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Abstract: With the increasing demands to use remote sensing approaches, such as aerial photogra-
phy, satellite imagery, and LiDAR in archaeological applications, there is still a limited number of
studies assessing the differences between remote sensing methods in extracting new archaeological
finds. Therefore, this work aims to critically compare two types of fine-scale remotely sensed data:
LiDAR and an Unmanned Aerial Vehicle (UAV) derived Structure from Motion (SfM) photogram-
metry. To achieve this, aerial imagery and airborne LiDAR datasets of Chun Castle were acquired,
processed, analyzed, and interpreted. Chun Castle is one of the most remarkable ancient sites in
Cornwall County (Southwest England) that had not been surveyed and explored by non-destructive
techniques. The work outlines the approaches that were applied to the remotely sensed data to
reveal potential remains: Visualization methods (e.g., hillshade and slope raster images), ISODATA
clustering, and Support Vector Machine (SVM) algorithms. The results display various archaeological
remains within the study site that have been successfully identified. Applying multiple methods
and algorithms have successfully improved our understanding of spatial attributes within the land-
scape. The outcomes demonstrate how raster derivable from inexpensive approaches can be used to
identify archaeological remains and hidden monuments, which have the possibility to revolutionize
archaeological understanding.

Keywords: archaeology; automatic detection; Chun Castle; drone; hidden features; Iron Age; LiDAR;
SfM-photogrammetry; remote sensing; RRIMs; visualization methods

1. Introduction

Archaeological prospection using geophysical approaches in archaeology is essential
to enhance scientific understanding and knowledge of archaeological areas and detect
potential remains [1,2]. While the study of hidden features has been a major focus of archae-
ologists using excavation methods [3–6] developments in geophysics and RS (e.g., ground
penetrating radar, drone-based photogrammetry, and laser scanning) have led to an evolu-
tion in archaeological studies. Scientists, engineers, and archaeologists can now apply RS
approaches to inspect/survey areas of interest, thus avoiding the often-destructive process
of excavation [7,8]. These non-invasive methods are significantly more sustainable for ar-
chaeological sites than traditional excavation and should be the preferred approaches [9,10].

RS techniques including Light Detection and Ranging (LiDAR) and aerial photog-
raphy can be applied to identify archaeological topographies both automatically and
manually [11–13]. LiDAR and Photogrammetry-derived digital models have been applied
in several archaeological projects to demonstrate how RS approaches can be used to identify,
interpret, and assess the characteristics of archaeological sites [13–17]. For example, in [18],
Digital Surface Models (DSMs) were derived from LiDAR data and Leica Photogrammetric
Suite (LPS) and used to generate orthoimages for feature detection in Vaihingen, Germany.
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They found that buildings (e.g., Vaihingen block) are easier to differentiate when both
LiDAR and photogrammetry applied rather than using LiDAR data alone. Airborne Laser
Scanning (ALS) was also proposed and used to create Digital Terrain Models (DTMs) of
the southern part of Devil’s Furrow (prehistoric pathway), in the Czech Republic, which
highlighted the smallest terrain discontinuities in the study site (e.g., erosion furrows and
tracks) [11]. In [19], a DEM was combined with an orthomosaic photo created from Un-
manned Aerial Vehicles (UAV) RGB (Red, Green and Blue) images of a university campus
(Sains Malaysia campus in Malaysia) to determine whether fused DSMs provide distinctive
results for land cover classification or not. The study also improves the accuracy of the
land cover classification by using convolutional neural networks. UAV images classified
accurately into grassland, buildings, trees, paved roads, water bodies, shadow, and bare
land [19]. Recently, [12] showed that LiDAR derived DSM and Google Earth imagery are
able to identify hidden sites (e.g., ancient forts) to demonstrate the potential of RS tools to
map a Roman period study site in Wadi El-Melah Valley in Gafsa, Tunisia, which is a series
of plains surrounded by mountains (maximum altitude is around 1480 m). They detected
two sites in the southwest Tunisia suspected to be Roman forts, confirmed by finding brick
fragments and several pottery shards in the forts, and a delineated Roman boundary in
southern Tunisia using RS data. As a result, several studies found that RS is a robust tool
for the archaeological prospection.

In addition, there are several visualization methods, such as slope images and aspect
images derived from digital models, which can be used towards a successful detection
of archaeological features [1,11,14–16]. Specifically, slope images display the vertical
variations in the elevation models derived from LiDAR DTMs, while aspect images show
the directions of vertical variations in the study sites [20]. In [20], a mound, and a possibly
new shell ring and another mound were discovered. Additionally, [6] used a hillshade
visualization of LiDAR data with a point density of 1 point/m2 and successfully provided
topographic details of Barwhill (north of Gatehouse of Fleet in Scotland) and detected
several archaeological remains, such as linear features that signify old water drainage
and another feature that corresponds to the Roman road. However, features could not be
extracted from hillshade images, in some cases, due to the influence of the illumination
model, which creates distortions and therefore hide some archaeological features. Similarly,
in [20], it was also found that the light in hillshade images could obscure topographies, so
they created Red Relief Image Maps (RRIMs) to detect and digitize mounds using LiDAR
data. RRIM is another visualization method and is suitable to represent and interpret
monuments on various terrains, such as land surface, seafloor, and features on celestial
bodies [14]. RRIM has overcome the limitations (e.g., light direction dependence, filtering,
and a weakness for scaling) of other visualization methods, such as hillshade. In [15],
different visualization methods were applied and evaluated under various conditions
and they found that the RRIM technique brings relatively a great visualization advantage
to the end user when compared to other methods, as it can successfully reveal subtle
archaeological remains raster. Moreover, different visualizations techniques (e.g., hillshade,
slope, positive openness) can be computed using the Relief Visualization Toolbox (RVT) for
discovery and recognition of small-scale features [16,21].

Many studies have employed RS technologies in the discipline of archaeology and
cultural heritage. Some focused on the discovery and recording of ancient features/sites for
the first time [7,15,17]; others highlighted known archaeological features [6,11,13]. These
studies are related to some extent to our research although some are particularly targeting
larger areas (e.g., discovering new sites). Thus, UAV-based photogrammetry and LiDAR
have the possibility to make substantial further contributions to archaeological manage-
ment outcomes, and these methods provide secure detection and adequate characterization
of the archaeological records. The aim of this study is to demonstrate a workflow for
identifying and recording archaeological features using fine-scale RS approaches (i.e., Struc-
ture from Motion- Multi View Stereo (SfM-MVS) photogrammetry with drone data and
LiDAR data) and make critical comparisons of their capabilities to identify archaeological
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features (possible remains). Aerial images and LiDAR data processing, classification tools,
and visualization methods are utilized to detect and digitize potential archaeological fea-
tures, including those hard to observe from ground-level but relatively easy to distinguish
from above.

2. Materials and Methods
2.1. Study Area

Chun Castle (Figure 1) is an iron age hillfort near Penzance, in West Penwith, Cornwall,
UK (50.1486◦ N, 5.6336◦ W) at 215 m above Ordnance Datum Newlyn (ODN) [22,23], built
roughly 2500 years ago [23]. It contains several archaeological features (e.g., stones, walls,
and potteries), which are about 2000 years old [3,24]. The castle has a nearly circular
construction, ringed by two stone walls, with a ditch in front of each wall. Excavation
works in 1930 and 1926 were implemented to explore the castle [3,4]. The latter studies
revealed traces of oblong huts and an inner courtyard belonging to the Iron Age, but these
huts apparently no longer exist. In 1930, several fragments of pottery (demonstrating a
medium roughness with a mixture of quartz) were also found, which are 0.03 m diameter
and 0.01 m thickness [4]. Additionally, a furnace for mineral processing constructed over
round structures in the Area of Interest (AOI) was identified. Presumably, the site was
originally a place for ceremonies and local tribes [25]. Later, in the 16th century, the furnace
was built for smelting and production of minerals and tin inside the fort [26,27]. The
castle was then pillaged in the 18th century for stone to build houses and pave roads in
Penzance [22,23]. The archaeological features already identified in the previous literature
are summarized in Table 1.
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Table 1. Archaeological features from previous studies revealed in the study site using excavation
methods.

Features Identified Reference

Potential buildings [3,4,23]
Pottery, flint, and glass [3,23]

Furnaces [3]
A castle well [23]

Hearths accompanied by quantities of charcoal. [3]
Hammer-stones [3]

https://digimap.edina.ac.uk
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2.2. Remote Sensing Data

Two RS datasets are evaluated in this study to determine which dataset performs most
effectively for the detection of supporting archaeological monuments: (i) DSMs derived
from raw topographic LiDAR data and (ii) DSMs generated from SfM photogrammetry.

2.2.1. LiDAR Dataset

Raw topographic LiDAR data were captured during July and August 2013 using
an Optech ALTM 3100 EA laser scanner for the Tellus South West project (www.tellusgb.
ac.uk). The Applanix Global Positioning System (GPS) was used to create 74 random
ground control points (GCPs) distributed in Cornwall and Devon to georeference the
LiDAR survey product [28]. The spatial reference of the LiDAR data is OSGB 1936/British
National Grid (EPSG: 27700). Calibrated LiDAR point clouds were processed into DSMs
by Geomatics (Environment Agency) applying Terrascan software [28]. LiDAR DSMs are
used in this study since the raw data of the study site are not available. LiDAR DSMs
are obtained from the UK Centre for Ecology and Hydrology project in the Southwest
(https://www.ceh.ac.uk) and downloaded from (https://catalogue.ceh.ac.uk/documents/
b81071f2-85b3-4e31-8506-cabe899f989a) at a spatial resolution of 1 m with average accuracy
of 0.25 m [29]. This resolution is sufficient in this research because there is not much more
information that could be extracted from the LiDAR raw data that are smaller than 1 m
topographic resolution. There is still a possibility to grid the raw data (in case of availability)
at a higher resolution (e.g., 0.5 m), but in this case, a gap-filling algorithm would be the
only choice to implement this option. Further, the available point density sets a limit to the
amount of information that could be extracted from these data. Therefore; increasing the
spatial resolution of this particular dataset would potentially not provide any additional
useful information. This dataset was also used in other studies [30–32] and delivered
interesting findings. Moreover, Refs. [6,20] used LiDAR data with the point density of
1 point/m2 and they successfully detected several archaeological remains of AOIs. In
addition to the LiDAR data, a second DSMs dataset was created from raw UAV-images
using the SfM method at a spatial resolution of 0.04 m.

2.2.2. Photogrammetric Dataset
Data Collection

Data collection of the photogrammetric dataset took place at Chun Castle on 6 June
2019. Before carrying out the aerial survey, GCPs survey were carried out using the RTK-
differential Leica GS08 system. A total of 15 ‘iron-cross’ markers were surveyed across
the study site as GCPs and positioned spatially applying differential GNSS. The iron-
cross markers were distributed in the AOI to ensure the position of the GCPs around the
boundaries of the study site and nearby the castle center [33]. The markers should be free
from grass/vegetation that might obstruct a clear view from the air. A local reference station
was measured using a two-hour static DGPS observation period; after post processing, the
spatial accuracy of the local reference station was 0.02 m horizontally and 0.05 m vertically.
Then, 15 GCPs were deployed and geolocated in the AOI relatively. These points were
used later to re-align point clouds for georeferencing the aerial survey data.

The objective of the UAV survey is to acquire a photogrammetric data set to gener-
ate an orthomosaic map and DSMs for Chun Castle. We used a DJI Mavic 2 Pro Drone
(https://www.dji.com/uk/mavic-2), equipped with a Hasselblad digital camera
(5472 × 3648 pixels), which has a rolling electronic shutter (Table A1 in Appendix A).
This platform weighs ca. 907 g and costs less than £1,500. In this study, the flights were
performed within a visual line of sight at an altitude of 80 m over the AOI with a 6.9 cm/px
Ground Sampling Distance (GSD). This altitude (80 m) was chosen, as the flight height
directly influences achievable GSD and consequently, effects the details that could be
identified from the UAV imagery [34–36]. There are several studies (e.g., [35–37]) with
flight altitude greater than 80 m that received fine-grain maps of the AOIs. This altitude
was selected to obtain sufficient GSD that enable us to interpret and detect the topographic

www.tellusgb.ac.uk
www.tellusgb.ac.uk
https://www.ceh.ac.uk
https://catalogue.ceh.ac.uk/documents/b81071f2-85b3-4e31-8506-cabe899f989a
https://catalogue.ceh.ac.uk/documents/b81071f2-85b3-4e31-8506-cabe899f989a
https://www.dji.com/uk/mavic-2
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features of the archaeological site (Section 3). The aerial images in this work were captured
by keeping the digital camera at fixed focal length of 28 mm. The minimum overlap and
sidelap was specified to be 80%, and the shutter speed was 1/640th of a second, which
was adequate to reduce motion blur and obtain more consistent extracted features [36,37].
The study site was surveyed with a programmed flight using open-source Mission Planner
software (http://planner.ardupilot.com/); this software is used as a dynamic control sup-
plement to set up flight missions and monitor the drone status while in operation. Drone
flights were conducted within a few hours of solar noon (e.g., 13:00) in the sense that the
brightness conditions are likely to impact the photogrammetric reconstructions [34–36].
The platform was flown for 15 minutes over the study site to capture 161 aerial images; the
flight details are summarized in Table 2.

Table 2. Unmanned Aerial Vehicle (UAV) flight parameters used in the photogrammetric data
collection campaign.

Parameter Setting

Flying height 80 m
Focal length 28 mm

Overlap and sidelap 80%
Camera ISO 200

Margin 15 m
Exposure value (Ev.) −0.7

Shutter speed 1/640th s

Orthomosaic and DSM Generation

Following data capturing of the UAV images, SfM photogrammetry pre-processing
phase was implemented. Several computer programs are available for SfM photogram-
metric processing, such as Pix4Dmapper, Recap, and Metashape. Agisoft Metashape
Professional software (v.1.5) (https://www.agisoft.com/) was used in this study since it
is efficient and effective in the production of, to some extent, accurate dense point clouds
from aerial images comparing with other photogrammetry software [33,34]. The workflow
begins with photo alignment that applies SfM methods to seek common points on aerial im-
ages, match them, and run point clouds triangulation [36,38]. The bundle block adjustment
algorithm is then implemented to refine the camera position for individual aerial images
and enhance the 3D reconstructions [33–35]. The resulting sparse point cloud is applied to
create a 3D mesh of the site/ scene. Next, ground control markers used to georeference
the models. Specifically, 15 markers were placed in Agisoft Metashape. Then, GCPs were
imported and manually recognized within the aerial images to ensure geolocation with
the spatial positions of the individual photos. Multi-view stereopsis techniques were then
applied to create dense point clouds based on adjusted camera positions, GCPs, and RGB
aerial images [39]. Roughly 12 million (12,057,994) points are generated from this initial
processing step in this 3D dataset. The outputs of the aerial images pre-processing phase
are a textured mesh, an orthomosaic map, and DSMs. These outputs were analyzed in
ArcGIS Pro (v.2.4) (https://www.esri.com) to identify any possible archaeological features.

2.3. Visualization Methods

The first step in post-processing phase was to create four visualization raster images
from each model (i.e., LiDAR DSM and SfM-DSM). Visualization methods could provide
an essential contribution to detect topographic information acquired by RS approaches e.g.,
LiDAR [2,14]. Combining and overlaying visualization raster data in GIS are considered a
key component in interpretation and interaction with the simulated environment [40,41].
These visualization raster images are: Slope image, aspect image, shaded relief map
(hillshade), and RRIM.

http://planner.ardupilot.com/
https://www.agisoft.com/
https://www.esri.com
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2.3.1. Slope and Aspect Raster

Slope raster focuses on altitude changes in the landscape. Most GIS packages apply a 3
by 3 neighborhood for several raster operations (e.g., slope and aspect) [42,43]. The slope
is usually calculated in degree units using the original DSMs as inputs, see Equation (3).
For more clarification, Table 3 represents the values of the cell (e) and its eight neighbors
(from a to i) to define both horizontal and vertical deltas [42]. The slope raster image can
identify the steepness of individual cells in the raster image; where each pixel is colored
based on the terrain slope [20]. However, the aspect image colors the pixels according to
the slope orientation [11]. The merit of using the aspect raster in this study, in addition to
the orthomosaic image, lies in the possibility of identifying the features that have already
been identified by previous studies within the study site (e.g., the entrance, ditches).

Table 3. 3 × 3 window cells in a raster image.

a b c

d e f

g h i

2.3.2. Hillshade Raster

The hillshade raster is a shaded-relief image that highlights landscape elevation
changes [2,30]. The illumination parameters (Azimuth: 315, altitude: 45, and Z-factor: 1) are
simulated in this study to create the shaded-relief image. The azimuth and altitude specify
the relative position of the sun to generate the 3D models (shaded-relief). The azimuth is
representing the relative location of the sun along the horizon, which is measured clockwise
from the north (0/360 degree), east, south, and to the west (270 degrees). However, the
altitude parameter refers to the elevation angle of the sun over the horizon ranging between
0 (the elevation angle on the horizontal plane of the reference frame that results in creating
3D models with minimum illumination) and 90 degrees (overhead the horizontal plane
that results in creating 3D models with maximum illumination). Z factor modifies the
measure of the elevation units (Z) when varies from the horizontal units (X and Y) of the
input raster. In this case, the horizontal and vertical units are all in the same unit (meter),
therefore the Z factor was set to 1. The utility of this visualization method is that it helps
the user understand and comprehend the topographic details [1,14]. Nonetheless, one of
the weaknesses that could be encountered in hillshade image is that the illumination could
cause deformations that lead to obscuring specific terrain features [14,42]. To avoid this,
RRIMs (known as shade-free relief maps) are applied to obtain clear topographic features
of the AOI since they compare favorably with other visualization methods [42,44].

2.3.3. Red-Relief Image Mapping (RRIM)

RRIM is a visualization method based on multi-layered topographic data (i.e., positive
openness, negative openness, and topographic slope) that is computed from DSMs [14].
Openness is an angular measure of the relation between horizontal distance and surface
relief, it represents the enclosure (negative) and dominance (positive) of a landscape
position, and is applied to visualize topographic details [44]. Positive openness signifies
the convexity of landscapes, such as ridge and crest, while negative openness signifies
the concavity of landscapes, such as valley and gully [15,42]. Certain parameters, such
as radial limit and number of sectors, were selected to create topographic openness. The
radial limit depends on the landscape features, cell size, and grid size. In this research,
a variety of radial limits (2 m, 10 m, 30 m, and 50 m) are tested to identify the most
appropriate value to use for calculating the deferential openness raster; 10 m radial limits
were selected, as this provides a relatively more detailed raster image for Chun Castle. The
number of sectors was configured at 8, which is the standard value used to specify the
number of azimuths [44]. There are two available methods to implement the openness
calculations: The sector method and the multi-scale method. One of the main drawbacks
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of the multi-scale method is that it generates pyramid layers, which deliver less accurate
openness parameters than those that could delivered from sector method [44]. For this
reason, the sector method was employed in this research to implement the openness
calculation. To extract RRIMs, a differential openness raster (I) was applied to calculate
openness parameters following Equation (1), where I is the differential openness raster, Op
is the assessment of the positive openness (which computes topographic concavity), and On
is the assessment of the negative openness (which estimates topographic convexity) [14,15].

I =
(Op−On)

2
(1)

The RRIM is a shade-free method that effectively represents fine structure of 3D topo-
graphic data. This method provides the possibility to visualize relatively higher-resolution
3D raster images than obtained with other visualization methods (e.g., hillshade). Hence,
it suitable for wide range of topographic data, such as LiDAR and photogrammetry [11,14].
Therefore, RRIMs are generated in this study by overlapping the differential openness
raster with the slope raster. RRIM values are then used to generate a combined map that
illustrates convexities, and concavities with the topographic slope raster in red color [20,44],
see Table 4.

Table 4. The layers (slope maps, differential openness, and topographic openness) used to create the
Red Relief Image Maps (RRIMs).

Layer Setting While Creating the Layer

Topographic openness
Radial limit 10 m

Method Sectors
No. of sector 8

Differential openness Resampling Bilinear
Brightness 50%

Slope raster Output Meas Degree
Brightness 80%

2.4. Classification Algorithms
2.4.1. Supervised and Unsupervised Classification

In this work, some archaeological features are identified manually while other features
are detected automatically. The use of aerial images and mosaics has been rooted in manual
interpretation where the user should visually seek to identify objects of interest [20]. Such
manual analysis is a productive approach for feature detection, although it is likely to
limit the potential and efficiency of RS techniques over larger areas (e.g., <1 ha). In
this research, the manual detecting and digitizing of archaeological features is based on
visualization methods. Automated feature digitizing methods have not replaced manual
extraction methods since manual extractions still have the flexibility and adaptability to
apply to various types of data. Specifically, monuments are identified manually from the
visualization raster images in combination with the orthomosaic image where pixels are
found to be roughly similar in spectral aspects. The identified archaeological objects are
digitized as polygons (e.g., the castle well) and polylines (e.g., the entrance) using ArcGIS
Pro software (v.2.4) (https://www.esri.com).

In addition to the manual approach, automatic classification methods are applied
such as ISO cluster tools and supervised classification, which consider essential tools for
extracting archaeological information from RS data [12]. These classification methods
specify land classes to pixels and are likely to increase productivity by minimizing time-
consuming manual feature extraction [45,46]. Generally, ISO classification is where objects
or areas are assigned to classes depending on the raster image analysis without selecting
pre-defined sample classes [11,12,47]. The users can set the algorithm to group pixels
into classes and specify the required number of classes to assign objects. In supervised
classification, users can specify sample pixels in a raster image to generate certain classes

https://www.esri.com
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and use as reference classes in order to classify all pixels in the raster [46,48]. ISO cluster and
supervised classification tools are used in several archaeological studies (such as [12,15,48])
for the identification of archaeological features. Unsupervised classification tools were also
applied in this archaeological application due to various reasons: Classes do not have to be
specified beforehand, unrecognized classes might be revealed, and generally, it requires a
minimum quantity of inputs in contrast with supervised classification.

Despite the beneficial outputs that could obtain from the ISO Cluster method, in
this research, supervised classifications were used to develop final outcomes analysis. A
range of algorithms in the supervised classification are available; for instance, Support
Vector Machines (SVM), Maximum Likelihood (ML), and Neural Networks (NN). ML is the
standard parametric algorithm and presumes data for each class in a raster are normally
distributed [49,50]. NN algorithm use convolutional layers to classify a raster that improves
labelling procedure, where landscape data could be extracted at various levels (e.g., object
level, pixel level, and patch level) [19]. These algorithms can be applied using various
software packages, such as Erdas Imagine, Google Earth engine, and ArcGIS to achieve
automatic land extraction. Specifying training data is to some extent more important
than the choice of a certain classification method to acquire relatively higher classification
accuracy of the classified raster images [51]. However, several studies (e.g., [49,52,53])
found that SVM performs better if compared to other classifiers (e.g., ML algorithm) and
is likely to reduce the classification errors of the land cover information. Therefore, the
SVM algorithm was used in this work to extract the archaeological features from RS data
in ArcGIS Pro. More specifically, in the supervised classification, the SVM classifier was
trained to assign pixels to four different classes (ditch, stones, Iron slag, and grass) using
training samples. The training data are created for individual class category by drawing
polygons around objects in the raster images (i.e., orthomosaic image) using the training
samples manager tool. This was applied to provide data about the size and number of
samples and also to enhance the overall accuracy of the classification process. Nonetheless,
classified outputs produced by the SVM algorithm can contain certain random noise. To
improve classification results, a post-classification method was carried out. Specifically,
various algorithms are available to eliminate noise and change misclassified pixels to the
correct class. In this study, the re-classifier tool from ArcGIS Pro was applied to make edits
to particular objects/ features and address the errors of the classified outputs.

2.4.2. Data Validation

Accuracy assessment tools were employed to estimate and assess the accuracy (i.e., the
degree of correctness) of the classified results. This technique is important for assessing the
data derived from RS resources and is considered a critical component for a range of studies
including archaeological research projects [15,18,19,54]. The most accurate assessment was
derived from the errors/ confusion matrix validation assessment to describe the accuracy
of the applied classification process [55–59]. This matrix is used for full reporting of overall
accuracy, user’s accuracy, producer’s accuracy, and Kappa [47,59]. Using geoprocessing
tools, a stratified random sampling approach is applied based on the classified map to
create a set of points (500 points) to guarantee all the classes are adequately characterized.
Then, these assessed points are validated using Google Earth imagery (reference data) to
assign individual points to their individual real classes (Figure 2). These points are then
assembled into tables to contrast the real class for individual points with their classification
raster. With the confusion matrix method, accuracy and kappa values are represented
from 0 to 1, where 1 indicating 100% accuracy percentage [58,60]. Kappa calculates the
agreement between the truth values and the classified values. The following Equations
and Table 5 showing how the validation process is implemented in this research [54,57].
Thus, an interpretation approach of SfM-MVS photogrammetric and LiDAR data was
presented using visualization methods and automatic classification approaches to detect



ISPRS Int. J. Geo-Inf. 2021, 10, 41 9 of 21

archaeological features in Chun Castle study site and shed light on archaeological findings
that belong to the Iron Age and the later Roman period.

Total accuray =
∑r

i=1 Xii
N

∗ 100 (2)

User′s accuracy =
Yii

Σxi ′
∗ 100 (3)

Produces′s accuracy =
Yii
Σxi
∗ 100 (4)

Kappa coefficient =
N ∑r

i=1 Xii− ∑r
i=1

(
xi ∗ xi′

)
N2 − ∑n

1=1
(
xi ∗ xi′

) (5)

where Yii is the value that has been classified correctly belonging to class (i), N is the sum of
classified (predicted) data compared to actual data, xi is the sum of classified data belonging
to individual classes (class i), xi’ is the sum of actual data belonging to individual classes
(class i), and Xii is the diagonals numbers that have been classified correctly according to
the actual data.
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Table 5. The GIS Pro confusion matrix; rows represent predicted classes, while columns represent
actual classes.

Classes from Reference Source

A B C D Σ

Classes from classified
source raster

A AA AB AC AD ΣA

B B-A BB BC BD ΣB

C CA CB CC CD ΣC

D DA DB DC DD ΣD

Σ ΣA’ ΣB’ ΣC’ ΣD’ N
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3. Results
3.1. Interpretation Analysis Results

Point-clouds derived by applying SfM-MVS drone-based image processing created
realistic 3D model representation of the Chun Castle (Figure 3). Later, when visual raster
images were produced and interpreted, it was found that the slope raster reveals the border
of the entrance and emphasizes the outline of the archaeological features as compared to
the original DSM. However, the hillshade raster provides a clearer outline of the area used
for mineral processing display (Figure 4). The topographic features of the study site are also
identified through the RRIMs. The RRIMs in this study provides less distorted and clearer
views than other raster images (slope, aspect, and hillshade raster images) and identified
the topographic features (e.g., castle entrance, ditch, circular and leaner monuments).
These outcomes deliver the crucial information and visualization potentials to interpret the
identified features (Figure 5). Based on these visual rasters, and the orthomosaic image
derived from the MVS-SfM data, the following archaeological features have been visually
interpreted: A possible area for mineral processing (163.63 m2), ditches (external: 5562.51
m2; internal: 3783.63 m2), a linear feature (A: 34.21 m), and three circular shapes (I’: 2.28 m2;
II: 5.41 m2; III: 1.56 m2). Furthermore, six possible remains of constructions (i.e., possible
circular houses or traces of chambers), which are formed of walls made of stone posts,
are also digitized in this study. The size of these linear traces is: [Chamber (I) 11.74 m;
Chamber (II) 20.31 m; Chamber (III) 9.49 m; Chamber (IV) 6.35 m; Chamber (V) 5.59 m;
Chamber (VI) 10.87 m]. The size of these archaeological features is relative to the spatial
resolution of the data (Figure 6).
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obtained from UAV-derived Structure from Motion (SfM) photogrammetry.

In addition to the SfM data, LiDAR-DSMs are also investigated and visually inter-
preted. Archaeological monuments are identified (e.g., boundaries, ditch, and the castle
entrance) based on the visual raster images produced from LiDAR dataset (Figure 6 and
Tables 6 and 7). These monuments are: Ditches [external: 5524.21 m2; internal: 3747.06 m2],
linear monuments [Polyline (I) 38.47 m; polyline (II) 56.64 m; polyline (III) 33.33 m] and
six circular shapes [Circular shape (I) 3.50 m2; circular shape (II) 5.97 m2, circular shape
(III) 2.46 m2, circular shape (IV) 4.06 m2, circular shape (V) 5.06 m2]. To our knowledge,
these archaeological features were first detected and digitized using RS approaches (Table 6,
Table 7, and Table A2 in Appendix A).



ISPRS Int. J. Geo-Inf. 2021, 10, 41 11 of 21

Figure 4. Visualization raster images created from SfM Digital Surface Models (DSMs) (Left) and
LiDAR DSMs (Right) to interpret Chun Castle. The right side shows the raster images derived from
Light Detection and Ranging (LiDAR) products. The left side displays the raster images generated
from SfM data.
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Figure 6. Results obtained from visual interpretation: Comprehensive interpretation map of Chun Castle applying manual
digitizing based on shaded relief visualizing model: (a) Seven types of archaeological features were found and digitized
using SfM data; (b) six features are detected using LiDAR data.

Table 6. The areas of the archaeological features detected in this work using SfM and LiDAR data analysis.

Feature SfM Data Area (m2) LiDAR Area (m2)

Circular shape I � 2.28 � 3.50
Circular shape II � 5.41 � 5.97
Castle well (III) � 1.56 � 2.46

Circular shape (IV) n/a n/a � 4.06
Circular shape (V) n/a n/a � 5.06

External ditch � 5562.51 � 5524.21
Internal ditch � 3783.63 � 3747.06

Field for mineral processing � 153.47 � 145.32
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Table 7. The lengths of the archaeological features identified in this study using SfM and LiDAR data
analysis.

ID Feature SfM Data Length (m) LiDAR Length (m)

A Polyline I n/a 34.21 � 38.74
B Polyline II n/a n/a � 56.64
C Polyline III n/a n/a � 33.33
D Chamber I � 11.74 n/a n/a
E Chamber II � 20.31 n/a n/a
F Chamber III � 9.49 n/a n/a
G Chamber IV � 6.35 n/a n/a
H Chamber V � 5.59 n/a n/a
I Chamber VI � 10.87 n/a n/a

In addition to the manual detection analysis, automatic detection tools were applied
(i.e., ISODATA algorithm) to create an unsupervised classification and supervised classifica-
tion analysis to identify archaeological features. The results from supervised classifications
(Figure 7) were similar to those achieved from the ISO Cluster method (Figure A2 in
Appendix A). The random stones inside the castle are detected and mapped automatically
after interpretation-based Visualization methods. Some of these stones are possible remains
of huts that were built between the Iron Age and the Roman period. Additionally, the
castle ditch and a triangular shape (the field for mineral processing) are also detected and
digitized automatically in this study. There is a section inside the fort still containing traces
of iron slag and tin; hence this part was automatically detected and digitized by applying
classification algorithms. Thus, ditches, the mineral field, random stones, traces of iron
slag, and grass were automatically digitized by employing these approaches.
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3.2. Validation Results

In this research, the outcomes of the classification results are validated based on
the confusion matrix analysis. The results delivered from applying the validation anal-
ysis (Figure 8) show that the validation results of SfM data are relatively more accurate
than results produced from the LiDAR datasets, although the same supervised algorithm
(i.e., SVM) was applied and the same number of targeted classes was used for both LiDAR-
and photogrammetric-derived maps (classification maps) of the same landscape. Training
samples are also one of the factors that impact the classification accuracy [53], as the total
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number of the training samples represent a certain class (e.g., stones); consequently, the
location of these samples should be based on relatively high-resolution maps in order to
obtain higher classification accuracy. This means that the validation results also correlate
with the spatial resolution of the classification map [53]. Thereby, the overall supervised
classification accuracy assessment benefits from higher spatial resolution maps. In this study,
the spatial resolution of the photogrammetric dataset is higher than the LiDAR dataset, which
explains the validation results (the user’s accuracy, producer accuracy, and kappa analysis)
of the SfM data that are comparatively higher than those delivered from the topographic
LiDAR data. Moreover, Kappa measurements of the classification maps derived from Li-
DAR and photogrammetry were 72.7% and 77.8%, respectively. Based on the user accuracy
(Tables A3 and A4 in Appendix A), ditches’ identification and digitization (external and
internal) at the AOI from both datasets achieve the highest accuracy levels if compared to
other features. Further, 90% of the identified features from the field being also detected and
digitized in both photogrammetric and LiDAR datasets. Identifying stones obtained 73%
and 85% coincidence between the mapped data, i.e., LiDAR and SfM methods, respectively,
and ground data (reference data). Some of these stones are expected to be the remains of
huts/houses dated to the Iron Age and Roman time period. Additionally, the SVM clas-
sification process successfully detected and mapped traces of iron slag. Even so, 85% and
74% of the mapped stones were confirmed to be identified from the SfM and LiDAR dataset
correspondingly in a comparison with a reference map (Figure 2). The minimum accuracy
delivered from the map classification analysis was 74.3% and 73.3% from SfM and LiDAR
datasets, respectively. This assessment routine was also adopted in a previous [49] study.

Figure 8. Accuracy assessment analysis to measure the renderings of the applied classification methods.
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4. Discussion

Studies by [3,4] were the first to identify archaeological monuments at Chun Castle, by
implementing excavation methods. Work to date has concentrated on employing specific
approaches for identifying archaeological landscapes (e.g., [10,11,18,20,59]) and has not
yet focused on making critical comparisons of various non-invasive methods (i.e., RS) for
detecting archaeological structures. This research demonstrates particular interpretation
and analysis methods that were applied on products derived from two RS approaches
(i.e., LiDAR and UAV-SfM datasets) and highlight the differences in their capabilities to
detect new archaeological features (potential monuments) at the study site (Tables 6 and 7).

Chun Castle is in an extremely ruinous state. It was frequently challenging to identify
archaeological objects from the RS data due to the number of loose stones covering the
site. In this study, various visualization methods are applied; the presented combination
of the DSM, slope raster, and RRIMs delivered relatively more detailed, less distorted,
and clearer raster images than other visualization methods (e.g., hillshade), allowing for
the extraction of more information about the archaeological landscape (Figure 6). Using
non- destructive methods, new findings are presented in this study site, which include
possible traces of huts/houses, linear monuments, and circular structures. In [27], possible
archaeological remains were identified and interpreted, such as the castle well (one of
the circular structures detected in this work), some pottery, huts, and a furnace by only
utilizing excavation methods. A furnace in the fort (Figure 9), containing traces of iron slag
and tin, indicates that the fort became a place for the blending, smelting, and production of
minerals in the 16th century [3]. Additionally, and based on the excavation works by [4],
there were huts in the inner courtyard belonging to the Iron Age, but that no longer exist.
This might be due to the plundering that occurred in the 18th century to construct houses
and pave roads in Penzance.

Further in this study, the RRIM and hillshade raster image derived from the SfM-DSMs
shows some possible construction remains of round houses/chambers and these remains
were interpreted and digitized (Figures 6 and A1 in Appendix A). Circular huts, in general,
are a normal form of Iron Age forts and have been revealed in most Iron Age castles [4].
Six ‘potential existence’ archaeological huts traces are found in this study; some of them have
been revealed by previous literatures (Figure 9), as illustrated in Section 2. Furthermore, there
was a castle well that had been used for providing water [27]. In general, wells are valuable
elements in castles, and sometimes, castles had more than one well [61]. Cartwright [61]
further states that around 80% of castles were supplied with one well and 20% had two or
more wells. In this research, three circular features have been detected and one of these
features was identified following its spatial positioning to be the castle well based on earlier
identification in [3,27] studies.

In this work, archaeological features have been detected, quantified, and digitized at
the fine-scale landscape from RS datasets. There are several features that were detected by
SfM-MVS photogrammetry with UAV data but have not been identified by LiDAR (and
vice versa), although the same processing and analysis methods were implemented in
both datasets. This is due to the differences in spatial resolution between the two datasets.
The reason is likely to be the spatial resolution of the SfM data, which is relatively higher
than the resolution of the LiDAR DSMs for this particular site. In this study, the spatial
resolution of the LiDAR data was 1 m, however there might be a possibility to grid the
raw data (in case of availability) at a higher resolution (e.g., 0.5 m), which sets a limit to
the amount of information extracted from this dataset. That means algorithms would be
implemented by gap-filling the raw data; consequently, increasing the resolution in this
particular case, would potentially not provide more useful information about the study
site. Additionally, RS data were acquired on different dates, the LiDAR data were collected
during July and August 2013 and the aerial photography in June 2019, the study site, to
some extent, was not changed during that period (2013–2019). There are several factors
that directly or indirectly affect topographic features and cause changes in a certain area,
such as environmental damage (e.g., flood, earthquake, and fire) and human activities
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(e.g., vandalism, war, development, and excavation) [62]. The study site has not been
exposed to these factors, nor any destructive tools, especially between 2013 and 2019 [61],
so the archaeological area itself has not changed during that period. However, various
archaeological features were likely to be obtained from both approaches due to the different
settings and conditions (e.g., cameras, sensors, and resolution) of collecting each dataset.
Accordingly, our understanding is promoted by this particular archaeological landscape
that belongs to the Iron Age and the Roman period. The newly discovered possible
huts and circular shapes in the castle helped to answer an archaeological question about
how different methodological approaches (i.e., visualization methods and classification
algorithms) can be applied for the detection of archaeological landscapes. Therefore, the
merit of identifying archaeological structures here is to comprehend the capability of RS
methods in interpreting and measuring structures/objects that might otherwise remain
hidden.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 17 of 23 
 

 

ological remains were identified and interpreted, such as the castle well (one of the circu-
lar structures detected in this work), some pottery, huts, and a furnace by only utilizing 
excavation methods. A furnace in the fort (Figure 9), containing traces of iron slag and tin, 
indicates that the fort became a place for the blending, smelting, and production of min-
erals in the 16th century [3]. Additionally, and based on the excavation works by [4], there 
were huts in the inner courtyard belonging to the Iron Age, but that no longer exist. This 
might be due to the plundering that occurred in the 18th century to construct houses and 
pave roads in Penzance. 

Further in this study, the RRIM and hillshade raster image derived from the SfM-
DSMs shows some possible construction remains of round houses/chambers and these 
remains were interpreted and digitized (Figure 6 and Figure A1 in Appendix A). Circular 
huts, in general, are a normal form of Iron Age forts and have been revealed in most Iron 
Age castles [4]. Six ‘potential existence’ archaeological huts traces are found in this study; 
some of them have been revealed by previous literatures (Figure 9), as illustrated in Sec-
tion 2. Furthermore, there was a castle well that had been used for providing water [27]. 
In general, wells are valuable elements in castles, and sometimes, castles had more than 
one well [61]. Cartwright [61] further states that around 80% of castles were supplied with 
one well and 20% had two or more wells. In this research, three circular features have 
been detected and one of these features was identified following its spatial positioning to 
be the castle well based on earlier identification in [3,27] studies.   

 
Figure 9. Archaeological monuments in Chun Castle study site revealed from [3] findings using 
excavation methods. This figure adapted from Figure 3 in [3] study. 

In this work, archaeological features have been detected, quantified, and digitized at 
the fine-scale landscape from RS datasets. There are several features that were detected 
by SfM-MVS photogrammetry with UAV data but have not been identified by LiDAR 
(and vice versa), although the same processing and analysis methods were implemented 

Figure 9. Archaeological monuments in Chun Castle study site revealed from [3] findings using excavation methods. This
figure adapted from Figure 3 in [3] study.

5. Conclusions

In this paper, a non-destructive routine was presented to identify potential archaeo-
logical structures in Chun Castle site using LiDAR and UAV photogrammetry methods.
The RS technologies allowed us to verify and understand the merits of the archaeological
study site. Some features were identified and manually digitized based on the visualiza-
tion methods (e.g., RRIMs) adopted. These methods resulted in a reliable identification
of several potential hut monuments in the castle. ISO cluster and SVM classification al-
gorithms were applied to automatically detect all archaeological objects in the site. The
usage of various visualization approaches and classification tools in one archaeological site
proved to be an adequate method for detecting hidden features. The algorithms that were
adopted allowed for enhanced recognition of various suspected structures (e.g., round-
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house). The outcomes of the geospatial analysis allowed us to (1) detect and digitize newly
archaeological objects, (2) map the shape of the fort, and (3) find unknown monuments
(lines, circles) in the AOI. SfM photogrammetric data helped to detect hidden monuments
in the archaeological landscape where LiDAR data provided relatively lower levels of
detail. These differences were due to the various spatial resolution of the two datasets. The
resulting DSMs and the produced visualization raster images, together with the utilized
classification algorithms, allowed us to digitize the topographic features of the study site
and detect possible monuments. Within this study, the possibilities of RS stand-alone
methods (LiDAR and UAV-photogrammetry) in generating 3D models and identifying
archaeological features of an ancient site are investigated. Our results concluded that the
UAV-SfM and LiDAR are valuable data sources that could be applied in archaeological
projects to improve potentials for new findings. For future work, we recommended the
application of fusion RS approaches since there is a possibility to obtain relatively more
information of the archaeological sites. Consequently, we conclude that applying fusion RS
methods are likely to improve the interpretation performances of the RS source data and
deliver relatively more archaeological data compared to the RS stand-alone approaches.
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Appendix A

Table A1. Specifications of the Hasselblad UAV digital camera used in this study.

Category Specification

Aperture f/2.8
Electronic Shutter 1/8000s

Image size 5472 × 3648 px
Effective Pixels 20 million

FOV Roughly 77◦
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Table A2. A summary of the archaeological features detected in this study after implementing
visualization methods, ISODATA clustering algorithm, and SVM classification using LiDAR and SfM
datasets.

Feature SfM Data LiDAR

Castle entrance Manual & Automated Manual & Automated
Circular houses Manual n/a
External ditch Manual & Automated Manual & Automated
Internal ditch Manual & Automated Manual & Automated

Castle well Manual Manual
Circular shapes Manual Manual

Area for mineral processing Manual & Automated Manual & Automated
Unknown features Manual Manual

Table A3. ArcGIS Pro confusion matrix of the SVM classification map generated from LiDAR data.

ID Class Value C-10 C-40 C-50 C-70 Total U-Accuracy Kappa

1 C-10 20 1 0 1 22 0.909 0
2 C-40 7 202 6 27 242 0.835 0
3 C-50 0 3 11 1 15 0.733 0
4 C-70 0 32 0 189 221 0.855 0
5 Total 27 238 17 218 500 0 0
6 P-Accuracy 0.741 0.849 0.647 0.867 0 0.844 0
7 Kappa 0 0 0 0 0 0 0.728

Table A4. ArcGIS Pro confusion matrix of the SVM classification map generated from SfM data.

ID Class Value C-10 C-40 C-50 C-80 Total U-Accuracy Kappa

1 C-10 36 2 2 0 40 0.9 0
2 C-40 4 200 19 0 223 0.897 0
3 C-50 1 19 133 2 155 0.858 0
4 C-80 0 17 4 61 82 0.744 0
5 Total 41 238 158 63 500 0 0
6 P-Accuracy 0.878 0.840 0.842 0.968 0 0.86 0
7 Kappa 0 0 0 0 0 0 0.789
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