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Abstract: Visual attention plays a crucial role in the map-reading process and is closely related to the
map cognitive process. Eye-tracking data contains a wealth of visual information that can be used to
identify cognitive behavior during map reading. Nevertheless, few researchers have applied these
data to quantifying visual attention. This study proposes a method for quantitatively calculating
visual attention based on eye-tracking data for 3D scene maps. First, eye-tracking technology was
used to obtain the differences in the participants’ gaze behavior when browsing a street view map in
the desktop environment, and to establish a quantitative relationship between eye movement indexes
and visual saliency. Then, experiments were carried out to determine the quantitative relationship
between visual saliency and visual factors, using vector 3D scene maps as stimulus material. Finally,
a visual attention model was obtained by fitting the data. It was shown that a combination of
three visual factors can represent the visual attention value of a 3D scene map: color, shape, and
size, with a goodness of fit (R2) greater than 0.699. The current research helps to determine and
quantify the visual attention allocation during map reading, laying the foundation for automated
machine mapping.

Keywords: visual attention; eye tracking; map cognition; visual cognition

1. Introduction

This article is a contribution to the Special Issue “Eye Tracking in Cartography”, which
is dedicated to the research problem of understanding a person’s cognitive state through
eye movement analysis and interpreting their cognitive processes when performing vi-
suospatial tasks (such as map reading, route learning, and navigation). To evaluate and
optimize map design, geographic and other information is used, including visualization
and various cartographic products such as map-like displays, including 3D representations.
The article quantifies the visual attention allocation values during the reading of a 3D
scene map by analyzing eye-tracking data. The research facilitates understanding the
influence of map visual attributes on visual attention allocation when performing a 3D
scene map-reading task. It provides a basis for studying the visual cognitive mechanisms
of 3D scene maps.

The visual attention mechanism originates from the study of human vision. It is an
essential psychological regulation mechanism of the human visual system in visual infor-
mation processing activities [1]. Visual activities are closely related to almost everything
humans do. Humans selectively focus on some pieces of information and ignore others to
effectively use limited visual resources to process information. The study of map visual
cognition involves the investigation of how humans read maps and obtain geospatial
information, starting from human visual characteristics. It is usually based on subjective
feelings, focusing on the reader’s evaluation of the design of abstract map symbols and
the rationality of improving the map’s design [2]. As a result of the rapid development of
disciplines such as cognitive science, psychology, and computer vision, and the advent of
new technologies such as eye tracking, electrocardiograph (ECG), electroencephalograph
(EEG), and nuclear magnetic resonance (NMR) [3], the quantitative and practical research
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of map visual cognition has received significant supported. Thus, visual cognition has
attracted increasing attention of researchers and has become a popular research topic with
in the field of map cognition [4–7].

The cognitive mechanism of 3D map visual variables is considered to be one of the
challenges of map visual cognition [8]. At present, there are no universally agreed principles
for visual cognition theory and the design of 3D maps, and conflicting conclusions exist
regarding the research of 3D maps [8]. Because map visual variables are the basic elements
that constitute a map, the cognitive study of 3D maps may yield a breakthrough related to
the cognitive mechanism of 3D map visual variables. In this study, we placed 3D maps
into a specific geographical scene. We defined 3D maps with specific scene content as 3D
scene maps, such as Google Street View Map, 360 3D Street View Map, and E-city 3D City
Map [9]. The object of this study was a 3D scene map.

Visual variables can affect the allocation of human visual attention. Visual variables
affect the distribution of human visual attention, and generally include five aspects: shape,
size, orientation, color, and reticle [10]. Existing studies have shown that size, color,
orientation, and shape have apparent effects on the efficiency of visual attention [11–13].
Furthermore, texture is likely to affect the efficiency of visual attention, whereas gloss
has no pronounced effect on the efficiency of visual attention. The human visual system
is the main organ for obtaining the visual information of objects. This study focused on
establishing the relationship between visual variables and human visual attention, which
is essential for quantifying visual attention.

The research objectives of this study can be summarized as following.

1. To study the quantification of visual attention in the reading process of a 3D scene map.
Analyzing the eye-tracking data revealed the key eye movement indicators in the
map-reading process, combined with the visual variable factors of the ground objects
that affect visual attention. Finally, we attempted to establish a visual attention model.

2. Ultimately, to lay the foundation for our subsequent study of the cognitive mechanism
of the visual variables of the 3D scene map.

In Section 2, we present the related works. In Section 3, we focus on the modeling ap-
proach, including the design of the experiments, data collection, data processing methods,
and model validation methods. Section 4 presents the results of data processing, model
building, and model validation. In Section 5, we discuss the results. Finally, in Section 6,
we draw conclusions from these results and provide an outlook for future research.

2. Related Works

This section describes the related works, including visual attention calculations in
computing and eye-tracking research in 3D maps. The deficiencies of the current research
can be summarized as follows: (a) numerous visual attention models consider only one
aspect of the position or object, and lack eye movement data for verification; (b) for a 3D
map of the scene, there are relatively few studies on eye tracking to quantify the visual
attention distribution of different users.

2.1. Visual Attention Research in Computing

When a scene is observed, particular objects or positions more easily attract the
viewer’s attention due to gazing at objects in the area of interest for a longer period than
for unimportant objects [14]. To understand the cognitive mechanism of visual attention, it
is important to quantitatively calculate visual attention. Visual saliency is usually used to
express the value of visual attention. Numerous researchers have undertaken efforts to
calculate visual attention, which can be divided into two categories.

The first category is location-based attention assessment saliency. The core of this
approach is to pay attention to the “spotlight” areas in the scene. Independent features,
such as color, size, orientation, tilt rate, and curvature, are essential in visual activity. The
combination of these features facilitates directing attention to the search task [15]. Itti et al.
modelled visual attention in three feature dimensions: color, intensity, and orientation [16].



ISPRS Int. J. Geo-Inf. 2021, 10, 664 3 of 22

Research demonstrates that the three dimensions of color, intensity, and direction are related
to eye movement behavior [17,18]. Subsequently, numerous researchers, improving on Itti’s
model, have proposed new models [19–21]. Eriksen et al. proposed an attentional focus
model [22]. Koch et al. proposed a saliency graph model [23]. Several researchers have
introduced attention mechanisms into deep learning neural networks to improve image
processing in recent years [24–26]. A common feature of these models is that bottom-up
attentional stimulus information is processed in parallel.

The second category is object-based attention assessment saliency. Position-based
attention ignores the geometric properties of spatial objects, in particular their shape,
dimensions, and orientation [27]. Prominent objects are described in terms of human
vision, and the corresponding visual saliency is calculated [28]. Object-based attention
assumes that the structural features of objects direct attention to them rather than via
discontinuities in particular locations in the visual scene [29].

These visual attention models have been proposed to provide a basis for the quan-
titative computation of visual attention. However, these models tend to focus on image
pixel-level computation, lack accurate human eye movement data as a basis, and do not
explain the role of actual eye-tracking data in the visual attention process [30,31]. There-
fore, ideas from computer vision related to computing visual attention can be used in
cartography for computing the visual attention of map viewers.

2.2. Eye-Tracking Research in 3D Maps

Compared with traditional 2D maps, 3D maps can provide more one-dimensional
spatial information and a three-dimensional perspective that is more appropriate to humans.
The cognition and design of 3D maps is a large research area. This section focuses on the
application of eye-tracking methods to the design and perception of 3D map symbols. The
most numerous map eye-tracking studies are design usability evaluation studies of maps.
However, because of maps’ complexity, there is no unified theory to reveal the impact of
map elements on spatial perception.

In recent years, cartographic eye movement research has begun to focus on the visual
perception of 3D maps, and several researchers have investigated 3D map symbols and
visual covariates. Liu et al. investigated the effect of field of view and viewing angle on the
processing of 3D map information [32]. Liu et al. explored the guidance and constancy of
visualization variables in 3D visualization using eye-tracking techniques [33,34]. Popelka
et al. used eye tracking to study the level of abstraction of 3D symbols [34]. Lei et al. found
through eye movement experiments that the average individual gaze duration was longer,
the gaze points were denser, and the viewing angle was smaller when using 3D maps
compared to 2D maps [35]. Popelka et al. used eye tracking to investigate differences in user
perceptions of 2D and 3D topographic maps in terms of comprehensibility, applicability,
and aesthetics [36]. Popelka et al. used eye tracking to evaluate the 3D visualization model
they built [37]. Lee et al. used eye tracking to understand the effect of specific architectural
elements on viewers’ visual attention [38]. Balzarini et al. evaluated the effectiveness of
panoramic map design by studying visual attention through eye-tracking techniques [39].
Banitalebi-Dehkordi et al. validated their proposed study for predicting 3D video saliency
using an eye movement dataset [40]. Herman et al. described a new tool for the analysis of
eye-tracking data and interactive 3D models [41]. Brazil et al. used eye-tracking technology
and Google Street View to study the ability of cyclists to assess potential hazards in complex
urban environments [42].

Visual variables are the carriers of information. Different map visual variables create
complex and varied map representations. Studies have shown that, regardless of subjective
factors, different visual variables guide visual attention differently, with the most attractive
visual variables being color, orientation, animation, and size, and the potentially non-
leading visual variables being semantic information, name, and 3D volume [43]. Color is
critical because it is the first visual impression that attracts attention to a feature [44–46].
Similarly, a study of the effectiveness and efficiency of map visual variables in representing
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information found that size was the most accurate and fastest visual variable, whereas
orientation was the least efficient visual variable [47]. Dong et al. demonstrated the
effectiveness and efficiency of traffic flow data by comparing different scales and colors,
and playback efficiency [48,49]. Because of the complexity of maps themselves, no unified
theory reveals the impact of map elements on spatial perception.

The study of eye tracking in cartography in different directions provides ideas for
research. To date, few studies have used eye tracking to quantify different visual attention
distributions for 3D scene maps. Thus, the current research is highly relevant.

3. Materials and Methods

This section analyses and summarizes the influencing factors of the visual attention of
objects. Specifically, it includes three points: (1) the formulation of the experimental plan,
which involves the selection of participants, the production of experimental materials, and
the arrangement of experimental tasks; (2) collection of the operation and eye movement
data of the participants, and pre-processing of the data; (3) presentation of the methodology
for statistical analysis and validation of the modeling.

3.1. Data Collection
3.1.1. Participants

A total of 30 (mean age = 23.76, SD = 0.76; 15 males and 15 females; surveying and
mapping, computer science, and water resource-related backgrounds) student volunteers
from the authors’ university were recruited as participants in this experiment. Before the
formal experiment, the basic information of the participants was collected via questionnaire.
The participant’ unadjusted eyesight or corrected visual acuity reached a normal level of
1.0 or higher. None of the participants suffered from color blindness or color weakness.
They were all right-handed and proficient in operating computers. All the participants
participated in the eye movement experiment for the first time, and did not receive similar
training, or know the content of the experiment in advance.

3.1.2. Apparatus

This experiment used the X-series Tobii Pro X3-120 desktop eye tracker from Tobii
Sweden for data acquisition. It used the accompanying ErgoLAB3.0 software to count
eye movement data and IBM SPSS Statistics 26.0 for data analysis. The experiment was
conducted using binocular tracking, with a sampling rate of 120 HZ, sampling accuracy of
0.24◦, sampling accuracy of 0.4◦, and a delay of fewer than 11 milliseconds. The screen size
for displaying the stimulus material was 23.8 inches (16:9), and the screen resolution was
1920 × 1080. The whole experiment was conducted in a softly lit laboratory environment
with no noise interference. Participants sat on a seat opposite to the screen, their eyeline
was as high as the center of the screen, and their eyes were about 67 cm from the screen.
They had a comfortable posture during the test.

3.1.3. Material

In this study, we first designed Experiment 1 and then conducted Experiment 2
based on the results of Experiment 1. In Experiment 2, three experiments were conducted,
Experiment 2.1, Experiment 2.2, and Experiment 2.3, corresponding to the three modes
of action of visual attention. The stimulus material of Experiment 1 was taken from the
3D scene maps of Beijing, Shanghai, Guangzhou, Zhengzhou, and ten other Chinese
cities in the “Earth Online Street View Map”. Available online: https://www.earthol.org/
(accessed on 4 April 2021). A total of 30 street pictures were selected as stimulus materials
for Experiment 1, with a resolution of 1920 × 1080, and the content was familiar street
scenes (Figure 1, left). The stimulus material for Experiment 2 was downloaded from the
3D scene map of “E City”. Available online: www.edushi.cn (accessed on 22 April 2021).
There were 25 pictures in total, with a scale of 1:2256 and a resolution of 0.597 m. The

https://www.earthol.org/
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map comprehensively and realistically presents the city’s geographic features, including
complex visual features such as the color, size, and shape of the features (Figure 2, left).

Figure 1. An example picture showing two different types of 3D scene maps (perspective projection in left, orthographic
projection in right).

Figure 2. An example of AOI division.

3.1.4. Procedure

In this experiment, a single-factor intra-group experimental design was used. Using
the pixel as the smallest unit, the area of pixels where the study target was located was
divided into areas of interest (AOI), as shown in Figure 2. After the pre-experiments,
the participants were asked to look at the presented 3D scene maps and identify the
underground features of interest. Finally, the eye-tracking parameters in the AOI area
were analyzed.

Experiment 1

The experimental variables were as follows: (a) the independent variable was the
content of the street view picture. Experiment 1 had 30 levels, P1–P30; (b) the dependent
variable was the eye movement data automatically recorded by the eye tracker.

The experiment steps were as follows.

1. Welcome the participants and briefly introduce the contents of the experiment, and
then use the questionnaire function of Ergo-LAB software to record the participants’
gender, age, education, and professional degree;

2. Use the five-point method to calibrate the eyes of the participants until the calibration
reached the “Accept” level to ensure the accuracy of eye-tracking;

3. Conducting a pre-experiment. Participants were asked to perform sample pictures to
practice and familiarize themselves with the operation process;

4. The formal experiment was started. The red “十” picture in the center was presented
for 1 s to return the participant’s eyes to the center of the screen, and then the street
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view pictures appeared. When participants believed they had finished viewing a
picture, they could move to the next. This was done until the subject finished viewing
all of the stimulus material. The data was automatically recorded and saved by the
eye-tracking device’s ErgoLAB 3.0 software throughout the experiment.

5. At the end of the eye movement test, the playback of the experimental recording
was observed with the participant. Participants were asked to think aloud, and if the
instrument recording matched their actual observation.

Experiment 2

The experimental variables were as follows: (a) the independent variable was the
content of the three-dimensional scene maps. Experiment 2 had 25 levels, M1–M25; (b) the
dependent variable was the eye movement data automatically recorded by the eye tracker.

The experiment steps were as follows.

1. Steps (1)–(3) were identical to those of Experiment 1;
2. The formal experiment was started. The red “十” picture in the center was presented

for 1 s to return the participant’s eyes to the center of the screen, and then the three-
dimensional scene maps appeared. Three sets of comparative experiments were
conducted depending on how the maps were switched from one to the next. In
Experiment 2.1, the timing of map switching was determined by the participants.
When participants thought they had finished viewing the current map, they switched
to the next by themselves until they had finished viewing all of the stimulus material.
In Experiment 2.2, the map switching time was fixed at 6 s. When the map was
presented on the screen for 6 s, it was automatically switched to the next map until
participants had finished viewing all of the stimuli. In Experiment 2.3, the timing
of the map switch was arbitrarily switched by the researcher. When the map was
presented on the screen, the researcher could randomly switch to the next map as
he/she wished, regardless of whether the participant had finished viewing the map or
not, until the subject had finished viewing all of the stimulus material. The data was
automatically recorded and saved by the eye-tracking device’s ErgoLAB 3.0 software
throughout the experiment.

3. At the end of the eye movement test, the playback of the experimental recording was
observed with the participant, and the participant was asked to think aloud and if the
instrument recording matched their actual observation.

Relationship between Experiment 1 and Experiment 2

The two experiments were separate but complementary experiments. The aim of
Experiment 1 was to determine the relationship between the eye-tracking index and visual
saliency. The aim of Experiment 2 was to determine the relationship between the eye-
tracking index and the visual factor. The two experiments used the eye-tracking index as a
bridge between the visual factor and the visual saliency. Finally, a visual attention model
was developed.

The methods of visual attention perception can be divided into three types. First, the
bottom-up approach is data-driven, and is the perception process of automatic salient area
selection in natural scenes. Second, the top-down approach is a task-related perception
process that is affected by the execution of the task (such as navigation, wayfinding, and
sightseeing) and the target’s characteristic distribution. The third method comprised the
combination of the bottom-up and top-down methods. To better explore the impact of these
three methods, three experiments were conducted in Experiment 2, which were recorded
as Experiment 2.1, Experiment 2.2, and Experiment 2.3. The resulting models were called
bottom-up models, top-down models, and mixed models, respectively.
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3.2. Modeling Methods
3.2.1. Basic Ideas

The method of visual attention modeling in computer vision was used as the method-
ological basis of this study. We used visual saliency to show the value of visual attention,
where the participants’ visual attention to visual objects can be represented by a linear
combination of visual saliency values of various visual factors, as shown in Equation (1):

S(y) =
n

∑
i=1

ki × Oi(y) + C, i = 1, 2, . . . , n. (1)

where S(y) is the visual saliency, Oi(y) is S(y) of the i-th visual factor, ki represents the
weighting values, C is a constant, i is the number of visual factors, and y is the number
of objects.

The basic aim of solving Equation (1) can be expressed as follows:

1. To determine the visual factor index system and the calculation method of Oi(y), and
to construct the experimental environment based on the visual factors.

2. To collect the eye-tracking data using the eye-tracking technique, and to characterize
the visual saliency (S(x)) by the combination of eye movement indexes.

3. To construct the experimental environment using the 3D scene map. The calculation
of each visual influence factor is combined with the eye movement observation data
to fit and solve the percentage ki and constant C.

3.2.2. Modeling between Eye-Tracking Index and Visual Saliency

The acquisition of visual information is mainly through the eyes, and the process of
eye movement reflects the process of visual thinking. Therefore, it is feasible to use eye
tracking to obtain eye movement data to analyze the distribution rule of observers’ visual
attention. There is no uniform regulation relating to the interpretation of eye movement
indexes in cartography [50]. The main eye-tracking indexes according to Dong et al. are:
number of fixation points, fixation point duration, average fixation point gaze duration,
time spent before first entry into AOI, and proportion of fixation points within AOI [8]. Li
et al. considered common eye movement indexes as: fixation, sequence of fixation points,
fixation point duration, fixation count, fixation frequency, fixation breadth, initial fixation
time, and total fixation count [50]. Zheng argued that the main common eye movement
indexes are: first entry time, first fixation duration, duration of fixation points, total fixation
duration, number of fixation points, and number of fixation times [51]. We considered the
eye movement indexes selected from previous studies and the purpose of the experiment
in this study.

The eye movement indicators used in this study were Time to first fixation, First
fixation duration, Total visit duration, Average visit duration, Visit count, Total fixation
duration, Average fixation duration, and Fixation count. The specific meaning of each
index is shown in Table 1.

Using a combination of eye movement indicators to show visual saliency,

Ŝ(z) =
m

∑
i=1

λi × ei(z), i = 1, 2, . . . , m. (2)

where Ŝ(z) is the estimated value of S(x), ei is the eye movement index, λi is the weight of
influence of each eye movement index, and m is the number of eye movement indexes.
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Table 1. Definition of eye movement indexes.

Name Description

Time to first fixation(s) The time from the start of the stimulus display until
the subject fixates on the AOI for the first time.

First fixation duration(s) Duration of the first fixation on the AOI.

Total visit duration(s) Duration of all visits within the AOI.

Average visit duration(s) Duration of each individual visit within the AOI.

visit count(N) Number of subjects visit the AOI.

Total fixation duration(s) Duration of all fixation within the AOI.

Average fixation duration(s) Duration of each fixation in the AOI.

Fixation count(N) Number of fixation points in the AOI.

We designed a visual saliency calculation experiment in a virtual experimental en-
vironment, in which the participants were allowed to browse freely through street scene
photos as stimulus materials, and used an eye tracker to observe and record the partici-
pants’ eye movement data when observing various objects. Finally, the analytic formula of
Equation (2) was obtained by fitting the eye movement data of the participant.

The cognitive process of a visually ordinary observer for a feature is based on sensory
input from the surroundings and the current task (sightseeing, walking to a destination).
The observer rapidly allocates attention and distinguishes between different spatial objects.
For local visual attention, allocation essentially relies on human selective attention mecha-
nisms. This consists of two processes: first, bottom-up pattern creation, i.e., constructing
patterns of visual features (such as color, shape, size). The contrast between the object
and its environment at the feature level determines how much human visual attention
is allocated to it. Second, the top-down attention process. According to the observer’s
objective, the relevant features are purposefully searched for. The visual attention process is
related to the task. However, the pattern creation process reflects the general characteristics
of human visual thinking and is universal. Eye movements reflect the visual thinking
process. Therefore, it is feasible to use eye-tracking to obtain eye movement data to ana-
lyze observers’ visual attention distribution. Ŝ(z) can be used instead of S(y) for the later
construction of the visual attention model.

3.2.3. Modeling between Eye-Tracking Index and Visual Factors

Wolf comprehensively summarized the effects of multiple visual attributes on atten-
tional efficiency [11,12]. This study showed that there are significant effects of size, color,
orientation, and shape on visual attentional efficiency; texture is likely to affect visual
attentional efficiency. In terms of visual features, the features that arouse the observer’s
interest should have significant and unique visual features or spatial locations compared to
the objects, which are mainly reflected in the color, size, shape, direction, texture, and other
object features that can attract the observer’s sensory attention (visual, olfactory, auditory,
etc.). Due to the difficulty associated with visual feature attributes in existing research, the
current study focused on the visual aspect. Three visual features, namely, color, size, and
shape, were selected to construct the visual factor system. The three visual features are
analyzed below.

Color is a visual nerve sensation [52]. Ground features with vivid colors and strong
contrasts with their surroundings are more likely to attract attention. The choice of color
space is significant for color factor analysis. Usually, RGB space is used to describe color,
and can directly describe the physical quantity of the three primary colors. However,
visual attention describes the human psychological quantity, and HSV color space is more
appropriate. Compared with RGB color space, the three components of HSV color space
are independent of each other and more appropriate for human visual characteristics.
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Therefore, in this study, three components of HSV were used as the secondary index factors
of feature color.

Size is quantified using the minimum bounding rectangle (MBR) of the visible surface
of the feature, i.e., height × width.

A shape is a form of existence or expression of a specific underground feature or sub-
stance. Experiments have verified [13,53] that the six factors of aspect ratio, rectangularity,
area convexity, perimeter convexity, sphericity, and form factor can describe and calculate
the shape characteristics of ground objects, and are suitable for similarity comparisons.

In summary, the visual factors of visual saliency of the ground objects are summarized
in Table 2.

Table 2. Visual saliency impact factor parameters and their quantification methods.

Name Description of the Calculation
Method Quantification Method

Color

Hue The hue/saturation/value is divided
into 10 categories with equal spacing,

and the quantization value is also
divided into equal spacing

(n − 1) × 36◦≤ ∆H ≤ n × 36◦ 0.1 × n

Saturation
(n − 1) × 10◦≤ ∆S/∆V ≤ n × 10◦ 0.1 × n

Value

Size MBR
The sum of the bounding rectangles

of the smallest area of all visible
surfaces of the ground feature

MBR =
n
∑

i=1
length_MBRi × width_MBRi

Shape

Aspect Ratio

The sum of the ratio of the length and
width of the minimum bounding

rectangle of the smallest area of all
visible surfaces of the ground feature

AspectRatio =
n
∑

i=1

length_MBRi
width_MBRi

Rectangularity

The sum of the ratio of the area of all
visible surfaces of the ground feature

to the area of the minimum area
bounding rectangle

Rectangularity =
n
∑

i=1

Area_sur f acei
Area_MBRi

Area Convexity
The sum of the ratio of the area of all
visible surfaces of the ground feature

to its convex hull area
Area Convexity =

n
∑

i=1

Area_sur f acei
Area_convexityi

Perimeter Convexity

The sum of the ratio of the perimeter
of all visible surfaces of the ground

feature to the perimeter of its
convex hull

Perimater Convexity =
n
∑

i=1

Perimater_sur f acei
perimeter_MBRi

Sphericity
The calculated value of the area of all
visible surfaces of the ground feature

and its convex hull perimeter
Sphericity =

n
∑

i=1

4Π×Perimater_sur f acei

(Perimeter_convexity)2

Form Factor Calculated value of all visible surface
area and perimeter of features

Form Factor =
n
∑

i=1

4Π×Perimater_sur f acei

(Perimeter_sur f ace)2

3.2.4. Normalization and Different Degree Calculation

The calculated value of the visual saliency influence factor may have different units.
For the convenience of subsequent calculations, the normalization method was used to
eliminate the dimension, and the value was mapped to [0, 1]. The normalization formula is
as follows:

N1 =
n − nmin

nmax − nmin
(3)

where nmin is the minimum value, nmax is the maximum value, n is the attribute value of
the visual factor, and N1 is the normalized value of the attribute value of the visual factor.

From the perspective of visual perception, the object of interest may be quite different
in the observer’s field of vision from the surrounding features in terms of color, shape,



ISPRS Int. J. Geo-Inf. 2021, 10, 664 10 of 22

and size. The visual saliency of an object depends not only on its attribute characteristics,
but also on the degree of difference between the object and its surroundings. Therefore,
when calculating the visual saliency of an object, the degree of difference between it and
the surrounding objects should be calculated. Tobler’s First Law of Geography states that
everything is related to everything else, but near things are more related to each other [54].
The calculation formula for the discrepancy degree of the attribute value is as follows:

D(x) =

∣∣∣∣∣f(d)− n

∑
i=1

f (di)

∆Li

∣∣∣∣∣ (4)

where g(x) is the degree of difference; i is 1, 2, . . . , n, which is the neighboring object of
the spatial object; f (xi) is the attribute value of the neighboring object; ∆Li is the distance
between the spatial object and the neighboring object.

3.3. Model Coefficient Solving Methods

The model was solved using a multiple stepwise regression approach.

• First, the independent variables were included in the regression model sequentially.
The first independent variable entering the regression model is the most closely related
to the dependent variable, i.e., the independent variable that shows the greatest
correlation with the dependent variable.

• The second independent variable to enter the regression is the one that is most highly
correlated with the dependent variable and the first independent variable. In turn, all
independent variables are included in the regression model by this rule.

• At each step of the execution, an F-test was used to test the independent variables
entering the regression model.

3.4. Model Validation Methods

Model validation experiments were conducted to verify the validity and applicability
of the visual attention model developed in this study. To ensure a comprehensive validation,
four different types of 3D scenes were selected for the study: building-intensive low-rise
area, building-intensive high-rise area, building-sparse low-rise area, and building-sparse
high-rise area.

The principle of validation is to compare the value Si(x) calculated by our model with
the true value Ŝi(z) of the eye-tracking data collected using the eye-tracking device. The
degree of accuracy (DOF) of our model can be expressed as follows:

DOF =
Si(x)
Ŝi(z)

× 100% (5)

where Si(x) is the model calculated value, Ŝi(z) is the true value, and i is the number of the
area of interest.

4. Results

This section focuses on the analysis of the experimental results. Based on the pre-
processing of the experimental data, a more detailed treatment was carried out. First, the
eye-tracking index related to the visual saliency of the objects was selected by statistical
methods, and the mathematical relationship model between visual saliency and the eye-
tracking index was constructed experimentally. Secondly, the influence weights of visual
factors were obtained using multiple regression methods. The visual attention model under
the 3D scene map was constructed, and the model was analyzed and tested. Thirdly, the
scientific validity and applicability of the model was assessed.
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4.1. Solving between Eye Movement Index and Ŝ(z)

This section corresponds to the results of Experiment 1. The purpose of the experiment
was to obtain the quantitative relationship between eye movement indicators and visual
saliency (i.e., to obtain the analytical formula of Equation (2)).

4.1.1. Data Analysis

Because the experimental apparatus is significantly affected by the participant’s head
offset and the intensity of the light, the collected data are missing or noisy. To ensure
the reliability of the experimental data, five sets of data with a large number of saccades,
continuous discontinuities in the fixation point, and sampling rate lower than 60%, were
eliminated. A total of 25 sets of data were retained. Figure 3 shows the heat map and the
track map of 25 participants in a street view image. There is no unified understanding of
the interpretation of eye movement indicators in cartography [9,51,52]. After comprehen-
sive consideration, eight eye movement indicators, namely, “Time first fixation”, “First
fixation duration”, “Total visit duration”, “Average visit duration”, “Visits count”, “Total
fixation duration”, “Average fixation duration”, and “Fixation count” were selected for
model construction.

Figure 3. An example picture showing a heat map (left) and track map (right). The heat map shows the different distribution
of the participants’ fixation, and the darker the color, the longer the fixation time. The track map shows the movement of
the participants’ fixation track, and the circle represents the location of the fixation point, and the numbers inside represent
the order of fixation.

Visual saliency characterizes the attractiveness of a feature to the observer. During
an experiment, the greater the number of people entering an area of interest, the greater
the attractiveness. Therefore, the visual saliency value can be replaced by the number
of subjects entering an area of interest as a percentage of the total number of subjects.
This calculated value was used as the dependent variable, and the eight eye movement
indicators are used as independent variables for regression modeling.

4.1.2. Solving the Model

First, we conducted a correlation analysis between independent variables and de-
pendent variables; the results of the analysis are shown in Table 3. Table 3 shows the
correlation coefficient between First fixation duration and Visual saliency is 0.293, so the
two are linearly weakly correlated. The Average fixation duration and Visual saliency
correlation coefficient is 0.363, showing a low linear correlation. The absolute values of
the correlation coefficients between the remaining six eye movement factors and visual
saliency are between 0.609 and 0.775. Therefore, six eye movement factors, namely, Time to
first fixation, Total visit time, Average visit duration, Visits count, Total fixation duration,
and Fixations count, were selected for the next analysis.
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Table 3. Coefficient of association between visual saliency and eye movement indexes.

e1 e2 e3 e4 e5 e6 e7 e8

y −0.609 0.239 0.738 0.695 0.775 0.745 0.363 0.764
e1, e2, e3, e4, e5, e6, e7, e8: Time to first fixation, First fixation duration, Total visit duration, Average visit duration,
Visit count, Total fixation duration, Average fixation duration, Fixation count. y: Visual saliency.

Second, the eye movement factors were used to performed linear regression [55]. To
solve the problem of collinearity between independent variables, ridge regression analysis
was adopted [56]. Finally, a mathematical model of the relationship between visual saliency
and eye movement indexes was established. The model summary (Table 4) and expression
(Equation (6)) are as follows:

Ŝ(z) = −0.177e1 + 0.307e4 + 0.465e5 + 0.083 (6)

where Ŝ(z) is the estimated value of S(x), e1 represents Time to first fixation, e4 is Average
visit duration, and e5 is the Visits count.

Table 4. Model summary.

R R2 Adjusted
R2

Errors in
Standard

Estimation

Change Statistics

R2

Variation
F

Variation
DOF

1
DOF

2
Sig F

Variation D-W

0.825 0.681 0.677 0.169 0.019 13.054 1 128 0.000 * 2.086

* p < 0.05; R: Coefficient of Determination; R2: Goodness of Fit; DOF: Degree of freedom; D-W: Durbin–Watson test.

4.1.3. Model Analysis

From the regression Equation (6), it can be seen that: (a) the coefficient of e1 is negative,
indicating that “Time first fixation” is negatively related to “Visual saliency” of AOI; and
(b) the coefficients of e4 and e5 are positive, indicating that these two variables are positively
correlated with “Visual fixation” of AOI.

4.2. Solving between Eye Movement Index and Visual Factors

This section corresponds to Experiment 2, which is based on Equation (6). We sim-
ulated the process of human visual attention distribution in the real environment, in the
virtual environment of the three-dimensional scene map where the visual factors can be
calculated, and then fitted and solved the weighted value ki for each visual factor and the
constant C.

4.2.1. Data Analysis

Thirty volunteers participated in Experiment 2, and experimental data with an effec-
tive sampling rate of less than 60% were eliminated. The numbers of valid data bars for the
three experiments (2.1, 2.2, and 2.3) were 27, 28, and 25, respectively.

Figure 4 shows the heat map and the track map. It can be seen from Figure 4 that most
of the fixation points fall into the delineated AOI, indicating the accuracy of the delineated
AOI. The three different browsing methods showed different fixation tracks and fixation
points of the objects. This also shows that these three browsing methods lead to different
visual attention distributions of the participants.
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Figure 4. The figure shows the track maps and heat maps shown by “active browsing” (a), “timed browsing” (b), and
“passive browsing” (c). The heat map shows the different distributions of the participants’ fixation, and the darker the color,
the longer the fixation time. The track map shows the movement of the participants’ fixation track, the circle represents the
location of the fixation point, and the numbers inside represent the order of fixation.

4.2.2. Solving Model

The derived eye movement data of “Time to first fixation”, “Average visit duration”,
and “visit count” were used in Equation (6). The calculated value of “Visual saliency value”
was used as the dependent variable, and the visual factor calculated value from the formula
in Table 2 was used as the independent variable to solve the mathematical relationship
model. The solving steps are as follows.

In the first step, considering that there may be a non-linear relationship between visual
factors and visual saliency, each visual factor was spread onto a plane that was judged
to roughly conform to its distribution law. Figure 5 shows the curve fitting diagram of
the hue of the independent variable and the visual saliency of the dependent variable in
Experiment 2.1, Experiment 2.2, and Experiment 2.3. The other independent variables use
the same method. The curve law with the goodness of fit statistic R2 was selected for the
subsequent analysis according to the relevant results.



ISPRS Int. J. Geo-Inf. 2021, 10, 664 14 of 22

Figure 5. As show in the figure, the hue different degree and visual saliency curve fitting graph, where R2 represents the
Pearson Goodness of Fit Statistic. ((a) is for Experiment 2.1, (b) is for Experiment 2.2, (c) is for Experiment 2.3.)

The first step indicated that some independent variables have a nonlinear relationship
with the dependent variable. Thus, in the second step, it was considered that there may
be an unknown correlation between the independent variables. The direct use of multiple
linear regression analysis methods may result in a low goodness of fit statistic for the
model. In this study, we used the idea of “nonlinear” to “linear” transformation [57,58].
We rationally introduced parameters and multiple regressions to achieve the conversion
of nonlinearity to linearity, thereby eliminating covariance factors. Finally, a multivariate
mathematical relationship model between multiple visual factors and visual saliency
was constructed.

Introducing new parameters into the regression equation requires that the newly
added variables only depend on the original variables and do not contain unknown param-
eters. This can be undertaken by changing the original independent variables as a function.
The first step showed that in Experiments 2.1, 2.2, and 2.3, the cubic function relationship
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between the color factor and visual saliency is more significant, with correlation coefficients
of 0.711, 0.856, and 0.752, respectively. The linear relationship between the size factor and
visual saliency is more significant, with correlation coefficients of 0.699, 0.821, and 0.877,
respectively. The linear relationship between the shape factor and visual significance was
more significant, with correlation coefficients of 0.723, 0.789, and 0.688, respectively.

Therefore, we made combined changes to the independent variables, such as third
power, reciprocal, and linear, and 27 new variables are added. The color factor is denoted
x1–x3, the size factor is denoted x4, the shape factor is denoted x5–x10, and the newly
added factor is denoted x11–x38. Visual significance was used as the dependent variable,
and the original visual factor and the added visual factor were used as independent
variables. ANOVA was undertaken to remove the factors with correlation coefficients
less than 0.6. The screened visual factors were used as independent variables to conduct
multiple regressions, and the factors that led to the problem of multicollinearity between
independent variables in the regression process were excluded. After several regressions,
the problem of multicollinearity was eliminated and the model was tested. Finally, the
visual saliency was obtained by factor reduction.

The summary (Table 5) and Equation (7) of model 2.1 are as follows:

S1(x) = −1.090x3
1 + 0.069x3

2 + 0.033x3
3 + 0.493x4 − 0.276x5 + 0.492x6

−0.256x7 + 1.786x9 − 0.301x10 − 1.694 x6
x4

+ 1.338 x9
x4

+0.311 x5+x6+x7+x8+x9+x10
x4

+ 0.208
(7)

Table 5. Bottom-up model summary.

R R2 Adjusted
R2

Errors in
Standard

Estimation

Change Statistics

R2

Variation
F

Variation
DOF

1
DOF

2
Significant
F Variation D-W

0.841 0.707 0.699 0.089 0.707 87.352 12 435 0.000 * 2.037

Independent Variable: x38, x9, x21, x6, x13, x11, x12, x18, x7, x5, x4, x10. Dependent Variable: Visual saliency. * p < 0.05; R: Coefficient of
Determination; R2: Goodness of Fit; DOF: Degree of freedom; D-W: Durbin–Watson test.

The summary (Table 6) and Equation (8) of model 2.2 are as follows:

S2(x) = −1.305x3
1 + 0.056x3

2 + 0.294x3
3 + 0.155x4 + 1.048x5 + 0.285x6 − 0.122x7 − 0.313x8 + 1.294x9

−0.214x10 − 0.445 x5+x6
x4

− 0.638 x6+x7
x4

+ 0.826 x7+x9
x4

+ 0.271 (8)

Table 6. Top-down model summary.

R R2 Adjusted
R2

Errors in
Standard

Estimation

Change Statistics

R2

Variation
F

Variation
DOF

1
DOF

2
Significant
F Variation D-W

0.954 0.911 0.907 0.040 0.911 268.598 13 342 0.000 * 2.036

Independent Variable: x33, x9, x6, x23, x12, x11, x13, x4, x28, x7, x10, x5, x8. Dependent Variable: Visual saliency. * p < 0.05; R: Coefficient of
Determination; R2: Goodness of Fit; DOF: Degree of freedom; D-W: Durbin–Watson test.

The summary (Table 7) and Equation (9) of model 2.3 are as follows:

S2(x) = −1.510x3
1 − 0.224x3

2 + 0.144x3
3 − 0.538x4 + 0.863x5 − 0.163x6 + 0.509x7 + 0.350x8 − 0.025x9

+0.493x10 − 0.009 x6
x4

+ 0.012 x7
x4

− 0.003 x9
x4

− 0.004 x6+x8
x4

+ 0.261 (9)
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Table 7. Mixed model summary.

R R2 Adjusted
R2

Errors in
Standard

Estimation

Change Statistics

R2

Variation
F

Variation
DOF

1
DOF

2
Significant
F Variation D-W

0.855 0.731 0.720 0.077 0.731 64.351 14 331 0.000 * 2.024

Independent Variable: x29, x9, x21, x6, x11, x12, x18, x4, x13, x5, x7, x19, x10, x8. Dependent Variable: Visual saliency. * p < 0.05; R: Coefficient of
Determination; R2: Goodness of Fit; DOF: Degree of freedom; D-W: Durbin–Watson test.

In Equations (7)–(9), x1 is the degree of “Hue” difference, x2 is the degree of “Saturation”
difference, x3 is the degree of “Value” difference, x4 is the degree of “Minimum area
Bounding Rectangle” difference, x5 is the degree of “Aspect Ratio” difference, x6 is the
degree of “Rectangularity” difference, x7 is the degree of “Area Convexity” difference, x8 is
the degree of “Perimeter Convexity” difference, x9 is the degree of “Sphericity” difference,
and x10 is the degree of “Form Factor” difference.

4.2.3. Model Analysis

We analyzed the model from the form, and the analysis results showed the following:

(a) From the overall form of the regression equation, it can be seen that the visual saliency
is affected by the color factor difference degree (x1, x2, x3), size factor difference degree
(x4), and shape factor difference degree (x5~x10), and that the influence of each factor
degree is different.

(b) From the analysis of the various factors of the equation, the influence of each factor
on the visual saliency is different. There are linear and non-linear effects, single
factor and compound factor effects, and positive and negative correlation effects. The
regression coefficients of each influence factor were taken as absolute values, and
the effect size of each factor was analyzed. In the bottom-up model, sphericity had a
maximum coefficient of 1.786, and value had a minimum coefficient of 0.033 on visual
saliency, and the other factors fell between these two values. In the top-down model,
hue had a maximum coefficient of 1.305, and saturation had a minimum coefficient of
0.056 on visual saliency, whereas the other factors were between these two values. In
the mixed model, the maximum coefficient of hue relative to visual saliency was 1.510,
and the minimum sphericity coefficient was 0.025, with other factors in between.

In summary, the influence coefficient of each model parameter is shown in Figure 6.

Figure 6. Statistical results of model independent variables’ influence coefficients. e1 is “Time to first fixation”, e4 is “Average
visit duration”, e5 is “Visit count” (Left). x1–x10 are different degree of “Hue”, “Saturation”, “Value”, “MBR”, “Aspect
Ratio”, “Rectangularity”, “Area Convexity”, “Perimeter Convexity”, “Sphericity”, and “Form Factor”, respectively (Right).
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4.3. Model Validation Results

We collected eye-tracking data from 40 participants for four types of 3D scenes and
counted and calculated them. The results are shown in Figure 7.

Figure 7. Statistics on the accuracy of model validation in four different scenes. Bars and error bars
represent mean values and standard deviations, respectively. (BILR is building intensive low-rise
area. BIHR is building intensive high-rise area. BSLR is building sparse low-rise area. BSHR is
building sparse high-rise area).

The prediction accuracy of visual attention allocation for different 3D scenes was
different for different models. Among the three models, the top-down model had the
highest average accuracy (DOF = 74.05%, SD = 1.21). The bottom-up and mixed models’
average accuracy was 65.65% (SD = 0.73) and 67.49% (SD = 1.43), respectively. Among
the four different types of 3D scenes, the highest average accuracy was achieved by BIHR
(DOF = 70.31%, SD = 3.56). The mean accuracies of BILR, BSLR, and BSHR were 69.08
(SD = 3.26), 67.66% (SD = 3.39), and 68.54% (SD = 3.44), respectively.

5. Discussion

In this section, we analyze the important factors that affect the visual attention model.

5.1. Important Factor for Visual Saliency Model

In model 1 (Equation (6)), the adjusted goodness of fit for the model was 0.677 and
the model as a whole passed the F-test (significance level p < 0.05), suggesting that visual
salience can be expressed to some extent as a linear combination of “Time to first fixation”,
“Average visit duration”, and “Visits count”. The three eye movement indexes together
explained 67.7% of the visual saliency. The discussion in this section is based on the results
of Equation (6).

The correlation coefficient for “Time to first fixation” was −0.177, which was negatively
correlated with visual salience. It was shown that the later the participant entered the region
for the first time from the appearance of the stimulus material, the weaker the region’s
attraction. “Time to first fixation” represents the time of initiation of cognitive processes
after perception. It is both the time to form the gaze and process the first information, in
addition to the initial perception of the target in the area as a whole. Nevertheless, the
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long “Time to first fixation” may be because of the attraction by the stimulus or a lack
of understanding due to a certain difficulty in processing. The case must be analyzed in
conjunction with other indicators (Average visit duration, Visits count). Thus, “Time to
first fixation” primarily indicates the extent to which the object in the AOI attracts the gaze.

The correlation coefficient for “Average visit duration” was 0.307, and was positively
correlated with visual salience. This indicates that the longer the average time that partic-
ipants spend on each visit to an area of interest, the more attractive that area of interest.
The average visit duration is influenced by the difficulty of information processing and
the complexity of the material. The number of gaze points reflects the number of times
information is processed, with a higher number of gaze points indicating more information
processing, but not necessarily that the stimulus material is more difficult to understand.
This is related to the individual participant’s information processing strategy and should
be considered in conjunction with the total gaze time. Therefore, “Average visit duration”
is indicative of comprehension.

The correlation coefficient for “Visits count” was 0.465, and was positively correlated
with visual salience. This indicates that the more visits a participant makes to an area of
interest, the more attractive that area of interest. The second entry into the same area of
interest was to review and confirm the target in that area of interest. Between the two gaze
behaviours that occurred within the area of interest, participants achieved a transfer to
another area on the map outside the area of interest for comparison and validation, and
returned to gaze at the target after having a short-term memory of what was outside the
area of interest. In this process, memory extraction, comparison, and judgement take place.
First, the stimulus signal enters the visual system and is registered. Then, with attention,
the relevant information is identified and transferred to short-term memory, which is
matched with information extracted from long-term memory. Finally, comparisons and
judgements are made on the basis of professional knowledge. “Visits count”, therefore,
indicates the degree of confirmation.

5.2. Important Factor for Visual Attention Model

The three experiments in Experiment 2 represent the three modes of visual attention:
bottom-up, top-down, and bottom-up and top-down combined. Our results suggest that
visual attention allocation can be characterized by the degree of variation in visual factors
(color, size, and shape). The fit coefficients of the independent variables are different in
each model, and they represent different cognitive meanings.

Bottom-up model (Equation (7)) represents the visual attention model with a bottom-
up mode of action. The adjusted goodness of fit for the model was 0.699, and the model
as a whole passed the F-test (significance level p < 0.05). In this model, the coefficient
of influence was 0.397 for color variability, 0.493 for size variability, and 0.622 for shape
variability. The adjusted goodness of fit for the model was 0.699, and the model as a whole
passed the F-test (significance level p < 0.05). This suggests that when looking at a scene in
a bottom-up mode of action, the greater the difference in the shape from the surrounding
features, the less attractive the difference in size, and the least attractive the color difference.

The top-down model (Equation (8)) represents the visual attention model with a
top-down mode of action. The adjusted goodness of fit for the model was 0.907, and the
model as a whole passed the F-test (significance level p < 0.05). In this model, the coefficient
of influence of color variability is 0.552, the coefficient of influence of size is 0.155, and
the coefficient of influence of shape is 0.546. This suggests that when looking at a scene
in a top-down mode of action, features with greater color differences compared to their
surroundings attract more visual attention of the observer, with shape differences being
the next most attractive, and size differences the least attractive.

The mixed model (Equation (9)) represents a visual attention model with a combi-
nation of bottom-up and top-down modes of action. The adjusted goodness of fit for the
model was 0.720, and the model as a whole passed the F-test (significance level p < 0.05).
In this model, the coefficient of influence for color variance was 0.626, that for size variance
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was 0.538, and that for shape variance was 0.401. This suggests that when looking at a
scene in a top-down and bottom-up mode of action, participants first notice features with
more significant color variance compared to their surroundings and then notice features
with more significant size variance. Shape differences with surrounding features were
least attractive.

In summary, the color variability of features tends to work alone, whereas shape
variability and size variability work together. The degree of visual factor variability
causes differences in the allocation of visual attention, which results in differences in
the eye movement index [59]. Because the brain can only process information when the
human eye is looking, the first fixation time indicates when cognition begins after the
stimulus is connected to sight. The most closely related index is color. It is clear from
cognitive psychology research that, of the most critical design elements—color, image, text,
and composition—color is particularly important [45,46], because color is the first visual
impression of a location that attracts attention [44]. Participants’ gaze at features was also
influenced by size and shape. Because the determination of information in maps is often
similar to the determination of material differences, the eye can quickly focus on important
information, because it spends greater time looking at objects in the area of interest than
at unimportant objects [14]. The degree of contrast in color, size, and shape can directly
impact the prominence of a feature. Physical features, such as the size, color, and spatial
location of the stimulus, have an impact on attention. Strong contrasts in these features
tend to make the stimulus stand out from the background and guide the individual’s
selective processing in a bottom-up manner [44].

During the data processing, we found that semantic information (such as signage
on the road and business signs), and the textural information of the features themselves
appealed, to the participants’ visual attention. However, we did not quantitatively evaluate
the semantic and textural information. There are two main reasons for this. First, we have
not yet found a suitable way to quantify this information. Second, semantic information is
challenging to model with regard to other visual factors (size, color, and shape).

6. Conclusions and Future Research

In this article, the correlation between the eye movement index and visual saliency
was investigated using an eye movement cognitive experiment based on street images,
and a mathematical relationship model based on the relationship between three eye move-
ment indicators (Time to first fixation, Average visit duration, and Visits count). Visual
saliency values were established. On this basis, eye movement experiments were con-
ducted via an experimental desktop environment with a 3D scene map in which multiple
visual factors could be calculated. The effect of each visual factor was analyzed using
regression and statistical methods, and the weight of each factor indicator was obtained.
Then, a multi-factor-based visual attention model was experimentally developed. This
research contributes to the quantitative study of human visual attention when reading 3D
scenes, and exploring the cognitive mechanisms of visual variables in 3D maps, laying the
foundation for fully automated machine mapping.

We identified some limitations that can be improved in future studies. First, in this
study we only statistically tested and analyzed the constructed model, and only some of
the factors were studied. In the future research, more visual information, such as texture
and semantic information can be added. Second, the model is currently only applicable
to a single laboratory environment with a single set of conditions. To determine if it is
universally applicable, experiments should be conducted on eye movement cognition
based on map navigation in an outdoor environment with complex conditions. We will
also compare and analyze the results with the model we developed to further demonstrate
the validity of the results and improve them. Third, the current method of processing
the data is relatively homogeneous. There is an urgent need to explore new methods for
mining eye movement data to extract greater value, such as via the introduction of artificial
neural networks and deep learning, to analyze individuals’ cognitive patterns in greater
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depth. Fourth, experiments comprising a combination of oculomotor, electrocardiograph,
electrodermal, and facial expression and behavioral analysis can be undertaken to com-
prehensively explore individuals’ behavioral characteristics. Fifth, our ultimate goal is
to write visual attention models as computer programs embedded in robots to automate
machine mapping.
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