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Abstract: With the continuous expansion of the market of indoor localization, the requirements of
indoor localization technology are becoming higher and higher. Existing indoor floor localization
(IFL) systems based on Wi-Fi signal and barometer data are susceptible to external environment
changes, resulting in large errors. A method for indoor floor localization using multiple intelligent
sensors (MIS-IFL) is proposed to decrease the localization errors, which consists of a fingerprint
database construction phase and a floor localization phase. In the fingerprint database construction
phase, data acquisition is performed using magnetometer sensor, accelerator sensor and gyro sensor
in the smartphone. In the floor localization phase, an active pattern recognition is performed
through the collaborative work of multiple intelligent sensors and machine learning classifiers.
Then floor localization is performed using magnetic data mapping, Euclidean closest approximation
and majority principle. Finally, the inter-floor detection link based on machine learning is added
to improve the overall localization accuracy of MIS-IFL. The experimental results show that the
performance of the proposed method is superior to the existing IFL.

Keywords: indoor floor localization; sensors; geomagnetic field; machine learning

1. Introduction

With the rapid development and widespread popularization of the mobile internet
technology in smart city, the locating service industry has developed vigorously. Satel-
lite positioning [1] and base station positioning [2] can only meet the requirements of
individuals in the outdoor environment. However, more and more individuals in modern
life are in crowded places such as indoor shopping malls, stations, airports and work
units [3], which makes the demand for indoor positioning more urgent. Various indoor
positioning technologies have begun to appear, drawing great attention from people. Tak-
ing photos and collecting pictures by smartphones for the construction of indoor maps
is the most popular method [4–6], which has brought great help to individual’s daily life
and work and study. Unfortunately, there is not much difference in the layout of each
floor of the buildings, and some LOGOs may appear multiple times on different floors,
especially in large shopping malls or hospitals, resulting in large target locating errors only
by using two-dimensional plane positioning method.

Therefore, obtaining the floor level of a mobile user is particularly useful for a variety
of location-based applications. In addition, quickly and accurately locating a user’s floor
height is critical to saving lives in a fire emergency. Furthermore, navigation services such
as Google Maps can prompt mobile users to use floor maps with the assistance of obtaining
their current floor level in a shopping mall or an airport. The stereo floor localization
method will be used to obtain the accurate floor to assist the planar localization technology
to determine the user’s position, so as to improve the localization accuracy and bring
great convenience.

The existing IFL mainly relies on Wi-Fi signal and barometer data [7,8], which has the
disadvantages of being susceptible to environmental changes, being cumbersome for data
collection and relying heavily on infrastructure. The geomagnetic signals can be served
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as an indicator for indoor locating because of the uniqueness [9]. An IFL method based
on geomagnetic signal and multiple intelligent sensors is proposed to solve the problems
of cumbersome operation and low precision of the existing floor localization method,
which uses machine learning classifiers to identify user activity patterns and combines the
data from the accelerator sensor, magnetometer sensor and gyro sensor of the smartphone
to locate the floors, providing technical support for future indoor localization.

The main contributions of the research are briefly summarized as follows:
(1) A collaborative approach is proposed based on geomagnetic signal and multiple

sensors in a smartphone to achieve target floor localization.
(2) A machine learning classifier is designed for active pattern recognition and an inter-

floor detection algorithm is put forward to improve the floor localization accuracy.
(3) The “global coordinates” and “gesture coordinates” are established for the mapping

of magnetic samples, and the floor localization is performed according to the Euclidean
closest approximation and majority principle. The proposed system is convenient to deploy
and does not rely on any additional infrastructure, which will provide the possibility of
fast, scalable stereo floor localization.

The rest of this paper is organized as follows: Section 2 presents related work con-
sidering different technologies and techniques for floors localization. Section 3 describes
the architecture of IFL method based on the multiple intelligent sensors in smartphones.
Section 4 gives the simulation results and analysis. Finally, Section 5 summarizes this paper.

2. Related Work

Currently, IFL technology can be divided into three categories: Wi-Fi-based technology,
technology based on barometer technology and Wi-Fi–barometer hybrid technology. Wi-
Fi-based technology without additional infrastructure only depends on the signals of
deployed Wi-Fi access points (APs). Sun et al. [10] proposed an IFL framework based on
floor recognition. They used training discriminant layer model to maximize the interlayer
dispersion and triggered interlayer recognition through stair walking and elevator events.
Liu et al. [11] proposed a Wi-Fi-based indoor localization system (WF-ILS), which combined
the characteristics of three-side localization and the methods of scene analysis to determine
the floor where the user is located. However, these techniques are susceptible to many
factors such as multipath fading, shadows, the inconsistencies of AP and building materials.
Furthermore, the uneven structure and open space of the floor will also result in bigger
localization errors [12].

Barometer-based technology collects data by barometer sensors in smartphones.
Ye et al. [13] proposed an IFL system based on barometers (B-Loc), which utilized a barom-
eter sensor in a smartphone to construct a barometer fingerprint through crowdsourcing
technology to locate the user’s floor. Xia et al. [14] proposed a method considering multiple
barometers as references to locate the floor (MB-ILS), which also used the barometer sensor
of a smartphone. These techniques can work without the height of the building and the
number of floors. However, barometric data are very sensitive to changes in weather
conditions, window openings, air conditioning, heating and other external atmospheres
and indoor conditions [15]. Therefore, locating floors requires the latest reference reading
of the atmospheric pressure each time.

The hybrid method combines Wi-Fi and barometer for floor localization. Zhao et al. [16]
proposed a hybrid floor localization algorithm that utilized the information of APs distri-
bution and barometric pressure. The algorithm first extracted the distribution probability
of APs scanned from different floors in offline training fingerprints, and used Bayesian
classification to accurately identify well-formed floors without hollow areas. Then the floor
information obtained from the APs distribution was used to initialize and calibrate the floor
localization based on the barometer to compensate for the variable environmental impact.
However, this approach relies heavily on infrastructure and communication networks.

In addition, geomagnetic anomalies caused by ferromagnetic construction materials
(i.e., steel bars) on indoor paths are generally stable and unique [17]. Geomagnetic-based in-
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door navigation and map construction technologies have also been developed. Liu et al. [18]
proposed an indoor navigation system based on the geomagnetic field. Ayanoglu et al. [19]
proposed an automatic map construction algorithm based on geomagnetism, which com-
bined the trajectories of many users into a fingerprint map of an indoor environment.
Luo et al. [20] proposed an algorithm for constructing an indoor floor plan based on mag-
netic fields. The system used the dead reckoning technology, the observation model with
geomagnetic signals and the trajectory fusion based on the affinity propagation algorithm
to construct the planar map. Furthermore, we used the dynamic time warping similarity
criteria to cluster the magnetic trajectory data to obtain an indoor path. The emergence
of these methods provides technical support for the study of indoor floor localization
technology based on geomagnetic field.

Based on the deficiencies of Wi-Fi signal and barometer data researches, an IFL
method that utilizes magnetic field and multiple sensors is aimed to design. The sensors
in smartphones that are integrated sensor terminals are used considering the popularity
and practicability of the proposed method. The proposed method utilizes a stable geo-
magnetic signal, a magnetometer sensor, an accelerator sensor and the gyro sensor of the
smartphone, through machine learning techniques to locate floors and detect inter-floors.
The data collection phase is simple, and except in extreme cases, the complete database
built is without updating and rebuilding. Furthermore, the floor localization requires only
a smartphone.

3. The Algorithm of MIS-IFL

This paper proposes a method for realizing indoor floor localization using multi-
intelligent sensors (MIS-IFL). The overall structure of the method is shown in Figure 1.
The MIS-IFL includes a magnetic fingerprint database construction phase and a floor
localization phase. Among them, during the magnetic fingerprint database construction
phase, multiple acquisitions are required at each of the selected areas of chosen three
buildings at a fixed separation distance to obtain multiple data values. Then the average
data are stored as a fingerprint and a database is constructed. During the floor localization
phase, the corresponding data need to be collected from the sensors in the smartphone,
the collected magnetic data are mapped, and the mapped data are matched with the
fingerprint database by the Euclidean closest approximation, and the localization result is
obtained by the principle of the majority. This phase consists of three parts: the recognition
of activity pattern, the localization of floor and the detection of inter-floor.
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Figure 1. The overall structure of MIS-IFL.

3.1. The Construction Phase of Fingerprint Database

The first important task for MIS-IFL is to build a magnetic fingerprint database.
Therefore, fingerprint databases needed to be constructed for each floor in the building
where the experiments were conducted. The process of data collection on the 7th floor of
the Physical and Electronics Laboratory Building is shown in Figure 2. Data collection was
performed at a distance of 0.9 m from each selected area of each floor, and 100 magnetic
samples were taken at each point with a sampling frequency of 10 Hz (a new sample is
obtained every 100 ms). The collected samples should first be averaged after completing the
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data collection. Then the spline interpolation was performed to generate the interval value
between the given points. Finally, the generated values, floor ID, longitude and latitude
were stored in the magnetic fingerprint database. In addition, the sensors distributed in
the photos were served for experiments of performance comparison in Section 4 and were
used for calibration of Wi-Fi data. The distribution locations of the Wi-Fi sensors were the
collection locations of the actual magnetic sample.
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Figure 2. The collection process of magnetic fingerprint database.

3.2. Floor Localization Phase
3.2.1. The Recognition of Activity Pattern

The users’ activity patterns must be correctly distinguished in order to increase the
localization accuracy, because different users’ activity patterns will produce different
experimental results. The user activity patterns are divided into three categories: “normal
walking”, “phone calling” and “phone shaking” [21]. The three activity patterns are
distinguished by obtaining acceleration data and orientation data of the smartphone
from the accelerator sensor and gyroscope sensor. The process of the data acquisition
is shown in Figure 3. The changes of the accelerator sensor data for three user activity
patterns in x, y, and z directions are shown in Figure 4. It can be seen that the accelerator
sensor data are greatly different along the x, y and z directions in different users’ activity
patterns. The user’s smartphone states (orientation: yaw, pitch, rotation) show a significant
difference in different users’ activity patterns as shown in Figure 5. Therefore, a machine
learning-based classification algorithm is used to process the user’s smartphone states and
acceleration data characteristics are used to distinguish users’ activity patterns with the
assist of magnetometers and gyroscopes.

The acceleration of the user’s activity is calculated using the built-in accelerator of
smartphone. The accelerator sensor shows the acceleration data in the x, y, and z directions.
The total acceleration data are as Equation (1):

a =
√

a2
x + a2

y + a2
z (1)

Unfortunately, the acceleration will have an error after the calibration, which is called
“deviation”. This “deviation” needs to be estimated and eliminated to obtain accurate
information. The acceleration data in the x and y directions should be 0, and the acceleration
data in the z direction should be 1 g (9.8 m/s2) when the smartphone is stationary on a plane.
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Furthermore, any other readings are deviations. So, the corrected acceleration value is as
Equation (2):

ac
x = am

x − S · aa
x (2)

where ac
x and am

x represent the acceleration value corrected and acceleration value measured
in the x-axis direction, respectively. aa

x is the actual acceleration value in the x-axis. S is the
error coefficient.

The total corrected acceleration value for a given time t can be calculated as Equation (3):

ac
t =

√
ac

xt
2 + ac

yt
2 + ac

zt
2 (3)

The user’s activity patterns can be categorized by the corrected accelerator data,
gyroscope, and magnetometer after obtaining the correct acceleration.

Figure 3. The process of getting data from sensors.
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Figure 5. The smartphone states in different users’ activity patterns.

3.2.2. The Localization of Floor

The magnetic fingerprint database of this paper is established according to global
coordinates and is independent of the orientation of the smartphone. However, the mag-
netic sample obtained from the smartphone is related to the orientation of the smartphone,
so it is necessary to determine the orientation of the user’s smartphone before matching
the floor. The smartphone orientation is obtained from the accelerator sensor and the
magnetometer sensor. A machine learning-based classification algorithm is used to process
the user’s smartphone states. The performance of k nearest neighbor (K-NN), decision tree
(DT) and support vector machine (SVM) are analyzed and compared to select the best
classifier for classifying the user’s activity patterns. Then the collected magnetic data are
mapped according to the user’s activity patterns. The recognition accuracy of the user’s
activity patterns largely affects the accuracy of the floor localization algorithm, because if
there is a large error in the mapping of magnetic data, the erroneous floor localization will
be led, which will ultimately affect the overall accuracy of the proposed method.

The DT-based classifier is one of the most widely used techniques among the three-
machine learning-based classifiers. The advantages of DT are simple and low in computa-
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tional cost. However, its problems are that it is prone to over-fitting, and it perform poor
when dealing with data with strong feature correlation [22,23].

K-NN is another widely used classifier. The advantage of K-NN is that it is easy to
understand. However, the problem is that the classification process may be slower if the
training data are large [24].

The advantage of SVM is that the error rate of generalization is low and the speed
of classification is fast. However, the problem is that it works poorly when dealing with
large-scale training samples [25].

This paper selects SVM by analyzing and comparing the performance of classifiers to
classify activity patterns. It collects k times of data as training samples in each sub-area
in order to obtain the SVM classification model. The training samples belonging to the
i-th sub-area are marked as 1, and not belonging to the i-th sub-area are marked as −1.
The classification of the smartphone orientation belongs to the multi-classification problem
of SVM, which needs to be decomposed into multiple two-class problems. There are
two methods commonly used: a pair of remaining methods and one-to-one methods.
Although the one-to-one method uses more decision functions than a pair of remaining
method, the former performs faster. The one-to-one method selected can obtain k(k− 1)/2
decision functions fi,j(x), (0 ≤ i < j ≤ k), where fi,j(x) represents the decision function
obtained by comparing the i-th class and j-class. When predicting the sample x, we need to
bring x into all fi,j(x) and count the number of wins for all classes. Furthermore, the class
with the most votes is the class of x.

The floor localization link is performed after identifying the user’s activity patterns.
The magnetic data are mapped and the mapped magnetic data are compared with the
data in the fingerprint database. Then the Euclidean closest approximation method and
the principle of the majority are used for floor localization. The process of IFL based on
magnetic data is shown in Algorithm 1.

In the Algorithm 1, N represents the total number of floors in the building, and O is
the direction of the user’s smartphone. M is magnetic data, and Tm is a magnetic sample for
conversion that matches the database. Pj is a matching set between the mapped magnetic
sample and each magnetic value in the database. Ed is a collection of Euclidean distances
between a given magnetic sample and each magnetic value stored in the database, DBa is
a fingerprint database of one floor of building a, Fc is a set of calculated candidate floor sets,
and Fd represents the determined floor of the building where the user is currently located.

Algorithm 1: The algorithm of floor localization.

Input: M,O
1: For i = 1 to 5
2: Tm ← mapMagData(Oi, Mi);
3: For j← Na
4: Pj ← match(Tm, DBaj));
5: Ed ← EucDistance(Pj);
6: End for
7: Fc ← argmin(Ed);
8: End for
9: Fd ← Delete-Outliers (Fc);
Output: Fd

Input magnetic sample data and the orientation data of the user’s smartphone into
the floor localization algorithm. The magnetic data are mapped according to the given
smartphone states. In this paper, the magnetic sample collected online by the smartphone
are needed to map because the magnetic fingerprint database was established according
to the earth coordinates, regardless of the orientation of the smartphone. Two coordinate
systems, including “global coordinates” and “gesture coordinates”, are used. The global
coordinates represent the fixed coordinate system of the Earth, and the gesture coordinates
represent the coordinates of the smartphone. Map the magnetic data according to the
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orientation of the smartphone to match the database. Suppose FG is the magnetic field value
in the system of earth coordinates and FS is the magnetic reading in the system of phone
coordinates. Then the relationship between FG and FS can be defined as Equation (4) [26]:

FS = Rx(φ)Ry(θ)Rz(ω)FG (4)

where Rx(φ), Ry(θ) and Rz(ω) are the corresponding matrices of rotation, pitch and yaw.
Furthermore, as shown in Figure 6, the rotation, pitch, and yaw indicate the rotation of the
smartphone around the x, y, and z axes, respectively.

We need to identify the yaw, pitch and rotation to map the magnetic sample. The yaw
is that the smartphone rotates around the z-axis of the smartphone frame and is expressed
by ω. The rotation matrix Rz(ω) is represented as Equation (5):

Rz(ω) =

 cos(ω) sin(ω) 0
−sin(ω) cos(ω) 0

0 0 1

 (5)

The pitch is when the smartphone rotates around the y-axis of the smartphone frame.
It is expressed by θ and can be represented as Equation (6):

Ry(θ) =

 cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 (6)

The rotation is when the smartphone rotates around the x-axis of the smartphone
frame. It is expressed by φ and can be represented as Equation (7):

Rx(φ) =

 1 0 1
0 cos(φ) sin(φ)
0 −sin(φ) cos(φ)

 (7)

The magnetic data are mapped by Equation (4), if the user’s smartphone is yawed,
pitched and rotated. Then the mapped magnetic sample Tm is matched to the fingerprint
database of all floors in the building using the Euclidean closest approximation, as shown
in Equation (8):

Ed =
√
(TMaj − DBaj)2 (8)

where TMaj represents the converted magnetic data of the j-th floor in the a building.
DBaj represents the fingerprint database data of the j-th floor in the a building.

The floor with the smallest Euclidean distance calculated by Equation (8) is the result
of Euclidean closest approximation (i.e., the floor candidate). Repeat this process for
the given five frames of data, resulting in five possible candidates (one candidate per
frame). Furthermore, each frame has the right to make a vote. Finally, the principle of the
majority is used to determine the user’s floor. In addition, the specific decision forms are as
follows, each number represents a floor candidate for a given building: if Fc = {1,2,2,2,2} or
Fc = {1,2,2,2,3}, then Fd is floor 2. If Fc = {1,1,2,2,3} or Fc = {1,2,2,3,3} or Fc = {1,2,3,4,5}, then
Fd is determined by Equation (9):

Fd = argmin(Ed(Fc)) (9)
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Figure 6. Three states of the smartphone.

3.2.3. Detection of Inter-Floor

Detecting inter-floor is necessary to improve the localization accuracy because when
the user is between the floors (i.e., on the stairs), the accuracy of the IFL is affected.
The characteristics of accelerator data and magnetometer data are combined to detect the
case where user is between the floors. We only need to determine important characteristics
that can be used to distinguish the state of walking on the floor or on the stair to detect
whether the user is on the inter-floor, because the changes of acceleration amplitude are
different when the user walks up the stairs. Therefore, we select five accelerator data
characteristics and one magnetometer data characteristics that distinguishes between the
two cases. The functions used to identify inter-floor are shown in Table 1.

Table 1. Characteristic needed to detect for inter-floor.

Symbol Explanation

ax Average acceleration in x direction per frame
ay Average acceleration in y direction per frame
a Average total acceleration per frame

Wa Peak of total acceleration per frame
W4a Maximum change in total acceleration per frame

W4M f Maximum change in total magnetic density per frame

The above characteristics are the output based on the Recursive Feature Elimination
(RFE) method. RFE is a well-known method for performing the important task of char-
acteristic selection. It fits the model and removes the weakest characteristics and sorts
the characteristics by recursively eliminating in each iteration. Furthermore, find the best
number of characteristics by using cross-validation of RFE. The selected characteristics
represent different values of the state of the user walking on the stair or the floor. For exam-
ple, Figure 7 shows the characteristics of Wa when the user is walking on a floor and stair,
respectively. Similarly, Figure 8 shows the characteristics of W4a for two user activities,
respectively (each value in Figures 7 and 8 is calculated by 1 frame (1 s) of data collected
at 10 Hz). It can be seen that the above characteristics are quite different in two different
cases. The calculated characteristics ax, ay, a, Wa, W4a and W4M f are fed into the training
models of machine learning algorithm: K-NN, DT and SVM. Then the training model
utilizes the data collected by the user to detect inter-floor. We increase the link of inter-floor
detecting to increase the localization accuracy, because we do not keep tracking the user
all the time during the floor locating, just mapping and matching the data sent by the
user’s smartphone and determining the user’s current floor according to the principle of
the majority, which may cause some errors due to special circumstances such as the user
going up and down the stairs.
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In addition, as shown in Figures 9 and 10, the geomagnetism along the same path
of the indoor floor is similar, and the geomagnetism of different paths along the indoor
floor are quite different. Therefore, the magnetic fingerprint database is more convenient
and simple in terms of maintenance and update than the barometer database and Wi-Fi
database, and the accuracy of data collection is more reliable.
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4. Simulation Results and Analysis

The selection of experimental site takes into account the concentration of people
and the number of APs. The places where we conduct experiments are Harbin Clothing
Market, Huiwen Building and Physical and Electronics Laboratory Building, respectively.
Harbin Clothing Market is a constant crowded area with a large number of APs. Hui-
wen Building (teaching building) is an intermittent crowded area with less AP distribution.
Physical and Electronics Laboratory Building has a lower population density and more
AP distribution. The Huiwen Building has 10 floors, including one underground floor;
the Physical and Electronic Experimental Building has eight floors; the Harbin Clothing
Market has six floors, including one underground floor. The collection of magnetic samples
in selected buildings is on different dates and at different time points within 4 months.
Furthermore, data collection is performed by a smartphone model Huawei nova youth
(WAS-AL00). In addition, data are collected from magnetometers, accelerators, gyroscopes,
and barometers at a sampling rate of 10 Hz, and collected from Wi-Fi at a sampling rate of
1 Hz. The concentration of people and the number of APs in three buildings are shown
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in Figure 11. The black dots represent the distribution of Aps; grids of different sizes
indicate each room; different colors indicate different population concentration levels,
where blue indicates an average person flow of less than five persons (/h), green indicates
an average person flow of between 5 and 20 persons (/h), and yellow indicates an average
person flow of between 20 and 50 persons (/h), orange indicates an average person flow
of between 50 and 100 persons (/h), and red indicates an average person flow of more
than 100 persons (/h). Figure 11a is a planar structure of the 7th floor of the Physical and
Electronics Laboratory Building. Figure 11b is a planar structure of the 3rd floor of the
Huiwen building. Figure 11c is a planar structure of the 2nd floor of the Harbin Clothing
Market. Among the three buildings, Harbin Clothing Market has the largest population
concentration, and the Physical and Electronics Laboratory Building has the lowest popula-
tion concentration; the Physical and Electronics Laboratory Building has the largest APs
distribution, and Huiwen building has the lowest APs distribution.
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Figure 11. (a) Physical and Electronics Laboratory Building (above). (b) Huiwen Building (middle). (c) Harbin Clothing
Market (below).
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4.1. The Assessment of User’s Activity Pattern

The performance of three machine learning-based classifiers for classifying the user’s
activity pattern is evaluated, in order to select the optimal classifier for MIS-IFL. The train-
ing data for the user’s smartphone state contain 900 samples per orientation angle of
smartphone and these samples are fed into the selected classifier. The labeled data are
trained by supervisory training. The training vector contains yaw, pitch, rotation, and ac-
celeration in the x, y, and z directions. Tests are conducted using data from the Physical
and Electronics Laboratory Building, Huiwen Building, and Harbin Clothing Market,
and 6000 samples of per smartphone state. The average result of the user’s activity pattern
is shown in Figure 12.

As can be seen from Figure 12, the three classifiers perform well when classifying the
“normal walking”, “phone calling” and “phone shaking”, and the accuracy of the SVM clas-
sifier is higher than that of DT and K-NN. The classification accuracy using the acceleration
data are slightly lower than the classification accuracy using the magnetic data because
the noise of the acceleration data are larger than the magnetic data. However, the higher
classification accuracy can be achieved when the acceleration data and the magnetic data
are combined.
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Figure 12. Accuracy of user’s activity pattern.

4.2. The Assessment of Floor Localization

The proposed MIS-IFL is an IFL method based on geomagnetic signals. In order to
verify the effectiveness of MIS-IFL, the proposed method is compared with the existing
method MB-ILS (based on barometer data) and WF-ILS (based on Wi-Fi data) in three user
activity patterns.

The data are collected for each floor of three building for 15 s to calculate the reference
barometric pressure (RBP) of each experimental floor. The RBP is used to calculate the
reference height (RH) of the relevant floor. Then the calculated RH is used for “normal
walking” and the height limit (HL) is used for the patterns of “phone calling” and “phone
shaking”. In the pattern of “normal walking”, we kept the smartphone at a height of 1 m
from the floor. Therefore, we defined HL as RH ± 1 m for the patterns of “phone calling”
and “phone shaking”. In addition, the RBP value needs to be calculated each time when
an experiment is performed because the atmospheric pressure changes at different times of
the day. The calculated value is compared to the RH to determine the localization floor.

In IFL based on Wi-Fi, the method for Wi-Fi fingerprint database constructing is similar
to a magnetic fingerprint database constructing. As shown in Figure 2, Wi-Fi data are
collected at specified points separated by 0.9 m. Furthermore, we use some independent
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sensors for the calibration of Wi-Fi data to improve the accuracy of the collected data.
The fingerprint database contains two elements: Basic Service Set Identifier (BSSI) and
Received Signal Strength Indicator (RSSI) of the scanned AP.

During the test, the BSSI of the scanned AP and its associated RSSI value are compared
to the fingerprint database of each layer. The fingerprint database of the floor with the
smallest error is the floor where the user is most likely to be. The error is calculated in terms
of two criteria: the number of matched APs and the lowest difference for each matched AP.

The localization accuracy of MIS-IFL and the other two methods is shown in Figure 13.
The results show that the floor localization accuracy of MB-ILS is highest in the pattern
of “normal walking” and lowest in the pattern of “phone calling”. The overall accuracy
can reach a good result of 86.4% because the reference value is used each time when the
floor is located. Therefore, the main limitation of using a barometer for IFL is that it needs
to retrieve the RBP or altitude when locating. It is common to place the barometer sensor
on each floor at a specific height from the floor and then use the sensor’s readings for
locating floors.

The results also show that the localization accuracy of WF-ILS for locating floors
is lower than MIS-IFL and MB-ILS, because the localization accuracy of Wi-Fi is highly
dependent on the matching of a higher number of APs with the similarity of RSSI values.
The overall accuracy of “normal walking” in the Huiwen Building and the Physical and
Electronic Experiment Building are 90.76% and 78.53%, respectively. The reason for the
large difference in accuracy is the small number of APs in Huiwen Building, only five to
eight APs can be obtained in each location. However, the Physical and Electronic Experi-
ment Building has an average of 20 APs per scanning location and the lowest concentration
of people, making the localization accuracy is relatively high. Similarly, the number of
APs in Harbin Clothing Market is also large, but the flow of people is relatively dense,
causing the localization accuracy is 88.06%. In addition, Wi-Fi signals are susceptible
to many dynamic factors. Moreover, Wi-Fi signals are exhausted over time, which also
decreases the localization accuracy.

The data results of the proposed magnetic data-based MIS-IFL are superior to the other
two methods. The average localization accuracy of the magnetic data is 89.34%, which is
higher than the barometer data (86.4%) and Wi-Fi data (78.08%). Moreover, the average
localization accuracy of proposed method can reach 89.34% using a small amount of data,
which is better. Similarly, the localization accuracy of the patterns of “normal walking”,
“phone calling” and “phone shaking” are 96.54%, 79.83% and 66.05%, respectively. Dif-
fer from the barometer data and Wi-Fi, the established fingerprint database need not to
be updated unless it involves changes in the main indoor infrastructure made of metallic
materials. Magnetic fields are ubiquitous and the data collection requires only the built-in
magnetic sensor of the smartphone. The fingerprint databases for floor locating were
prepared in March 2019. Test data were collected at different times from March 2019 to
June 2019.

In addition, we can find that the performance of MIS-IFL is seriously affected when the
user is in the pattern of “phone shaking”. The main reason is that the smartphone moves
continuously in the front and rear direction, which affects the data and introduces noise.
However, during the patterns of “normal walking” and “phone calling”, the collected
data are smooth, stable and exhibit good performance because the orientation angle of the
smartphone changes but remains in a similar location with very little movement around
the axis.
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Figure 13. Accuracy of floor localization.

4.3. The Assessment of Inter-Floor Detection

The user is not tracked during the process of IFL, and the user’s previous floor is not
known when acquiring the data and performing floor localization. The whole process does
not include inter-floor detection. Therefore, the link of inter-floor detection is added to
improve the floor localization accuracy. The result of inter-floor detection by a machine
learning-based classifier is shown in Figure 14. The three classifiers perform very well
when utilizing the characteristics of the accelerator data and magnetometer data to detect
up and down stairs. Furthermore, the performance of SVM is superior than K-NN and DT.
Therefore, SVM is used in MIS-IFL for inter-floor detection.

The accuracy of proposed method can be slightly improved by adding the inter-floor
detection. The reason for the slight improvement is that the user does not often walk
on the stairs unless the floor needs to be changed. After adding the inter-floor detection,
the average localization accuracy of the MB-ILS, WF-ILS and proposed method are 88.14%,
79.53% and 91.04%, respectively. The localization accuracy of the proposed method is still
the highest.
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Figure 14. Accuracy of inter-floor detection.
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5. Conclusions

The exciting IFL methods are not only susceptible to changes in the external environ-
ment, but are also cumbersome to collect and update data, bringing great limitations for
practical application. This paper proposes a MIS-IFL method that relies on geomagnetic sig-
nal and uses multiple intelligent sensors synergy, which includes the fingerprint database
constructing and the floor localization. Firstly, an accelerator and a magnetometer of the
smartphones are used to obtain acceleration data and the machine learning classifier is used
to identify the user’s activity patterns. Then, the corresponding geomagnetic data mapping
is performed according to the determined activity pattern, the mapped magnetic data are
matched with the fingerprint database by Euclidean closest approximation, and the floor
is located by the majority principle. Finally, the characteristics of the accelerator data and
magnetometer data are combined to detect inter-floor to improve the overall localization
accuracy. The data results show that the proposed method is feasible, providing a technical
guarantee for future indoor multi-floor positioning based on geomagnetic signals
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