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Abstract: Although machine learning has been extensively used in various fields, it has only recently
been applied to soil erosion pin modeling. To improve upon previous methods of quantifying
soil erosion based on erosion pin measurements, this study explored the possible application of
ensemble machine learning algorithms to the Shihmen Reservoir watershed in northern Taiwan.
Three categories of ensemble methods were considered in this study: (a) Bagging, (b) boosting, and (c)
stacking. The bagging method in this study refers to bagged multivariate adaptive regression splines
(bagged MARS) and random forest (RF), and the boosting method includes Cubist and gradient
boosting machine (GBM). Finally, the stacking method is an ensemble method that uses a meta-model
to combine the predictions of base models. This study used RF and GBM as the meta-models, decision
tree, linear regression, artificial neural network, and support vector machine as the base models. The
dataset used in this study was sampled using stratified random sampling to achieve a 70/30 split
for the training and test data, and the process was repeated three times. The performance of six
ensemble methods in three categories was analyzed based on the average of three attempts. It was
found that GBM performed the best among the ensemble models with the lowest root-mean-square
error (RMSE = 1.72 mm/year), the highest Nash-Sutcliffe efficiency (NSE = 0.54), and the highest
index of agreement (d = 0.81). This result was confirmed by the spatial comparison of the absolute
differences (errors) between model predictions and observations using GBM and RF in the study
area. In summary, the results show that as a group, the bagging method and the boosting method
performed equally well, and the stacking method was third for the erosion pin dataset considered in
this study.

Keywords: soil erosion; erosion pin; ensemble machine learning; Shihmen Reservoir watershed;
bagging; boosting; stacking

1. Introduction

Soil erosion is a severe global issue affecting farming and the environment in tropical
and subtropical areas. In particular, soil erosion leads to environmental damage such as
soil nutrient loss, pollution by sedimentation, and the increased possibility of flooding.
The rate of soil erosion depends on soil characteristics, climate, slope steepness [1], land
use, and protective vegetation [2]. In addition, eroded soils lose 75% to 80% of carbon
content [3], which results in a deficit of terrestrial carbon budget. Anthropogenic activity is
a major cause of soil erosion [4]. Soil degradation rapidly has intensified with the rising
population in the 20th century [5] and beyond.

Many theoretical/empirical models can be used to study soil erosion. According
to Borrelli et al. [6], 435 distinct models and model variants were used to analyze soil
erosion from 1994 to 2017 in 1697 scientific articles in the Scopus database. The top five
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most applied models are RUSLE (Revised Universal Soil Loss Equation), USLE (Universal
Soil Loss Equation), WEPP (Water Erosion Prediction Project), SWAT (Soil and Water
Assessment Tool), and WaTEM/SEDEM (Water and Tillage Erosion Model and Sediment
Delivery Model). More than half of these studies (58% of 1697 articles) included validation
of the research results in the form of expert knowledge, measured sediment yield, measured
erosion rates, or comparison with other models.

Taiwan has numerous natural hazards, and typhoons and earthquakes occur every
year. The average annual precipitation is 2500 mm, which is concentrated from May to
September [7]. For this reason, a large amount of soil is eroded and transported away by
flowing water. In recent years, many studies have been conducted to model soil erosion in
Taiwan. Traditionally, a physically or empirically based soil erosion model is needed for
such studies. For example, Fan and Wu [8] developed equations to evaluate the relationship
between slope steepness, soil properties, rainfall intensity, and interrill soil erosion rate in
Taiwan. Lo [9] used the agricultural nonpoint source pollution model (AGNPS) to quantify
soil erosion in the Bajun River basin and Tsengwen Reservoir watershed. Alternatively,
Chiu et al. [10] measured the 137Cs concentrations at 60 sampling sites in the Shihmen
Reservoir watershed to estimate soil erosion. Chen et al. [11] applied the USLE model to
the same watershed to study the effect of the digital elevation model (DEM) on soil erosion.
Finally, Liu et al. [12] followed up by applying slope units to soil erosion modeling in the
same watershed.

In contrast to the traditional soil erosion modeling approach, in which a physically
or empirically based model is needed to make a prediction and field data are collected to
verify the model’s correctness, a machine learning (ML) based approach does not require
an a priori model. The field measurements (such as those of erosion pins) are used directly
to formulate rules and make generalizations from the data (i.e., predictions). Although
ML-based approaches have been extensively used in relevant fields such as landslides
susceptibility mapping [13,14], soil thickness prediction [15], digital soil mapping [16], and
biomass retrieval [17], it has only recently been applied to soil erosion pin study [18,19].
To improve upon previous methods of quantifying soil erosion, the study explored the
possible application of ensemble machine learning algorithms to the Shihmen Reservoir
watershed in northern Taiwan. Three categories of ensemble methods were considered in
this study: (a) Bagging, (b) boosting, and (c) stacking. The results were compared among
the ensemble methods in terms of three statistical indices: (1) Root-mean-square error
(RMSE), (2) Nash-Sutcliffe efficiency (NSE), and (3) index of agreement (d).

2. Methods

An erosion pin is a wooden or metal rod inserted into the ground for measuring the
change of the ground surface. The pin referred to in this study is made of metal with a
diameter of 15.9 mm and a length of 300 mm. About 270 mm of the pin is embedded in the
ground with the exposed part painted red. The erosion pin is one of the simplest and most
effective methods for monitoring ground surface variation due to soil erosion and sediment
deposition [20]. It has been used to monitor sheet erosion, gully erosion, landslides, and
stream bank erosion [21–23]. Lin et al. [24] has documented the procedures for installing
erosion pins in Taiwan. Measurements of erosion pins have been collected from various
watersheds. The Shihmen Reservoir watershed data show that the average soil erosion
was 90.6 t per hectare per year [12].

Ensemble machine learning is a technique that combines several base ML models
(either homogeneous or heterogeneous) to make better predictions. Note that the word
“model” has a different meaning in machine learning than for soil erosion. As explained
earlier, a machine learning (ML) based approach does not require an a priori (soil erosion)
model to work. In addition, ensemble methods gain performance over individual ML mod-
els [25]. Ensemble methods have been applied to many diverse fields such as banking [26],
big data security [27], and breast cancer diagnosis [28]. In the environment and related
fields, Pham et al. [29] applied several ensemble methods (AdaBoost, Bagging, Dagging,
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MultiBoost, Rotation Forest, and Random Subspace) to evaluate the landslide susceptibility
in the Himalayan India. The results showed that the area under the curve (AUC) of the
receiver operating characteristic (ROC) curve were all higher than 0.876. Similarly, Tehrany
et al. [30] used an ensemble support vector machine (SVM) and the weights-of-evidence
method to conduct the flood susceptibility mapping in Terengganu of Malaysia. Their
results improved flood modeling by 29%.

An ensemble method is viewed as a compound model. The purpose of such a model is
to achieve better predictive performance by reducing the noise or error between observed
and predicted data. Ensemble methods are usually grouped into bootstrap aggregating
(bagging), boosting, and stacking methods. All three categories attempt to tune their
predictions to the observations by decreasing model variance, bias, or both simultaneously.
The main difference is that bagging and boosting usually work with homogeneous models,
whereas stacking excels in combining heterogeneous models. Their respective approaches
are described in the following sub-sections. In this study, we will select two methods from
each category for analysis and comparison.

2.1. Bagging

Bagging is a technique that builds multiple homogeneous models from different
subsamples of the same training dataset to obtain more accurate predictions than its
individual models. It is an application of the bootstrap procedure to high-variance machine
learning problems. For example, random forest (RF) is the bagging of decision trees (DT).
Using CART (classification and regression trees) as an example, RF randomly samples
the training dataset multiple times (with replacement) to obtain many subsamples. Then,
a decision tree is built for each subsample using CART. Finally, RF issues its prediction
by combing the results of all decision trees either by voting (classification) or averaging
(regression). RF is a very effective machine learning tool, and it has been applied to various
research problems, including soil erosion [18]. Therefore, we chose RF and bagged MARS
(multivariate adaptive regression splines) in this study to compare with other ensemble
algorithms.

MARS was first introduced by Friedman and Roosen [31]. It explores the relationship
between the dependent and independent variables in a way very similar to least-squares
regression [32]. The advantages of MARS include its computational efficiency, its ability to
yield easy to interpret models, and its function to quantify the contribution of predictor
variables. However, its lack of accurate prediction is one of the most significant draw-
backs [32]. To address this issue, bagging was introduced to MARS to become bagged
MARS to improve the classification accuracy. The bagged MARS model was implemented
by the “earth” package in R, and the RF model was implemented by the “randomForest”
package.

2.2. Boosting

Boosting refers to a group of algorithms that utilize weighted averages to make weak
learning algorithms stronger learning algorithms. Unlike bagging that relies on each model
running independently and then aggregated at the end, boosting runs sequentially by using
later models to fix the prediction errors of the predecessor models in the sequence. For this
study, we have selected Cubist and gradient boosting machine (GBM) for comparison with
other ensemble methods.

Cubist is a prediction-oriented regression model proposed by Quinlan [33,34]. The
general idea of the Cubist regression model is briefly described here. During the tree
growth stage, many branches and leaves are grown. Linear regression models are added to
the leaves of the tree. The Cubist method creates a series of “if-then” rules. Each rule has an
associated multivariate linear model [35]. The corresponding model is used to calculate the
predicted value if a set of variables satisfies the conditions of the rule. Rules are eliminated
via pruning and/or combined for simplification. The main advantage of the Cubist method
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is the addition of multiple training committees to balance case weights. In this study, the
Cubist model was implemented by the “caret” and “Cubist” packages in R.

GBM was proposed by Friedman [36,37] as a simple and highly adaptive method for
machine learning [38]. It is an improved boosting algorithm for regression and classification
problems. The basic theory of GBM is to produce a prediction model constructed by a
group of weak learning algorithms, typically decision trees. Each tree is grown sequentially
by using the information from previously grown trees [39]. In this study, the GBM model
was implemented by the “gbm” package in R.

2.3. Stacking

Stacking, sometimes called stacked generalization, is an ensemble machine learning
method that combines multiple heterogeneous base or component models via a meta-
model. The base model is trained on the complete training data, and then the meta-model
is trained on the predictions of the base models. The advantage of stacking is the ability
to explore the solution space with different models in the same problem. In this study,
two stacking ensembles were chosen. They are (1) RF + DT + LM + Artificial Neural
Networks (ANN) + SVM, and (2) GBM + DT + LM + ANN + SVM. For implementation,
the “caretEnsemble” package in R was used.

2.4. Model Assessment

In order to evaluate the performance of ensemble models, three statistical indices
were used as the evaluation criteria: (1) Root-mean-square error (RMSE), (2) Nash–Sutcliffe
efficiency (NSE), and (3) index of agreement (d). These statistical indices have been
frequently used in many studies [40,41].

RMSE is a good indicator for evaluating the model performance for continuous
variables. In this study, RMSE represents the differences between erosion pin measurements
and ensemble model predictions. It can be written as follows:

RMSE =

√
∑(P−O)2

n
(1)

where P and O are the predicted and observed values, respectively.
NSE defines the relative magnitude between the “noise” and “information” [42]. Its

value ranges from −∞ to 1. The closer the value of NSE to 1, the more efficient the model
is. In the case that NSE is negative, the model is considered poor because the observed
mean serves as a better prediction than the model. NSE is defined as follows:

NSE = 1− ∑(P−O)2

∑
(
O−O

)2 (2)

where O is the mean observed value.
Finally, the index of agreement (d) is often used to represent the model perfor-

mance [43]. Its value ranges from 0 to 1, with higher values indicating better agreement
between the predictions and observations. The d index is defined as follows:

d = 1− ∑(P−O)2

∑
(∣∣P−O

∣∣+ ∣∣O−O
∣∣)2 (3)

Note that we do not use R2 (coefficient of determination) as a statistical index in the
model evaluation. As pointed out by Nguyen et al. [18,19], R2 evaluates the fit to the
regression line only. High R2 does not mean small differences between predictions and
observations. This point is illustrated in Figure 1, in which a poor model has a perfect R2

but only mediocre (even poor) values of other statistical indices. Good predictions should
fall on the 45◦ line instead.
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2.5. Study Area

In this study, the Shihmen Reservoir watershed in northern Taiwan was selected as
the research area (Figure 2). Shihmen Reservoir watershed covers 76,340 ha of land area
with a maximum elevation of 3527 m. The rainy season of the watershed coincides with
the typhoon months. Therefore, heavy rainfalls are common [44]. In northern Taiwan,
Shihmen Reservoir plays an essential role in providing drinking water for domestic use,
irrigation for agriculture, and flood control for typhoon-related disasters [45]. Figure 2 also
shows a photo of a metal erosion pin with the exposed part painted red and a picture of
measurement being taken by a micrometer.
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The workflow of this research is shown in Figure 3, and includes three parts: (1) Data
collection, (2) data preparation, and (3) soil erosion pin analysis. During the first stage, the
target variable and predictive variables were compiled into a dataset. Then, the dataset was
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split into training and test data using a stratified random sampling method. Finally, the
training data were fed to the ensemble methods to create prediction models. The models
were tested using the test data, and the statistical indices were computed.
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Fourteen attributes in four categories were used as the predictive variables, as shown
in Figure 3. Five of the attributes were point data that were not available watershed-wide
but only available at the erosion pins’ locations. The dataset was separated into two groups
using a 70/30 split, which is the common ratio used by many studies [46–48]. The entire
process was repeated three times to determine the average result.

The target variable is the erosion pin measurement. A total of 550 pins were installed
on 55 slopes (10 pins per slope) in the Shihmen Reservoir watershed (Figure 2). Lin
et al. [24] documented the installation procedures. The erosion depth measurements were
collected from 8 September 2008 to 10 October 2011. The measurements were averaged by
slopes.

To derive topography-related attributes, such as elevation, sub-watershed, slope class,
slope direction, distance to river, and distance to road, we used the Central Geological
Survey (CGS) DEM created from an airborne LiDAR (light detection and ranging) survey,
which has a spatial resolution of 10 m (Table 1). The DEM data were created in 2013 [11].

The average annual rainfall of the study area was calculated from 22 rainfall stations
from 2003 to 2015. The slopes were classified into seven classes: (1) <5%, (2) 5–15%, (3)
15–30%, (4) 30–40%, (5) 40–55%, (6) 55–100%, and (7) >100%, based on the classification
system of the Soil and Water Conservation Bureau. Slope direction is the aspect of a slope,
which can be flat or facing north, northeast, east, southeast, south, southwest, west, or
northwest. The distance to river was calculated based on the river network map. Similarly,
the distance to road was found by the road network map with a scale of 1:5000. Both
distances were calculated as the shortest distance between the individual erosion pin and
the river or road network using ArcGIS 10.2 software.

Finally, lithology and epoch were from the geological maps of the Central Geological
Survey. The scales were both 1:50,000. The soil contents were the percent of sand, silt,
organic, and clay. The data were provided by Lin et al. [49].
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Table 1. The predictive factors used in the modeling of soil erosion pin of the study area.

Type Factor/Attribute Source of Data Scale or Resolution

CGS DEM

Sub-watershed

Central Geological
Survey, Ministry of
Economic Affairs of

Taiwan

10 m × 10 m

Type of slope

Slope class

Slope direction

Elevation

Distance to river

Distance to road

Geological map
Lithology Central Geological

Survey 1:50,000
Epoch

Precipitation Average annual rainfall

Northern Region
Water Resources

Office, Water
Resources Agency,

Ministry of Economic
Affairs (2003–2015,

22 stations)

10 m × 10 m

Soil content

% sand

Lin et al. (2019) 10 m × 10 m
% silt

% organic

% clay

3. Results and Discussion

The results of three types of ensemble learning (that is, bagging, boosting, and stacking)
and their comparisons are presented below.

3.1. Bagging

In the bagging category, we selected bagged MARS and random forest (also used
by [18]) as the representative ensemble learning methods. Three repeated samplings
(groupings) of the same dataset were made to create three different 70/30 splits using the
stratified random sampling method. After fitting the model, the resulting statistical metrics,
including the RMSE, NSE, and d values were calculated and these are listed in Table 2.
Among the three indices of bagged MARS, RMSE ranges from 0.92 to 1.83 mm/year for the
training data and from 1.70 to 2.18 mm/year for the test data. In addition, NSE (−∞ to 1)
varies from 0.38 to 0.83 for the training data and from 0.19 to 0.60 for the test data. Finally,
d (0 to 1) goes from 0.64 to 0.94 for the training data and from 0.60 to 0.85 for the test data.
As expected, all three indicators are better for the training data than for the test data with
no exception. The same observation can be made on the RF metrics as well.

To evaluate the relative appropriateness of bagged MARS and RF as tools for ensemble
learning, we compared the RMSE values of the two ensemble methods. The results were
mixed, as shown in Figure 4. RF out-performed bagged MARS two out of three times in
both the training data and the test data, as shown in Figure 4a,c and was superior overall.
The same conclusion was also confirmed by the lower average RMSE values of RF than
bagged MARS.

If we plot the results on a Taylor diagram, we can observe further differences between
RF and bagged MARS. As can be seen from Figure 4b, all three sampling (grouping) results
of the RF cluster together with very similar RMSE, correlation, and standard deviation.
This indicates consistent training results across different samples. By contrast, only two of
the sampling results of bagged MARS cluster together. The third is very far away with a
substantially smaller correlation and standard deviation and much larger RMSE than the
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other two. This shows that bagged MARS did not work equally well with different training
data. In this case, it had difficulties fitting a model to grouping (sampling) #3. Hence, it
lost to RF and fell short in the statistical comparison. Figure 4d shows a Taylor diagram
comparison between the test datasets. A larger spread is observed in the data for both
bagged MARS and RF. However, notice the closeness of data points of the same color. This
shows that bagged MARS and RF generated similar predictions on the same test dataset.
For instance, although the green triangle and green circle are very far apart in Figure 4b,
they are relatively close to each other in Figure 4d.

Table 2. Statistical metrics of bagging ensemble models (bagged multivariate adaptive regression
splines (MARS) and random forest (RF)).

Model Statistical Index
Grouping 1 Grouping 2 Grouping 3 Average

Training Test Training Test Training Test Training Test

bagged
MARS

RMSE 0.92 1.93 1.00 1.70 1.83 2.18 1.25 1.94

NSE 0.83 0.42 0.79 0.60 0.38 0.19 0.67 0.40

d 0.94 0.78 0.93 0.85 0.64 0.60 0.84 0.74

RF

RMSE 0.93 1.68 0.89 1.77 0.97 1.79 0.93 1.75

NSE 0.83 0.56 0.83 0.57 0.82 0.45 0.83 0.53

d 0.94 0.82 0.93 0.85 0.93 0.72 0.93 0.80
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3.2. Boosting

Two boosting ensemble methods were explored in this study. They were the GBM and
Cubist models. Table 3 shows the performance metrics (RMSE, NSE, and d) under three
different samplings (groupings) of the erosion pin data. For groupings #1 and #2, GBM
won against Cubist in every category (lower RMSE, higher NSE, and higher d values).
However, for grouping #3, the result is mixed. On the one hand, GBM lost to Cubist in
all three indices concerning the training data. On the other hand, GBM beat Cubist in the
test data by winning two of the three indices. The RMSE of GBM is lower than that of
Cubist (1.71 vs. 1.98). Similarly, the NSE of GBM is higher than that of Cubist (0.50 vs.
0.33). However, GBM’s d value is lower than Cubist’s (0.75 vs. 0.78). This is one of the rare
instances where NSE and d do not agree with each other. Putting everything together, we
can conclude that GBM is still superior to Cubist.

Table 3. Statistical metrics of boosting ensemble models (gradient boosting machine (GBM) and
Cubist).

Model Statistical Index
Grouping 1 Grouping 2 Grouping 3 Average

Training Test Training Test Training Test Training Test

GBM

RMSE 0.19 1.86 0.53 1.59 1.11 1.71 0.61 1.72

NSE 0.99 0.46 0.94 0.65 0.77 0.50 0.90 0.54

d 1.00 0.81 0.98 0.87 0.91 0.75 0.96 0.81

Cubist

RMSE 0.69 2.08 0.94 1.78 0.88 1.98 0.84 1.95

NSE 0.91 0.33 0.81 0.56 0.86 0.33 0.86 0.41

d 0.97 0.70 0.93 0.83 0.95 0.78 0.95 0.77

Figure 5 visually compares the average RMSE (mm/year) values between GBM
and Cubist. For the training data, the RMSE of Cubist is 0.84 mm/year, inferior to the
0.61 mm/year of GBM. For the test data, a similar result is obtained. The RMSE of Cubist
is 1.95 mm/year, not as good as the 1.72 mm/year of GBM. As a result, it can be confirmed
that GBM is the better performing model in the category of boosting ensemble methods.
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3.3. Stacking

Stacking is the third and final category of ensemble methods examined in this study.
The basic idea of stacking is to combine several weak models together to use their pre-
dictions as attributes in an overall meta-model. The meta-model is trained to yield better
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predictions than the base models (component models). Using the same six ML models
studied by Nguyen et al. [18,19], we created Table 4 and classified the ML models into four
categories: Tree model, neural network model, hyperplane model, and linear regression
model. The average RMSE values of these models are also shown in Table 4. Based on
Table 4, we picked the four weakest models (one from each category) and used them as
the base models in the stacking ensemble learning. They are DT, ANN, SVM, and LM.
Furthermore, RF and GBM, one from bagging and the other from boosting, were chosen as
the meta-models to form two sets of stacking models: (1) RF + DT + LM + ANN + SVM
and (2) GBM + DT + LM + ANN + SVM. All of the statistical indices were computed in R
in this study.

Table 4. The comparison of four types of machine learning (ML) models by the average RMSE
(mm/year) values.

Type of Model Model
Average RMSE (mm/year)

Training Test

Tree model
Decision tree 1.73 2.45

Random forest 0.93 1.75

Neural network model
ANN 1.23 2.36

ANFIS 0.01 2.05

Hyperplane model SVM 1.43 2.61

Linear regression model LM 1.25 3.47

The results of RF-stacking (RF + DT + LM + ANN + SVM) and GBM-stacking (GBM +
DT + LM + ANN + SVM) are shown in Table 5. For the training datasets, GBM-stacking
outperformed RF-stacking in groupings #1 and #3 in all three statistical indices (RMSE,
NSE, and d). In grouping #2, GBM-stacking also won against RF-stacking in terms of RMSE
(1.45 vs. 1.46), but lost to RF-stacking in terms of d values (0.79 vs. 0.83). This is a rare case
that an inconsistency between RMSE and d is observed.

Table 5. Statistical metrics of stacking ensemble models (RF + DT + LM + ANN + SVM and GBM +
DT + LM + ANN + SVM).

Model Statistical Index
Grouping 1 Grouping 2 Grouping 3 Average

Training Test Training Test Training Test Training Test

RF + DT +
LM + ANN +

SVM

RMSE 1.38 2.04 1.46 2.48 1.70 1.94 1.51 2.15

NSE 0.63 0.35 0.55 0.15 0.46 0.35 0.55 0.29

d 0.87 0.74 0.83 0.65 0.72 0.69 0.81 0.69

GBM + DT +
LM + ANN +

SVM

RMSE 1.34 2.12 1.45 2.67 1.62 1.97 1.47 2.26

NSE 0.65 0.30 0.55 0.02 0.51 0.33 0.57 0.22

d 0.87 0.71 0.79 0.53 0.76 0.66 0.81 0.64

As for the test datasets, the best-performing model is reversed. In all three different
groupings (samplings), RF-stacking out-performed GBM-stacking in all statistical indices
with no exception. In summary, although GBM-stacking performed best with the training
data, it lost the test data. Since the predictive performance of a model is based on unseen
test data, we conclude that RF-stacking is the better stacking model of the two. The visual
comparison between RF-stacking and GBM-stacking is shown in Figure 6, where all three
indices were plotted (RMSE, NSE, and d). The numbers in the figure represent the average
values of three different groupings (partitioning).
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3.4. Comparison of Ensemble Models

So far, we have compared six ensemble methods in three categories and determined
the best-performing model for each category. The next question is how they compare with
one another in a six-way comparison. The results were compiled in Figure 7 using the
RMSE values. Among the six ensemble models examined in this study, if we only consider
the training data, the overall best-performing model is GBM (0.61 mm/year), followed
by Cubist (0.84 mm/year). Both of them belong to the boosting category. Their average
d values are as high as 0.96 and 0.95, respectively. However, if we only focus on the test
data, although the overall winning model is still GBM (1.72 mm/year), RF (1.75 mm/year)
will replace Cubist (1.95 mm/year) as the second best-performing model. If NSE and d are
considered instead of RMSE, the conclusion does not change. In those cases, GBM and RF
remain the two best ensemble models. Based on Figure 7, we rank the models from the
best to the worst as follows:

1. Training: GBM > Cubist > RF > bagged MARS > Stacking (GBM) > Stacking (RF)
2. Test: GBM > RF > bagged MARS > Cubist > Stacking (RF) > Stacking (GBM)
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For machine learning, it is more appropriate to judge ML models’ performance by
the unseen test data. Therefore, for the test data, GBM (boosting) is the overall winner,
followed by RF (bagging). The next best-performing models are bagged MARS (bagging)
and Cubist (boosting). Clearly, the top four places were split evenly between the bagging
method and the boosting method. Hence, these two types of ensemble models, bagging
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and boosting, rival each other in performance and are equally good in predicting soil
erosion depths measured by erosion pins. By contrast, the stacking ensemble methods
(RF + DT + LM + ANN + SVM and GBM + DT + LM + ANN + SVM) seem to lag behind
both the bagging and boosting methods. We found this result very intriguing. Despite
GBM and RF being the top-two performing models, they do not perform as well when they
are used in the stacking approach to combine other weaker models. Perhaps this is because
GBM and RF worked with 14 attributes directly when used individually as single models.
When GBM and RF were used as meta-models in the stacking approach, they were only
trained on the predictions of the base models (DT, LM, ANN, and SVM). Not being able to
work with the underlying 14 attributes directly seems to have undermined the ability of
GBM and RF to make better predictions.

3.5. Model Predictions and Factor Importance

Because GBM and RF are the two best ensemble models in a class of their own
(RMSE = 1.72 and 1.75 mm/year, respectively), we only display their respective ensemble
learning results in Figures 8 and 9. As shown in the figures, the size and color of the circles
represent the absolute differences (errors) between model predictions and observations
(|Obs− Pre|). Proportional symbols were used. Therefore, the larger the circle, the bigger
the difference. Similarly, the redder the dot color, the more significant the error. The
contrasting results produced by GBM and RF are evident. For GBM, it is clear from
Figure 8 that most points have low error except for those in the eastern part of the study
area. By contrast, Figure 9 shows that RF has large errors in both the eastern and southern
parts of the study area. To better visualize the error distribution, we further mapped the
spatially interpolated values (absolute errors) throughout the study area. As shown in
Figure 8, the resulting watershed is mostly green (associated with low error) for GBM,
except in the eastern part, where large errors due to the steep topography and undesirable
slope directions bring a return to red colors. However, according to Figure 9, the watershed
is only in green in the northern region for RF. The rest of the watershed is colored red
or yellow.

Furthermore, we created two vertical profiles on the map, one in an east-west direction
and the other in a north-south direction, to compare the model predictions and observations
for both GBM and RF. As shown in Figure 8, the black line is the observation, and the blue
line is the GBM prediction. Both lines show a similar trend and move in the same direction:
If the observation increases so does the prediction, and if the observation decreases so
does the prediction. However, it seems evident that GBM tends to under-estimate the high
values of observation and over-estimate the low values of observation in both the north-
south and the east-west profiles. Furthermore, if we plot the same profiles in Figure 9 and
use a red line to represent the RF prediction, we can see a similar result. The RF prediction
also moves in the same direction as the observation. The RF model also underestimates
the high values of observation and overestimates the low values of observation in the
north–south and the east–west profiles. However, the difference is that RF errors more in
comparison with GBM.

In summary, both GBM and RF perform better in the watershed’s northern region,
where the reservoir is located. Since the watershed slopes from south to north (as shown
previously in Figure 2), it implies that the models more adequately captured the erosion
behavior (measured by erosion pins) at the lower elevations than at the higher elevations.
The eastern part is problematic. Neither of the two models works well here. In general,
GBM outperformed RF because GBM matches the available measurements better than RF
in the west and south. This makes GBM the overall best model, which is consistent with
the RMSE-based results.
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Both GBM and RF generate a rank of importance for the 14 attributes used in this study.
The six simulations (three of GBM and three of RF) are combined in a boxplot to illustrate
the range of ranks (factor importance) as shown in Figure 10. Several points in this figure
merit a closer look. First, the grey box in the figure shows the range of ranks between the
first and third quartiles of the results. It is evident that each attribute has a variable range of
ranks. Second, the black line in the box shows the median rank (1 being the most important
and 14 being the least important). The median rank and the gray box can be used to
compare the relative importance of attributes. Therefore, it can be seen from Figure 10 that
A (slope direction) and B (type of slope) are the two overall most important attributes in the
GBM and RF models. They consistently rank higher than the other 12 attributes. Attribute
D (elevation) is interesting. It has the fourth-lowest median rank in the comparison. At the
same time, it also has the longest grey box and the broadest range than any of the other
attributes. This means that the elevation has changeable importance depending on the
model and dataset. In some instances, the elevation is very important, whereas in others, it
is not.
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4. Conclusions

Soil erosion is a significant threat to the environment and the livelihood of the region,
and should be taken seriously to mitigate the disastrous consequences. Hence, a precise
spatial prediction of soil erosion is a critical need. In this study, we applied six ensemble
learning methods (bagged MARS, RF, GBM, Cubist, RF-stacking, and GBM-stacking) of
three categories (bagging, boosting, and stacking) to model the measurements of erosion
pins in the Shihmen Reservoir watershed of Taiwan. The purpose was to improve the
modeling accuracy and forecasting capability related to soil erosion. In the process of
assessing the performance of the three types of ensemble approaches, we have learned
how effective the ensemble methods are with unseen test data.

The study results show that the ensemble methods improve the prediction accuracy
as measured by three statistical indices—RMSE, NSE, and d. Among the three categories
of ensemble methods, bagging and boosting work equally well on the unseen test data.
Stacking is the least favorable approach, with its RMSE trailing behind other types of
ensemble algorithms. Individually speaking, we found GBM to be the best fitting model.
Its RMSE, NSE, and d values are 1.72 mm/year, 0.54, and 0.81, respectively. The second-best
model is RF. We used both GBM and RF to map the absolute differences (errors) between
model predictions and observations (|Obs− Pre|) in the study area. The results show
that both models perform well in the watershed’s northern region (where the reservoir
is located) and perform relatively poorly in the watershed’s eastern part due to the steep
topography and undesirable slope directions. What makes GBM superior to RF is that
GBM also works well in the western and southern parts of the study area while RF does
not. This conclusion is consistent with the RMSE-based results.

Finally, as an additional discovery in the study, we noticed two cases of inconsistent
statistical indices during the model comparison. One of them happened when we compared
GBM with Cubist (test data of grouping #3). The other occurred when we examined the
performance of the two stacking models (training data of grouping #2). In both of these
cases, RMSE and NSE favored one model, but d preferred the other. Therefore, potentially
contradictory conclusions could be made if we only rely on one single index. This danger
exemplifies the need to present multiple indices in such studies.
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