 29352.34 30196.83 34432.89 32746.29
SL18 13470.94 14310.09 13934.32 15583.64
SL19 17159.58 17551.79 16930.83 17184.53
SL20 27933.05 28272.18 31030.86 30734.47
SL21 20521.26 19412.03 24418.61 21435.69
SL22 17844.75 18221.16 20692.22 18974.25

The results show that five with Qazi et al. model and six by Pandit et al. model among
seven validation points matched within one standard deviation with the ground estimates.
Note that the forest AGB standard deviation used for comparison was calculated from
the total ground data. Further, the potency of the proposed approach was tested using
correlation coefficient and mean absolute error.

The results achieved by this approach, the Qazi et al. [47] model, and the Pandit
et al. [9] model were evaluated by comparing their outcomes with ground forest AGB
estimates. The correlation between results from Sentinel-2 image and ground data by the
above approach was higher (0.9937) compared to Qazi et al. model (0.9796) and Pandit
et al. model (0.9884). Whereas the mean absolute error between outcomes from image
and ground data by the proposed approach was lower (582.97) than the Qazi et al. model
(18428.41) and the Pandit et al. model (1509.64). The results revealed that the developed
approach is superior compared to the Qazi et al. [47] and Pandit et al. [9] models. The forest
AGB evaluation by the Qazi et al. model was performed by NDVI-based CPA whereas
AGB estimation by the proposed approach is achieved by MSAVI-based FVC. Similarly, a
random forest-based regression model was developed for forest AGB valuation by Pandit
et al. [9]. This model developed a relation between RED-edge-derived vegetation index
and ground AGB using a random forest algorithm [9].

These results likewise revealed that the selection of the vegetation indices might
also be important parameters in forest AGB estimation with accuracy. There could be a
reason that MSAVI is more accurate compared to NDVTI for vegetation cover recognition
in the forest. Moreover, precise CPA estimation is difficult compared to FVC estimation
from optical remote sensing data could be the other reason. Furthermore, the Pandit et al.
model revealed that not only robust algorithm selection is valuable, but rather precise
vegetation identification and evaluation are also crucial in forest AGB model development.
However, the developed model considered vegetation index selection for precise forest
cover quantification before forest AGB model development. The developed approach is
straight forward and simple to use for accurate assessment of forest AGB. In addition,
a generalized forest AGB approach is presented so that the developed approach can be
applied to other optical remote sensing data for forest AGB estimation from different study
locations. Overall, these results and analysis from the study area show that Sentinel-2 has
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remarkable potential for estimation of the forest AGB. Based on the developed approach
and the Sentinel-2 image, the average forest AGB obtained was 463.66 tons per hectare from
the study area, which effectively agreed with the ground observation-based estimates.

One of the key aims of this work was to develop a novel method for precise, accurate,
and quick evaluation of the forest above ground biomass from satellite optical remote
sensing data. Sentinel-2 satellite data was utilized for this purpose. The ground FVC
from optical remote sensing imagery at each ground sample location was derived. Apart
from various available vegetation indices, a new method has been developed for precise,
accurate, and rapid evaluation and validation of above ground forest biomass estimation
using optical remote sensing in Tundi reserved forest area, India. This forest area typically
represents a subtropical forest type found abundantly in the region for which the study
was undertaken. The ground validation and comparisons with the developed CPA were
validated. This method demonstrated better results than any other known method devel-
oped so far. Using this method, AGB was derived to be 463 tons per hectare for the study
area and further, the satellite-derived data were also compared with the ground estimated
data. Finally, the desired level of accuracy was achieved using the model developed. This
leads to understanding and appreciating the value of the research outcome from this work.

This study also revealed that the biophysical variables of the vegetation types obtained
from Sentinel-2 are useful in the forest AGB calculation using local regression. However,
this study assumed that the whole study area is composed of a single tree species, whereas
in reality forests are composed of multiple tree species with geospatially varying amounts
over undulating terrain conditions. In comparison with available datasets and existing
techniques, however, the proposed method is highly useful in rapid forest AGB assessment.
In addition, the availability of high quality optical multispectral remote sensing data on a
global scale, free or at low cost from multiple sources, may help global society for forest
AGB estimation.

Finally, these results lead to conclude that the model obtained quickly produces
the forest AGB from optical remote sensing images directly with high accuracy. The
use of optical remote sensing data is rapid and simple compared to microwave remote
sensing data, which need complex data processing for vegetation biophysical parameters
extraction in AGB estimation. Further, the previous methods [9,47] and microwave data
in the forest AGB calculations depend on multiple factors, such as ecological, biotic, and
topographic factors, including actual tree height, diameter, stem density, and shape of tree
crown information.

4. Conclusions

The goal of this research was to develop a robust and cost-effective method for
rapid forest AGB evaluation. Initially, ground FVC using a fraction of land cover by
trees and image FVC using vegetation index from the optical remote sensing data were
computed. Next, the ground forest AGB was derived from the ground data (tree density,
tree height, and tree DBH) using an empirical model [27]. Subsequently, a relational model
was developed between ground forest AGB and remote sensing FVC by blending this
information by using a linear curve fitting approach.

To estimate the forest AGB, the devised model was applied to the FVC image derived
from the optical remote sensing image. The effectiveness of the approach developed was
assessed by utilizing Sentinel-2 imagery as test optical remote sensing data. The Tundi
reserved forest area, located in Jharkhand state of eastern India, was selected as a test site
for this study. The results obtained by the developed approach demonstrated excellent
matching with the results achieved by ground-based estimates. The application of the
developed method in Tundi reserved forest revealed that the test site contains forest AGB
on an average of 463 tons per hectare. The result obtained by the proposed approach
matches well with the result reported in previous studies from the study area. The result
demonstrated more than a 90% match with the ground measurement.
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This study still has a future improvement scope, which will employ topographic
information in the developed model.
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