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Abstract: The relief degree of land surface (RDLS) was often calculated to describe the topographic
features of a region. It is a significant factor in designing urban street networks. However, existing
studies do not clarify how RDLS affects the distribution of urban street networks. We used a Python
package named OSMnx to extract the street networks of different cities in China. The street complexity
metrics information (i.e., street grain, connectedness, circuity, and street network orientation entropy)
were obtained and analyzed statistically. The results indicate that street network exhibits more
complexity in regions with high RDLS. Further analysis of the correlation between RDLS and street
network complexity metrics indicates that RDLS presents the highest correlation with street network
circuity; that is, when RDLS is higher, the routes of an urban street network is more tortuous, and the
additional travel costs for urban residents is higher. This study enriches and expands research on
street networks in China, providing a reference value for urban street network planning.

Keywords: street network complexity; OSMnx; street orientations; China’s topography

1. Introduction

Urban planning defines the development and construction of a city. On the basis
of the principles of sustainable development, it investigates the future development of a
city and rationalizes its layout [1,2]. As one of the largest urban public spaces, an urban
street network is the skeleton of the urban surface, presenting social and humanitarian
connotations and becoming the focus in urban planning. It plays an important role in the
physical/material and informational exchange of a city with its function of connecting one
area to another [3].

As cities enter the period of spatial expansion into structural optimization, the scale of
the street network gradually expands [4–6], and the rational planning of street structures
becomes increasingly significant. Topographic information provides valuable support to
various urban activities, such as urban waterlogging monitoring and urban expansion
planning. Viero et al. pointed out that urban waterlogging was influenced by the natural
environment, including precipitation and topography, so understanding urban topogra-
phy is beneficial for monitoring urban waterlogging [7]. Yang et al. planned the road
construction in the Jianye District of Nanjing by using topographic information, which
effectively expressed the spatial geometry and semantic features of urban roads [8]. The
close relationship between topographic information and streets may be valuable in the
planning of urban streets [9], because of the combination of natural factors and human
activities resulting in flat topography interspersed with undulating topography [10]. Many
studies have demonstrated that topography has become a non-negligible factor in street
network planning. For example, Osama et al. identified street network connectivity and
topography as factors affecting pedestrian safety and found that higher continuity, linearity,
coverage, and slope of the street network were associated with lower crash incidence,
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which was useful for street network planning [11]. Daniels et al. illustrated how the natural
environment (including topography) influenced network planning principles through
an analysis of the Sydney, Australia, case [12]. Szajowski et al. proposed a quantitative
approach to measure the importance of roads based on topography and traffic intensity,
which could be a guide for road builders planning road infrastructure [13].

Regional topographic features are typically identified by using the relief degree of land
surface (RDLS) as a key indicator to characterize topographic relief in a certain area [14].
RDLS is frequently used as one of the indicators of habitat suitability evaluation [15] and
ecological environment evaluation [16]. It is also widely used in the fields of geological
disaster evaluation [17], soil erosion sensitivity evaluation [18], and population distribu-
tion and economic development [19]. An urban street network is the basic skeleton of
urban spatial form that expresses evident complexity in many aspects, including topology
structure [20]. At present, it is mostly described as a topological diagram. Thereafter, math-
ematical models are built and metrics are calculated for urban street networks, including
the alpha index, the beta index, and the gamma index [21]. These metrics provide a good
description of the structural characteristics of an urban street network. Most studies on
urban street network complexity have selected a single city or a smaller scale of an area as
objects of study. However, a small spatial scale usually reflects only the partial/individual
characteristics of an area but not its overall/common characteristics embedded into the
transportation network at a larger scale. Moreover, existing studies are typically limited
to applying complex network theory [22], fractal theory [23], and space syntax [24] when
measuring urban street network complexity.

Boeing proposed a street network complexity analysis method based on OSMnx, a
Python package developed by his team [25]. This approach used a unified OpenStreetMap
data source and optimized network topology. Street networks are complex research ob-
jects; hence, the introduction of OSMnx solves the following problems, which existed in
previous studies on street networks: (1) network oversimplification and the inconsistency
of simplified models exert fundamental effects on the research results [26], and (2) the
lack of free downloadable and easy-to-handle tools [27]. OSMnx enables the measurement
of urban street network complexity through street grain, connectedness, street network
orientation entropy, and circuity. In recent years, some studies on urban street networks
have been conducted by using OSMnx. Yen et al. used circuity as one of the metrics to
analyze three street network patterns, namely, walkable, bikeable, and drivable, in Phnom
Penh, Cambodia [28]. Their results suggested that urban central areas are more favorable
for walking and biking than peripheral districts. Boeing used OSMnx as a data-access tool
and the street network of 100 cities as the study subject. He included street orientation
entropy as a metric for quantifying street network analysis and found that US cities tended
to be more grid-oriented than other cities [29]. Moreover, the large sample of an urban
street network can be collected by using OSMnx, considerably facilitating the study of
urban street networks. Zhao et al. compared the network characteristics of the 26 pilot
cities of the ASEAN Smart City Network by downloading the drivable and walkable road
networks, using OSMnx with various network metrics [30]. Boeing used OSMnx and
OpenStreetMap to analyze a street network with 27,000 urban street networks in the US
and shared the large-scale data he collected in a public database [31]. Zhou et al. obtained
a large sample of street network patterns by using OSMnx and found that similar street
network patterns exhibit a clustered form in spatial distribution [32].

The influence of topography on a street network is one of the most important indicators
of transportation costs and vehicle driving performance [33,34]. Nevertheless, existing
studies have not yet explored in detail how topography affects the distribution of street
networks. In our study, we used OSMnx to extract the city street networks of China and
quantitatively analyze the closeness of the relationship between topography and street
networks by the Pearson correlation coefficient. This study enriches and complements
current research on the complexity of Chinese street networks in the theoretical and applied
aspects. It contributes to the understanding of the layout and development of street network
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patterns and their associated urban forms in China, and may also play a greater role in
future urban planning.

2. Study Area and Data
2.1. Overview of Study Area

In this study, China was chosen as the study area for the following reasons. First of all,
Chinese territory is vast and shows great diversity in physical geography. For instance, the
topography of China is high in the west and low in the east, and is complex and diverse,
forming three levels of steps from west to east: The western part of the country has the
highest terrain, the Qinghai-Tibet Plateau, known as the “Roof of the World”, which is
the first step, and is bounded by the Kunlun Mountains, Qilian Mountains, Hengduan
Mountains and the second step; the Qinghai-Tibet Plateau east to the Daxinganling Moun-
tains, Taihang Mountains, Wushan Mountains and Xuefeng Mountains is the second step,
generally at an altitude of 1000–2000 m, mainly composed of mountains, plateaus and basins;
the wide plains and hills of eastern China are the third step. Secondly, the street system has
developed significantly with the growth of cities since the implementation of China’s reform
and open policy [35], but few studies have described the street network patterns of Chinese
cities as a whole. Thirdly, with over 300 prefectures in China, it greatly helps us to explore
whether the pattern of China’s street network is limited by the topography at a macro level.

2.2. Data

The digital elevation model (DEM) data used in our study were obtained from the
Geospatial Data Cloud Platform (http://www.gscloud.cn (accessed on 5 March 2021)),
with an accuracy of 30 m.

Administrative boundary and road network data were downloaded, using OSMnx
and collected across 34 provincial administrative units nationwide. Administrative units
at the prefecture level were used as the primary statistical measure. With reference to the
administrative divisions of the People’s Republic of China, the data used in our study
included 4 municipalities, 2 special administrative regions, 293 prefecture-level cities, 30 au-
tonomous prefectures, 7 districts, 3 leagues, and 30 administrative units (non-administered)
at the county level under the administration of provinces (autonomous regions), along with 6
“Yuan-administered cities” and 3 cities and 13 counties in Taiwan, for a total of 391 data items.

3. Methodology
3.1. RDLS

RDLS is the degree of topographic relief above sea level for the average elevation in a
given region [36]. It can be calculated by using Equation (1).

RDLS = ALT
1000 + (Max(H)− Min(H)) ∗

(
1 − P(A)

A

)
/500, (1)

where RDLS is the relief degree of land surface of a region, ALT is the average altitude
within the region, Max(H) is the maximum altitude within the region, Min(H) is the
minimum altitude within the region, P(A) is the flat area of the region, and A is the total
area of the region.

3.2. Street Network Complexity Metrics
3.2.1. Grain and Connectedness

Through OSMnx, users can analyze complex street networks and calculate the sta-
tistical information and spatial measure of networks. The number of nodes, intersection
count, number of edges, number of street segments, average node degree, average streets
per node, counts of streets per node, proportions of streets per node, total edge length,
average edge length, total street length, average street length, and self-loop proportion of
street networks can be obtained. Among these parameters, the number of nodes, number of
edges, intersection count, number of street segments, total edge length, and total street length

http://www.gscloud.cn
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measure the basic statistical information about the scale of an urban street network in general.
Other metrics reflect the levels of “grain” and “connectedness” of a city street network.

Grain refers to the size of the basic unit of study area. The grid is the basic unit in a
street network. The average length of the edges of a street network or the average street
length reflects the grain of a street network. In our study, the average length of streets in an
undirected graph was selected as the metric for measuring grain.

Connectedness indicates the degree of interconnection between basic units. In street
networks, nodes are connected by streets, and streets intersect with streets to form new
nodes (i.e., intersections). Figure 1 shows the basic network metrics. In this case, A, B, C, D,
E, F, and G are nodes, where A, B, C, E, and F are intersection nodes, while D and G are
dead ends. Moreover, a, b, c, d, e, f, g, h, and i are edges, and i is a self-looping edge. Given
that two edges pass through it, node A is a two-way intersection. Similarly, nodes B and F
are three-way intersections, and nodes C and E are four-way intersections. The proportion
of node types (e.g., dead ends, three-way intersections, or four-way intersections) indicates
the proportion of nodes in a street network with branches 1, 2, 3, 4, . . . , and n. The self-
loop proportion refers to the proportion of edges with a single incident node. The metric
“average streets per node” indicates the average number of edges passing through a node.
It is frequently used to measure connectedness. In our study, the “average streets per node”
in an undirected graph was selected as the metric for measuring the connectedness of a
street network.

Figure 1. Illustration of basic network metrics. (A)–(G) are nodes, where (A)–(C), (E), and (F)
are intersection nodes, while (D) and (G) are dead ends. Moreover, (a)–(i) are edges, and (i) is a
self-looping edge.

3.2.2. Circuity

Circuity refers to the degree of tortuous path. It is commonly used to measure the
additional cost of travel to urban residents due to distance factors. In our study, 50,000 pairs
of nodes with starting and ending points were simulated as random routes for each city
and network type.

The circuity of each route was calculated by using Equation (2).

C =
Dnet

Dgc
, (2)

where C represents circuity, Dnet represents the distance of the shortest path between the
starting and ending points of a route, and Dgc represents the great circle distance between
these nodes. Therefore, C is the ratio of the network distance of the shortest path from the
start to the end of each route to the great circle distance. Average circuity was selected as a
metric for measuring the tortuous degree of a street network in our study.
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3.2.3. Street Network Orientation Entropy

Information entropy has been used in street network research: the orientation property
of a street is considered the target, and street network orientation entropy is used to measure
the nature of spatial order/disorder in the orientations of street networks [29].

The simplified street network orientation entropy (without considering length weight-
ing) was calculated by using Equation (3).

Ho = −
n
∑

i=1
P(oi) ln P(oi), (3)

where n represents the number of bins, and each bin represents a certain range around the
orientation of a street. i represents the index value of a bin, oi represents the frequency
of a street falling into the ith bin, and P(oi) represents the proportion (probability) of a
street falling into the ith bin. Street network orientation entropy H, which is measured in a
dimensionless unit called “nats” or the natural unit of an information bit (1 nat ≈ 1.44 bits).

A total of 36 bins with the same size were divided for street frequency statistics, with
each bin having a range of 10◦. Each bin was shifted by −5◦ to ensure that the values are
distributed in the center of the bin [29]. The orientation angles of each street segment were
calculated and counted in the corresponding bin. The histogram and rose illustration were
obtained, using OSMnx, on the basis of the frequency of street segments in the bin. The
entropy of the street orientations was calculated by using Equation (3). For example, a street
network in Beijing (Figure 2A) was used to calculate the street orientation histogram and
rose illustration, as shown in Figure 2B,C, respectively. From Equation (3), the highest value
of the street network orientation entropy is equal to the logarithm of the number of bins n.
At this moment, P(o1) = P(o2) = · · · = P(on); that is, the entropy of the street orientations
is distributed perfectly in all the bins. If the number of bins is 36, then the highest entropy
of the street orientation Hmax will be 3.584 nats. When all the street orientations are located
in the same bin, the entropy of the street orientation will have the lowest value of 0. The
entropy of the street orientation HG is 1.386 nats when all the streets are distributed in equal
proportions in the bins in the east–south–west–north directions of the rose illustration.ISPRS Int. J. Geo-Inf. 2022, 11, 0 3 of 3
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Figure 2. (A) Street network in Beijing. (B) Street orientation histogram of Beijing, where the
horizontal coordinates indicate the orientation angles and the vertical coordinates indicate the
frequency of a street falling into the corresponding bin. (C) Street orientation rose illustration of
Beijing, where the outer side of the circle represents the street orientation, and the inner data are the
same as the vertical coordinate in (B).



ISPRS Int. J. Geo-Inf. 2021, 10, 705 6 of 20

4. Results
4.1. Spatial Distribution Characteristics of RDLS

Equation (1) was used to calculate RDLS at the municipal levels, which ranged from
0 to 17.7. The result presented evident regional differences and a clear stair-stepping
characteristic in the east–west direction. Such finding is basically consistent with the three
steps of China’s terrain (Figure 3).

Figure 3. Spatial-distribution map based on RDLS; the black dotted line represents the dividing line
of the three terrain steps (I, II, and III).

4.2. Graduation Statistics of RDLS

In our study, the basic network metrics were calculated by using the aforementioned
method. The metrics included grain (LS), average circuity (C) and connectedness (the
average streets per node (DS), proportion of dead ends (PDE), proportion of three-way
intersections (P3W), and proportion of four-way intersections (P4W)). The street orientation
histogram and rose illustration were generated by calculating the angle of street orientation.
The street network orientation entropy (Ho) for each municipal street network in the
country was calculated by using Equation (3). Finally, ALT and RDLS were obtained by
using Equation (1). Table 1 provides the partial results of each metric for prefecture-level
cities in China. The details of the results for all the cities can be found in the Appendix A.

China, in topography, forms a three-step “staircase” according to altitude. As shown
in Figure 4, the dotted lines are the dividing lines of the three steps on the surface. All
cities are divided into three categories based on the dotted lines. The street network of
cities with a high street density is frequently located in the city’s administrative center [37].
Therefore, some cities that cross the dotted line are classified according to the location
of their administrative center. The classification results are presented in Figure 4, with
20 cities in the first step, 127 cities in the second step, and 244 cities in the third step.
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Table 1. Calculation results of each index for prefecture-level cities.

Ho LS C DS PDE P3W P4W ALT RDLS

Beijing 3.26 329 1.09 2.97 0.14 0.61 0.23 355 3.4
Tianjin 3.49 371 1.05 3 0.16 0.52 0.31 19 0.25

Shijiazhuang 2.75 328 1.06 2.93 0.17 0.56 0.27 270 2.56
Cangzhou 3.1 320 1.04 2.87 0.16 0.64 0.2 10 0.1
Hengshui 2.98 370 1.04 2.86 0.16 0.67 0.17 22 0.16
Handan 2.86 396 1.04 2.88 0.16 0.65 0.19 239 1.73
Xingtai 2.82 367 1.05 2.93 0.15 0.61 0.23 168 1.47
Baoding 3.02 543 1.07 2.92 0.15 0.61 0.23 341 2.59
Chengde 3.57 1027 1.15 2.5 0.28 0.64 0.07 936 4.72
Tangshan 3.31 636 1.06 2.8 0.21 0.56 0.22 57 0.46

Qinhuangdao 3.47 627 1.1 2.85 0.18 0.6 0.21 214 2.03
Langfang 3.12 459 1.04 2.9 0.19 0.54 0.27 11 0.41
Shenyang 3.52 576 1.06 3.1 0.11 0.58 0.29 56 0.54

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4. Distribution map based on the three steps of China’s terrain.

Table 2 shows the mean, maximum, minimum, and variance of street complexity-
related metrics that correspond to the three steps. The mean and variance of topography,
orientation entropy, grain, average circuity, and connectedness metrics were standardized
by using the Z-score method. The performance of each metric in different steps was
compared, as shown in Figure 5.
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Table 2. Graduation statistics results based on RDLS.

Evaluation Factor Measure Statistical Content First Step Second Step Third Step

topography

average altitude
(m)

mean 3925.050 1252.709 227.319
maximum 5038.000 3125.000 1389.000
minimum 2747.000 180.000 9.000
variance 518,533.418 364,182.764 53,705.552

RDLS

mean 12.091 5.125 1.890
maximum 21.270 14.560 8.390
minimum 7.720 0.370 0.020
variance 14.238 8.219 2.625

orientation entropy
street network

orientation entropy
(nat)

mean 3.540 3.454 3.432
maximum 3.580 3.580 3.580
minimum 3.420 2.480 2.750
variance 0.002 0.034 0.034

grain
average street

length (m)

mean 2194.400 935.425 673.882
maximum 6882.000 2057.000 1839.000
minimum 552.000 307.000 93.000
variance 2,110,879.200 121,476.246 99,816.433

average circuity average circuity

mean 1.265 1.187 1.108
maximum 1.480 1.650 1.380
minimum 1.110 1.000 1.030
variance 0.012 0.016 0.004

connectedness
average streets per

node

mean 2.503 2.738 2.854
maximum 2.740 3.170 3.260
minimum 2.120 2.250 2.360
variance 0.022 0.027 0.026

Figure 5. Comparison of index dispersions for the three steps of China’s terrain by using the standardized value. (A) Mean
value. (B) Variance value. Note: ALT means average altitude, RDLS means relief degree of land surface, Ho means street
network orientation entropy, Ls means average street length, C means average circuity, and Ds means average streets
per node.

As shown in Figure 5, on average, the city street network in the first step exhibits the
greatest RDLS, street orientation entropy, grain, and average circuity, but the lowest node
connectivity. The city street network in the third step presents the smallest RDLS, street
orientation entropy, grain, and path average circuity, but the highest node connectivity. For
all the metrics, street network complexity exhibits the following order: first step > second
step > third step. A clear correlation is also observed between street network complexity
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and RDLS. When evaluated in terms of grain, connectedness, circuity, and orientation
entropy, the more topographic relief in a region, the higher its street network complexity.

With regard to variance, the average elevation, RDLS, and average street length of the
city street network in the first step exhibit the largest dispersion, followed by that in the
second step and then that in the third step. Street network orientation entropy presents the
opposite degree of dispersion in the three major orders of cities, with the first step being
the smallest, followed by the second step, and the third step being the largest. The urban
street network in the second step has the largest dispersion in terms of circuity and average
streets per node. The dispersion degree of circuity in the second step achieves the highest
value, followed by that in the first step and then that in the third step. The dispersion
degree of average streets per node in the three steps is ordered as follows: second step >
third step > first step.

4.3. Correlation Analysis of RDLS and Street Network Complexity

Correlation analysis is a statistical analysis method for investigating the degree of cor-
relation between two random variables in equal positions. The closeness of the relationship
between two random variables (i.e., correlation) is frequently expressed by the correlation
factor r. In our study, the Pearson correlation coefficient was selected for correlating RDLS
with street network complexity. This coefficient is calculated by using Equation (4) [38].

r =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi − Y

)2
, (4)

where Xi and Yi (i = 1, 2, 3, . . . , n) represent the sample values of the random variables
X and Y, respectively; and X and Y represent the sample means of the random variables
X and Y, respectively.

The correlation factor has values between −1 and 1. A correlation factor of 1 indicates
that the two random variables are completely linearly and positively correlated. A correla-
tion factor of −1 indicates that the two variables are completely negatively correlated. A
correlation factor of 0 indicates that the two variables are completely uncorrelated. The
closer the correlation factor is to 1 (or −1), the stronger the correlation between two random
variables (positive or negative correlation). Conversely, the closer the correlation factor is
to 0, the weaker the correlation between two random variables.

The total proportion of intersections with two-ways and more ways that four-ways
was less than 1%, and, thus, was not considered in this study. Only the proportions of dead
ends, three-way intersections, and four-way intersections were selected for analysis and
research. The correlation factor between street network complexity-related metrics and
RDLS was calculated separately, using Equation (4). To verify the authenticity of the linear
relationship between variables, we also conducted hypothesis testing on the correlation
factor by using SPSS software, as shown in Table 3.

As shown in Table 3, Ho means street network orientation entropy (nat), LS means
average street length (m), C means average circuity, DS means average streets per node,
PDE means proportion of dead ends, P3W means proportion of three-way intersections, P4W
means proportion of four-way intersections, and RDLS means relief degree of land surface.

From the results of the hypothesis testing, we see that a majority of the variables are
linearly correlated with one another and significantly correlated at the 0.01 level. Only LS
and RDLS are not significantly correlated with P3W . As indicated in Table 3, the following
conclusions can be drawn for RDLS.

(1) RDLS exhibits the strongest correlation with street network circuity, with a correlation
coefficient of 0.612. This result illustrates that, when RDLS is greater, the urban street
network is more circuitous, and the additional travel costs for urban citizens are
higher.

(2) The correlation between RDLS and average street length is 0.493, indicating that, the
flatter the topography, the shorter the average street network length. The average
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street length is largely determined by the proportions of dead ends, three-way inter-
sections, and four-way intersections. The correlation between RDLS and dead-end
proportion is 0.444, demonstrating that more dead-end nodes exist in places with
greater topographic relief. This finding is probably caused by topographic relief
affecting the extension and construction of roads and leading to dead-end nodes.
Three-way intersection proportion exhibits an insignificant correlation with RDLS.
By contrast, four-way-intersection proportion demonstrates a larger and negative
correlation with RDLS (−0.499). Increasing one branch from three-way intersection to
four-way intersection enhances the effect of topography; that is, regions with large
RDLS are unsuitable for the construction of four-way intersections.

(3) The correlation between RDLS and street network orientation entropy is 0.331, ex-
hibiting a certain correlation. That is, when RDLS is greater, the street network is
more predisposed to being distributed in different directions.

Table 3. Calculation results of the correlation coefficient and hypothesis testing.

Ho LS C DS PDE P3W P4W RDLS

Ho correlation factor 1
sig

LS correlation factor 0.233 1
sig 0.000

C correlation factor 0.490 0.461 1
sig 0.000 0.000

DS correlation factor −0.481 −0.504 −0.673 1
sig 0.000 0.000 0.000

PDE correlation factor 0.363 0.491 0.504 −0.810 1
sig 0.000 0.000 0.000 0.000

P3W correlation factor 0.295 0.053 0.220 −0.156 0.187 1
sig 0.000 0.297 0.000 0.002 0.000

P4W correlation factor −0.527 −0.420 −0.660 0.865 −0.622 −0.424 1
sig 0.000 0.000 0.000 0.000 0.000 0.000

RDLS correlation factor 0.331 0.493 0.612 −0.549 0.444 −0.012 −0.499 1
sig 0.000 0.000 0.000 0.000 0.000 0.820 0.000

Note: Units with gray background indicate insignificant results.

5. Discussion

A quantitative approach was used in this study to capture the pattern of street net-
works for a whole country. Specifically, the relationship between street network and
topographic relief was analyzed quantitatively. The street network is considered to be
the skeleton of the country and can reflect the physical structure [39]. We used OSMnx to
extract street data of different cities from OpenStreetMap. In fact, the accuracy of Open-
StreetMap data is different in different cities. Larger cities usually have higher accuracy
than smaller, lesser-known cities. We recommend that the accuracy of the street network
data be consistent for each city in future studies.

In addition, RDLS is an important element in the description of landforms at the
macroscopic scale [36]. We used a DEM with a resolution of 30 m in calculating RDLS.
We believe that, the higher the DEM resolution, the more accurate the RDLS calculation
results will be. The high-resolution DEM data are expected to improve the research results.
Topography was shaped by the movement of the earth’s crust, and, as described in existing
studies, complex topography (such as mountains or basins) can impose constraints on
the orientation of streets and their associated networks [40,41]. Topography has a strong
influence on the evolving direction of the urban street network [42], while fast-growing
cities lead to problems, such as efficacy of land use [43] and sustainable development [44].
Analyzing the relationship between the street network and RDLS specifically may facilitate
a better understanding of the layout and development of street network patterns and their
associated urban forms in China. On this basis, urban designers can plan the street layout
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according to the local topographic features in the fast-growing cities, not only in China, but
also South America and Asia.

Previous studies on urban street networks are mostly limited to small-scale areas
because of the lack of tools for obtaining standardized data sources (i.e., inconvenience of
data acquisition), and thus, they cannot reflect the overall characteristics of street networks
at large scales. On the basis of the spatial distribution characteristics of topographic relief at
the municipal level in China, we used OSMnx-based metrics of street network complexity
(i.e., grain, connectedness, circuity, and street network orientation entropy) to calculate
complexity metrics for each prefecture-level city. The type of road (one-way road, two-way
road, etc.), the class of street (major street, minor street, etc.), etc., were not covered; thus,
they can be added to relevant studies in the future.

6. Conclusions

The contributions of this study can be reflected in three aspects:

(1) On the basis of the spatial distribution characteristics of topographic relief at the
municipal level in China, we determined that the spatial distribution of topographic
relief was non-uniform, and the east–west direction exhibited a pattern of “high in
the west and low in the east”. This finding is generally consistent with the three steps
of China’s terrain. It is also similar to the results obtained by Feng et al. [36,45].

(2) The dividing lines of the three terrain steps were used as the boundary for classifying
the metrics of municipal street networks in China. The street network complexity
presented the following order: first step > second step > third step. This result
indicated that, the more undulating the topography, the higher the complexity of a
street network.

(3) RDLS was significantly correlated with street network complexity metrics, including
street network orientation entropy, average street length, average circuity, average
streets per node, dead-end proportion, and four-way intersection proportion. Among
these metrics, RDLS was positively correlated with street network orientation entropy,
average street length, average circuity, and the dead-end proportion. Meanwhile, it
was negatively correlated with average streets per node and the four-way intersection
proportion.

This study extended the research on the correlation between topographic relief and
street network to a certain extent, while complementing the research methods and results
on the complexity of urban street networks in China. A higher-resolution DEM and higher-
accuracy street network data will help improve the research results in future studies.
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Appendix A

Table A1. Calculation results of each index for prefecture-level cities.

Ho LS C DS PDE P3W P4W ALT RDLS

Beijing 3.26 329 1.09 2.97 0.14 0.61 0.23 355 3.4
Tianjin 3.49 371 1.05 3 0.16 0.52 0.31 19 0.25

Shijiazhuang 2.75 328 1.06 2.93 0.17 0.56 0.27 270 2.56
Cangzhou 3.1 320 1.04 2.87 0.16 0.64 0.2 10 0.1
Hengshui 2.98 370 1.04 2.86 0.16 0.67 0.17 22 0.16
Handan 2.86 396 1.04 2.88 0.16 0.65 0.19 239 1.73
Xingtai 2.82 367 1.05 2.93 0.15 0.61 0.23 168 1.47
Baoding 3.02 543 1.07 2.92 0.15 0.61 0.23 341 2.59

Zhangjiakou 3.46 767 1.11 2.74 0.21 0.62 0.16 1254 4.34
Chengde 3.57 1027 1.15 2.5 0.28 0.64 0.07 936 4.72
Tangshan 3.31 636 1.06 2.8 0.21 0.56 0.22 57 0.46

Qinhuangdao 3.47 627 1.1 2.85 0.18 0.6 0.21 214 2.03
Langfang 3.12 459 1.04 2.9 0.19 0.54 0.27 11 0.41
Shenyang 3.52 576 1.06 3.1 0.11 0.58 0.29 56 0.54
Huludao 3.55 908 1.12 2.94 0.16 0.58 0.25 235 1.82

Chaoyang 3.56 1839 1.11 2.92 0.16 0.60 0.23 462 2.09
Fuxin 3.52 1418 1.10 2.91 0.15 0.63 0.21 200 0.98

Jinzhou 3.36 1195 1.09 2.98 0.14 0.58 0.26 81 0.87
Panjin 3.41 983 1.06 3.16 0.12 0.48 0.38 9 0.02

Fushun 3.46 1117 1.15 2.86 0.16 0.66 0.17 409 2.85
Yingkou 3.42 879 1.08 3.03 0.15 0.51 0.33 167 1.33
Dalian 3.55 602 1.11 2.95 0.14 0.64 0.21 79 0.97

Dandong 3.56 1353 1.19 2.78 0.20 0.63 0.17 255 2.14
Benxi 3.56 1063 1.23 2.97 0.13 0.64 0.22 469 2.72

Liaoyang 3.48 892 1.10 2.87 0.19 0.57 0.24 154 1.44
Anshan 3.46 1043 1.11 2.97 0.16 0.56 0.28 166 1.30
Tieling 3.55 984 1.10 2.73 0.22 0.60 0.17 182 1.17

Changchun 3.49 465 1.06 2.99 0.15 0.56 0.28 197 0.75
Jilin 3.49 322 1.09 2.46 0.33 0.55 0.12 383 2.12

Baishan 3.56 1369 1.27 2.68 0.24 0.59 0.16 831 4.21
Yanbian 3.53 621 1.16 2.74 0.23 0.58 0.19 658 4.56
Tonghua 3.56 1106 1.15 2.69 0.23 0.60 0.16 527 2.84
Liaoyuan 3.55 1140 1.10 2.79 0.20 0.61 0.18 364 1.20

Siping 3.48 679 1.06 2.61 0.27 0.56 0.16 192 0.72
Songyuan 3.47 1104 1.06 2.82 0.18 0.65 0.17 153 0.38
Baicheng 3.37 698 1.06 2.74 0.22 0.61 0.17 155 0.54
Harbin 3.50 607 1.10 2.84 0.20 0.56 0.23 241 2.05

Mudanjiang 3.53 454 1.15 2.75 0.24 0.55 0.22 528 2.75
Jixi 3.54 382 1.10 2.68 0.25 0.58 0.17 166 0.97

Qitaihe 3.51 496 1.08 3.02 0.13 0.60 0.25 270 1.17
Shuangyashan 3.38 648 1.09 2.84 0.20 0.57 0.23 149 1.02

Jiamusi 3.14 349 1.08 2.80 0.20 0.60 0.20 95 0.73
Suihua 3.36 863 1.07 2.76 0.21 0.61 0.18 196 0.78
Yichun 3.53 930 1.13 2.73 0.24 0.55 0.21 404 2.15
Hegang 3.35 912 1.08 2.88 0.18 0.57 0.25 200 1.24
Daqing 3.48 859 1.06 2.99 0.14 0.58 0.27 132 0.25
Qiqihar 3.42 781 1.07 2.83 0.20 0.58 0.22 198 0.65

Daxinganling 3.32 1420 1.18 2.87 0.20 0.53 0.27 571 6.20
Heihe 3.39 764 1.11 2.80 0.22 0.55 0.23 364 0.96

Huhhot 3.30 577 1.08 2.82 0.20 0.59 0.21 1369 3.11
Baotou 3.31 418 1.06 2.78 0.21 0.60 0.19 1396 2.68

Bayannur 3.40 906 1.07 2.75 0.21 0.63 0.16 1275 2.57
Eerduosi 3.53 887 1.06 3.12 0.13 0.48 0.38 1296 1.94

Wuhai 3.18 591 1.07 3.06 0.13 0.51 0.34 1319 2.82
Alxa 3.09 1190 1.07 2.74 0.21 0.62 0.17 1263 3.83
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Table A1. Cont.

Ho LS C DS PDE P3W P4W ALT RDLS

Ulanqab 3.43 676 1.08 2.79 0.19 0.63 0.18 1406 2.87
Xilingol 3.44 1704 1.09 2.79 0.22 0.55 0.23 1104 1.96
Chifeng 3.51 665 1.10 2.79 0.20 0.64 0.16 868 2.75
Tongliao 3.23 604 1.07 2.84 0.19 0.58 0.22 334 1.25
Hinggan 3.51 1030 1.09 2.76 0.23 0.54 0.22 589 2.59

Hulunbuir 3.49 1130 1.12 2.79 0.21 0.58 0.21 697 2.34
Taiyuan 3.32 434 1.11 3.01 0.13 0.60 0.26 1262 4.44
Lvliang 3.46 813 1.14 2.67 0.25 0.60 0.15 1225 5.16

Jinzhong 3.44 666 1.11 2.75 0.22 0.61 0.17 1176 4.42
Yangquan 3.53 781 1.13 2.65 0.25 0.59 0.15 1033 3.75
Xinzhou 3.52 839 1.14 2.61 0.26 0.61 0.13 1399 5.42

Shuozhou 3.31 735 1.08 2.78 0.21 0.58 0.20 1350 3.16
Datong 3.37 721 1.10 2.76 0.22 0.58 0.19 1302 3.62
Linfen 3.52 993 1.17 2.64 0.25 0.59 0.15 992 4.56

Changzhi 3.45 619 1.11 2.75 0.23 0.55 0.21 1161 4.43
Jincheng 3.51 737 1.17 2.75 0.22 0.59 0.18 987 4.51

Yuncheng 3.46 864 1.12 2.78 0.22 0.55 0.22 609 3.10
Zhengzhou 3.12 387 1.05 3.14 0.12 0.49 0.38 236 1.67

Kaifeng 3.02 458 1.04 2.91 0.17 0.59 0.24 69 0.14
Shangqiu 3.13 984 1.03 3.00 0.17 0.48 0.33 48 0.19

Sanmenxia 3.51 1033 1.18 2.92 0.18 0.52 0.28 881 3.73
Luoyang 3.43 637 1.12 2.97 0.15 0.57 0.26 649 3.78

Jiyuan 2.84 579 1.11 3.17 0.12 0.47 0.40 415 2.90
Jiaozuo 3.02 307 1.04 2.90 0.19 0.53 0.28 180 1.52

Xinxiang 3.11 308 1.04 2.89 0.18 0.56 0.26 155 1.50
Hebi 2.95 248 1.05 2.88 0.20 0.51 0.28 154 1.17

Anyang 3.01 342 1.06 2.86 0.17 0.62 0.20 218 1.67
Puyang 3.00 387 1.03 2.93 0.15 0.61 0.23 50 0.13

Pingdingshan 3.30 639 1.07 3.01 0.13 0.61 0.25 253 2.71
Xuchang 3.12 798 1.05 3.04 0.16 0.48 0.35 129 1.01

Luohe 2.94 660 1.04 3.06 0.15 0.49 0.35 63 0.12
Zhoukou 3.05 938 1.04 2.91 0.19 0.50 0.29 47 0.23

Zhumadian 3.07 1132 1.05 2.94 0.17 0.54 0.28 93 0.91
Xinyang 3.38 935 1.06 2.81 0.20 0.57 0.22 118 1.53
Nanyang 3.43 1150 1.09 2.95 0.18 0.52 0.29 307 2.95

Jinan 3.28 449 1.09 3.04 0.13 0.56 0.29 162 1.19
Liaocheng 2.98 620 1.03 3.08 0.15 0.47 0.37 37 0.23

Dezhou 3.09 739 1.04 3.13 0.14 0.44 0.41 21 0.18
Binzhou 2.98 582 1.03 3.13 0.16 0.38 0.46 16 0.24

Dongying 2.96 719 1.03 3.20 0.12 0.43 0.43 11 0.21
Zibo 3.05 643 1.06 3.13 0.13 0.46 0.39 218 1.63

Weifang 2.85 454 1.04 3.12 0.15 0.44 0.41 108 0.98
Yantai 3.30 664 1.06 3.06 0.15 0.49 0.35 105 0.86
Weihai 3.35 501 1.06 3.05 0.14 0.51 0.33 62 0.84

Qingdao 3.20 298 1.04 2.96 0.18 0.50 0.31 53 0.82
Rizhao 3.24 636 1.06 3.13 0.14 0.46 0.38 137 0.84
Linyi 3.14 455 1.05 2.94 0.18 0.53 0.27 155 1.38
Taian 3.31 601 1.07 2.91 0.18 0.55 0.27 158 1.57
Jining 3.00 621 1.04 3.13 0.14 0.44 0.41 63 0.60

Zaozhuang 3.02 376 1.05 3.02 0.15 0.54 0.30 94 0.73
Heze 2.98 782 1.04 3.01 0.15 0.54 0.31 52 0.20

Nanjing 3.55 408 1.07 3.06 0.13 0.55 0.30 27 0.53
Zhenjiang 3.48 419 1.05 2.96 0.16 0.57 0.26 29 0.40

Changzhou 3.37 381 1.05 3.10 0.12 0.53 0.33 21 0.28
Wuxi 3.47 311 1.05 3.08 0.13 0.52 0.33 21 0.16

Suzhou 3.46 398 1.06 3.11 0.12 0.53 0.34 11 0.06
Nantong 3.40 465 1.04 3.01 0.17 0.49 0.33 9 0.02
Taizhou 3.41 385 1.05 2.74 0.24 0.53 0.22 10 0.02
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Table A1. Cont.

Ho LS C DS PDE P3W P4W ALT RDLS

Yangzhou 3.33 434 1.04 2.70 0.26 0.53 0.21 9 0.13
Suqian 3.21 707 1.04 3.01 0.17 0.47 0.35 10 0.15
Huaian 3.35 723 1.04 3.00 0.17 0.49 0.33 12 0.24

Yancheng 3.44 710 1.04 2.92 0.20 0.46 0.33 9 0.02
Lianyungang 3.37 616 1.05 3.00 0.18 0.48 0.33 20 0.25

Xuzhou 3.28 725 1.04 3.00 0.16 0.52 0.31 29 0.41
Hefei 3.44 446 1.06 3.09 0.14 0.50 0.35 37 0.55

Huainan 3.42 599 1.06 2.75 0.23 0.56 0.21 23 0.16
Luan 3.47 786 1.11 2.95 0.17 0.52 0.30 212 2.20

Fuyang 3.25 551 1.05 2.93 0.17 0.57 0.25 33 0.22
Bozhou 3.03 785 1.04 3.01 0.15 0.54 0.31 28 0.14
Huaibei 3.03 605 1.04 2.95 0.20 0.45 0.34 24 0.28
Suzhou 3.13 819 1.04 3.12 0.14 0.44 0.40 27 0.33
Bengbu 3.30 656 1.05 3.09 0.14 0.48 0.36 15 0.39

Chuzhou 3.44 808 1.07 2.93 0.19 0.49 0.31 44 0.71
Maanshan 3.43 522 1.09 2.85 0.19 0.58 0.22 22 0.61

Wuhu 3.46 627 1.07 2.99 0.14 0.57 0.28 30 0.76
Tongling 3.58 972 1.07 2.97 0.15 0.57 0.27 43 0.76
Anqing 3.57 895 1.13 2.95 0.17 0.54 0.28 216 2.52
Chizhou 3.52 1189 1.13 2.86 0.19 0.56 0.24 182 3.05

Huangshan 3.57 966 1.27 2.56 0.28 0.60 0.12 381 3.75
Xuancheng 3.53 963 1.12 2.84 0.20 0.54 0.25 206 2.21
Shanghai 3.49 339 1.04 3.02 0.15 0.52 0.31 9 2.21

Hangzhou 3.52 419 1.14 2.90 0.18 0.55 0.26 286 3.04
Huzhou 3.46 600 1.09 2.98 0.17 0.52 0.31 120 1.53
Jiaxing 3.36 508 1.05 3.07 0.15 0.48 0.36 9 0.03

Shaoxing 3.53 555 1.12 2.89 0.19 0.54 0.26 187 2.52
Ningbo 3.54 395 1.10 3.03 0.15 0.51 0.33 146 1.32

Zhoushan 3.56 418 1.10 3.00 0.15 0.55 0.29 57 0.59
Taizhou 3.54 565 1.13 2.93 0.17 0.56 0.27 257 2.32
Quzhou 3.57 513 1.15 2.69 0.25 0.56 0.18 338 2.69
Jinhua 3.54 403 1.11 2.96 0.17 0.54 0.28 300 2.66
Lishui 3.58 1005 1.37 2.68 0.24 0.59 0.16 628 4.22

Wenzhou 3.58 479 1.16 2.91 0.19 0.53 0.27 368 2.96
Nanchang 3.51 457 1.09 2.97 0.14 0.60 0.24 34 0.72

Jiujiang 3.53 831 1.10 2.89 0.17 0.58 0.23 215 2.80
Jingdezhen 3.57 680 1.13 2.49 0.31 0.58 0.10 142 2.92
Shangrao 3.58 665 1.17 2.47 0.32 0.57 0.11 206 3.45
Yingtan 3.49 497 1.10 2.77 0.22 0.57 0.20 165 2.58
Fuzhou 3.57 1070 1.12 2.78 0.21 0.60 0.18 226 2.97
Xinyu 3.36 1074 1.10 2.95 0.17 0.53 0.29 122 1.41
Yichun 3.56 1146 1.14 2.88 0.18 0.57 0.24 222 2.70

Pingxiang 3.57 990 1.14 2.88 0.17 0.61 0.21 332 3.33
Jian 3.54 1134 1.14 2.80 0.21 0.57 0.22 251 3.28

Ganzhou 3.55 631 1.15 2.81 0.20 0.58 0.21 365 3.72
Fuzhou 3.56 483 1.19 2.93 0.15 0.61 0.23 365 2.74
Ningde 3.56 1067 1.38 2.74 0.21 0.62 0.16 575 3.47

Sanming 3.58 1106 1.25 2.73 0.19 0.68 0.12 557 3.99
Putian 3.57 744 1.16 2.89 0.18 0.58 0.24 348 2.87

Nanping 3.45 722 1.24 2.36 0.09 0.32 0.06 500 4.50
Quanzhou 3.56 380 1.14 2.56 0.11 0.37 0.14 443 3.37

Xiamen 3.55 271 1.09 3.04 0.11 0.63 0.25 195 1.70
Zhangzhou 3.57 419 1.13 2.77 0.19 0.65 0.16 306 2.67

Longyan 3.57 1084 1.25 2.76 0.19 0.67 0.13 584 3.88
Taipei 3.45 127 1.08 3.11 0.11 0.56 0.31 78 1.16

New Taipei 3.58 224 1.20 2.84 0.19 0.59 0.21 384 4.00
Taoyuan 3.57 187 1.09 2.84 0.20 0.57 0.22 400 3.03
Taichung 3.51 163 1.10 2.93 0.18 0.55 0.27 1004 6.80

Tainan 3.49 323 1.09 3.26 0.07 0.53 0.38 80 1.14
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Ho LS C DS PDE P3W P4W ALT RDLS

Kaohsiung 3.54 146 1.08 3.07 0.12 0.56 0.30 776 6.71
Keelung 3.55 149 1.14 2.84 0.19 0.57 0.21 126 1.32
Hsinchu 3.53 200 1.16 2.81 0.21 0.57 0.21 792 7.40
Chiayi 3.50 310 1.18 2.84 0.18 0.62 0.19 537 4.57

Miaoli County 3.55 308 1.16 2.96 0.15 0.59 0.24 676 5.78
Changhua County 3.51 244 1.05 2.94 0.17 0.57 0.25 35 0.29

Yunlin County 3.50 290 1.06 2.94 0.16 0.60 0.24 72 1.05
Nantou County 3.56 341 1.30 2.81 0.19 0.61 0.19 1250 8.19

Yilan County 3.55 206 1.08 2.94 0.16 0.59 0.24 919 7.33
Taitung County 3.57 255 1.19 2.81 0.21 0.58 0.21 1070 7.73
Hualien County 3.43 223 1.12 2.95 0.16 0.56 0.27 1389 8.39

Pingtung County 3.52 236 1.08 2.85 0.18 0.60 0.21 387 3.92
Kinmen County 3.48 218 1.07 2.77 0.19 0.65 0.15 21 0.13

Lianjiang County 3.49
Penghu County 3.49

Guangzhou 3.54 264 1.09 2.93 0.14 0.66 0.19 113 1.55
Dongguan 3.58 291 1.06 2.99 0.14 0.60 0.25 42 0.65
Shenzhen 3.53 209 1.08 3.00 0.12 0.64 0.23 79 1.13
Huizhou 3.56 579 1.13 2.79 0.19 0.62 0.17 165 1.87
Shanwei 3.56 548 1.10 2.71 0.23 0.59 0.17 145 1.61
Shantou 3.57 378 1.08 2.85 0.18 0.60 0.21 49 0.48
Jieyang 3.54 626 1.09 2.82 0.21 0.56 0.23 157 1.64

Chaozhou 3.58 340 1.12 2.70 0.22 0.64 0.14 220 2.33
Meizhou 3.58 1074 1.19 2.80 0.18 0.67 0.15 299 3.01
Heyuan 3.57 1167 1.21 2.71 0.21 0.65 0.13 294 2.72

Shaoguan 3.58 1076 1.21 2.73 0.20 0.66 0.13 416 3.69
Qingyuan 3.55 575 1.16 2.85 0.19 0.60 0.21 348 3.30

Foshan 3.52 240 1.07 2.92 0.14 0.66 0.19 31 0.58
Zhaoqing 3.57 652 1.16 2.81 0.19 0.61 0.19 223 3.20

Zhongshan 3.55 216 1.07 2.91 0.14 0.66 0.19 27 0.40
Zhuhai 3.52 273 1.09 3.01 0.11 0.65 0.23 38 0.54

Jiangmen 3.57 364 1.11 2.86 0.16 0.64 0.18 89 1.56
Yunfu 3.57 635 1.17 2.91 0.16 0.62 0.22 215 2.52

Yangjiang 3.54 544 1.10 2.91 0.17 0.58 0.25 157 2.06
Maoming 3.53 707 1.13 2.79 0.17 0.69 0.13 194 2.66
Zhenjiang 3.55 682 1.11 2.90 0.15 0.67 0.18 37 0.37

Haikou 3.54 361 1.09 2.82 0.19 0.61 0.19 46 0.18
Wenchang 3.54 677 1.11 2.50 0.32 0.54 0.14 33 0.33
Qionghai 3.55 738 1.15 2.74 0.21 0.64 0.14 84 1.50
Wanning 3.52 712 1.11 2.82 0.19 0.61 0.19 112 1.19

Lingshui County 3.56 456 1.12 2.75 0.21 0.59 0.18 69 0.78
Sanya 3.55 369 1.12 2.81 0.19 0.63 0.17 154 1.41

Dongfang City 3.50 877 1.14 2.62 0.26 0.58 0.15 202 1.83
Changjiang County 3.48 743 1.13 2.83 0.17 0.66 0.17 276 2.57

Ledong County 3.56 850 1.13 2.60 0.28 0.56 0.16 211 1.70
Danzhou 3.55 673 1.10 2.67 0.26 0.56 0.18 113 1.27

Lingao County 3.56 884 1.08 2.59 0.28 0.56 0.15 77 0.41
Chengmai County 3.55 645 1.13 2.63 0.25 0.60 0.14 86 0.64
Tunchang County 3.50 608 1.16 2.68 0.23 0.61 0.15 183 1.20

Baisha County 3.51 1292 1.32 2.51 0.31 0.58 0.11 492 3.67
Qiongzhong County 3.56 1156 1.27 2.40 0.33 0.61 0.06 442 3.54

Dingan County 3.56 789 1.14 2.59 0.25 0.63 0.63 95 0.53
Baoting County 3.54 1034 1.22 2.47 0.3 0.63 0.07 316 2.46

Wuzhishan 3.56 1357 1.33 2.47 0.3 0.64 0.06 619 3.7
Sansha 2.53 255 1.04 3.02 0.05 0.83 0.12 0 0.00

Hong Kong 3.58 157 1.13 2.86 0.14 0.68 0.16 121 1.37
Macau 3.55 93 1.09 3.01 0.08 0.73 0.17 10 0.07

Nanning 3.54 818 1.10 2.88 0.18 0.57 0.24 195 3.04
Laibin 3.54 1145 1.16 2.65 0.23 0.64 0.12 282 3.05
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Guigang 3.54 1031 1.11 2.71 0.24 0.58 0.18 159 2.42
Liuzhou 3.50 675 1.13 2.90 0.17 0.58 0.23 347 3.65

Hechi 3.58 1361 1.30 2.45 0.31 0.62 0.07 549 3.56
Baise 3.56 954 1.30 2.65 0.25 0.58 0.16 750 4.66

Chongzuo 3.56 1319 1.19 2.60 0.27 0.60 0.13 307 2.53
Fangchenggang 3.53 472 1.15 2.64 0.26 0.58 0.16 254 2.52

Qinzhou 3.52 786 1.12 2.71 0.23 0.58 0.18 103 1.49
Beihai 3.50 673 1.08 2.96 0.16 0.54 0.29 28 0.30

Wuzhou 3.55 863 1.18 2.79 0.20 0.61 0.19 222 2.77
Yulin 3.57 932 1.12 2.75 0.23 0.56 0.20 183 2.34

Hezhou 3.55 1572 1.17 2.70 0.21 0.66 0.12 380 3.62
Guilin 3.57 852 1.18 2.61 0.26 0.59 0.14 521 4.11

Changsha 3.43 386 1.09 2.97 0.15 0.57 0.27 164 2.32
Zhuzhou 3.57 692 1.13 2.65 0.24 0.61 0.14 303 3.47
Xiangtan 3.52 622 1.10 2.85 0.20 0.57 0.23 116 1.06

Hengyang 3.52 790 1.14 2.73 0.21 0.64 0.14 163 2.02
Binzhou 3.56 930 1.20 2.62 0.25 0.62 0.12 496 3.89

Yongzhou 3.53 1054 1.13 2.69 0.23 0.61 0.15 430 3.52
Shaoyang 3.56 1006 1.18 2.71 0.24 0.58 0.18 557 3.63
Huaihua 3.57 1345 1.24 2.60 0.27 0.58 0.14 430 3.74

Loudi 3.54 889 1.20 2.64 0.24 0.61 0.13 359 2.88
Xiangxi 3.57 1816 1.27 2.53 0.28 0.63 0.09 550 3.66

Zhangjiajie 3.56 1383 1.32 2.61 0.26 0.60 0.13 546 3.95
Changde 3.52 828 1.13 2.74 0.23 0.56 0.20 196 3.07
Yiyang 3.51 611 1.10 2.77 0.22 0.57 0.20 212 2.94

Yueyang 3.50 714 1.11 2.71 0.23 0.61 0.15 131 1.82
Wuhan 3.54 356 1.07 2.91 0.16 0.61 0.21 37 0.77

Qianjiang 3.39 762 1.06 2.78 0.21 0.56 0.21 28 0.19
Xiantao 3.43 811 1.06 2.84 0.22 0.51 0.27 26 0.08
Tianmen 3.48 1055 1.05 2.77 0.25 0.48 0.26 32 0.17

Shennongjia 3.54 2057 1.65 2.44 0.31 0.62 0.07 1702 6.84
Enshi 3.57 1764 1.42 2.63 0.25 0.63 0.12 1077 6.54

Yichang 3.58 1013 1.28 2.74 0.22 0.60 0.17 675 4.96
Jinzhou 3.50 984 1.07 2.79 0.22 0.55 0.22 43 0.73

Xianning 3.57 1124 1.10 2.83 0.18 0.63 0.19 184 2.28
Ezhou 3.33 584 1.09 2.65 0.27 0.54 0.18 32 0.42

Huangshi 3.46 871 1.08 2.89 0.18 0.57 0.24 110 1.35
Huanggang 3.58 927 1.11 2.84 0.19 0.58 0.22 163 2.45

Xiaogan 3.48 796 1.08 2.76 0.22 0.56 0.20 73 0.82
Jingmen 3.47 779 1.09 2.71 0.26 0.51 0.23 119 1.43
Suizhou 3.55 1072 1.09 2.76 0.22 0.57 0.2 183 1.46

Xiangyang 3.47 628 1.11 2.81 0.21 0.55 0.23 358 3.08
Shiyan 3.57 1357 1.31 2.58 0.27 0.59 0.12 749 5.76

Chongqing 3.56 724 1.28 2.82 0.19 0.61 0.19 723 5.48
Guiyang 3.56 583 1.17 2.91 0.15 0.63 0.21 1185 3.29
Anshun 3.58 961 1.18 2.79 0.20 0.59 0.19 1207 3.94

Bijie 3.58 1220 1.28 2.57 0.26 0.62 0.10 1689 6.13
Liupanshui 3.58 1197 1.35 2.73 0.20 0.65 0.14 1724 5.88

Zunyi 3.58 888 1.26 2.70 0.23 0.61 0.15 982 4.63
Tongren 3.57 1467 1.28 2.60 0.25 0.63 0.11 750 5.13

Qiandongnan 3.58 1626 1.32 2.64 0.25 0.60 0.13 766 4.65
Qiannan 3.57 1296 1.22 2.69 0.23 0.62 0.14 996 4.09

Qianxinan 3.58 1051 1.30 2.67 0.23 0.64 0.12 1149 4.82
Kunming 3.57 597 1.25 2.89 0.16 0.61 0.21 2099 8.43
Zhaotong 3.57 779 1.43 2.32 0.21 0.42 0.05 1708 8.90

Qujing 3.57 1024 1.23 2.73 0.22 0.59 0.18 2012 7.75
Wenshan 3.56 881 1.32 2.77 0.21 0.60 0.19 1369 6.72
Honghe 3.58 1194 1.44 2.61 0.27 0.60 0.13 1493 7.00
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Yuxi 3.56 842 1.35 2.75 0.22 0.60 0.18 1662 6.77
Xishuangbanna 3.57 755 1.30 2.61 0.26 0.62 0.12 1110 4.82

Puer 3.57 1336 1.52 2.54 0.28 0.61 0.10 1456 7.27
Baoshan 3.56 958 1.38 2.79 0.21 0.59 0.20 1829 7.82
Lincang 3.57 955 1.50 2.51 0.30 0.59 0.10 1620 7.62
Dehong 3.57 513 1.25 2.67 0.24 0.60 0.15 1421 6.89
Nujiang 3.47 2558 1.48 2.38 0.34 0.61 0.05 2747 13.15
Diqing 3.56 1920 1.48 2.54 0.27 0.64 0.08 3448 11.44
Lijiang 3.43 741 1.42 2.70 0.23 0.62 0.15 2603 11.21

Dali 3.50 663 1.31 2.69 0.23 0.62 0.15 2253 8.74
Chuxiong 3.58 967 1.49 2.37 0.13 0.34 0.07 1928 7.70
Chengdu 3.57 372 1.09 2.99 0.14 0.58 0.27 818 10.08
Meishan 3.51 560 1.12 2.82 0.19 0.60 0.20 686 5.26
Leshan 3.57 919 1.23 2.75 0.20 0.64 0.15 1081 14.56

Yaan 3.58 1051 1.29 2.54 0.28 0.60 0.11 2083 11.73
Liangshan 3.58 972 1.46 2.25 0.26 0.40 0.05 2633 12.62
Panzhihua 3.58 941 1.40 2.57 0.25 0.68 0.06 1864 7.87

Luzhou 3.58 779 1.25 2.87 0.17 0.59 0.22 704 3.41
Yibin 3.57 954 1.24 2.78 0.21 0.57 0.21 586 4.09

Neijiang 3.51 695 1.15 3.11 0.11 0.55 0.33 406 1.47
Zigong 3.55 604 1.13 2.89 0.16 0.61 0.21 371 1.47
Ziyang 3.58 780 1.17 2.72 0.22 0.60 0.17 407 1.43
Suining 3.56 715 1.16 2.83 0.19 0.58 0.22 359 1.07

Nanchong 3.57 721 1.21 2.70 0.23 0.59 0.16 407 1.43
Guangan 3.56 790 1.18 2.66 0.25 0.58 0.16 410 2.64
Dazhou 3.57 723 1.24 2.51 0.29 0.61 0.10 677 4.53
Bazhong 3.58 1084 1.39 2.53 0.28 0.63 0.09 795 4.95

Guangyuan 3.56 1411 1.36 2.67 0.23 0.63 0.13 903 4.25
Mianyang 3.57 706 1.19 2.81 0.21 0.56 0.22 1229 9.36

Ngawa 3.57 1307 1.31 2.46 0.30 0.64 0.06 3632 13.54
Garze 3.57 2298 1.37 2.32 0.36 0.60 0.04 4195 16.35

Deyang 3.53 670 1.08 2.99 0.16 0.51 0.31 792 9.44
Lhasa 3.48 847 1.14 2.69 0.24 0.56 0.18 4818 11.27

Chamdo 3.57 4498 1.42 2.36 0.34 0.61 0.05 4451 14.60
Nyingchi 3.56 2126 1.26 2.60 0.25 0.65 0.09 3655 21.27
Shannan 3.54 2205 1.33 2.49 0.29 0.62 0.08 3648 17.43
Nagqu 3.55 6882 1.23 2.45 0.32 0.60 0.08 4973 10.65
Rikaze 3.56 1930 1.24 2.51 0.30 0.10 0.00 4990 17.71
Ngari 3.58 2100 1.29 2.12 0.06 0.14 0.02 5038 12.76
Xining 3.56 552 1.11 2.74 0.22 0.59 0.18 3101 7.72

Haidong 3.55 1127 1.23 2.67 0.24 0.61 0.14 2786 8.06
Haibei 3.54 1415 1.14 2.56 0.29 0.58 0.13 3667 7.85
Haixi 3.42 2444 1.11 2.70 0.23 0.61 0.16 3788 9.44

Hainan 3.57 1947 1.22 2.53 0.29 0.58 0.12 3526 8.13
Huangnan 3.55 1725 1.23 2.45 0.31 0.61 0.07 3642 8.75

Golog 3.56 3825 1.21 2.48 0.29 0.62 0.07 4334 9.89
Yushu 3.56 950 1.24 2.38 0.13 0.37 0.07 4699 10.79

Lanzhou 3.52 479 1.15 2.73 0.24 0.56 0.19 2081 5.80
Linxia 3.56 625 1.21 2.58 0.26 0.63 0.10 2261 7.28

Gannan 3.52 1232 1.25 2.62 0.27 0.57 0.16 3363 11.02
Dingxi 3.57 1001 1.24 2.54 0.28 0.61 0.10 2279 6.77

Longnan 3.58 1415 1.33 2.49 0.30 0.61 0.09 1783 8.74
Tianshui 3.55 782 1.28 2.54 0.28 0.63 0.09 1725 5.83

Qingyang 3.53 1201 1.23 2.63 0.25 0.61 0.13 1423 3.56
Pingliang 3.56 932 1.23 2.65 0.23 0.65 0.11 1548 4.70

Baiyin 3.54 947 1.19 2.64 0.25 0.62 0.13 1861 4.96
Wuwei 3.52 1091 1.10 2.56 0.30 0.54 0.16 1912 6.12

Jinchang 3.51 774 1.05 2.64 0.26 0.56 0.17 1954 4.64
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Zhangye 3.50 834 1.07 2.53 0.32 0.52 0.16 2649 9.00
Jiayuguan 3.16 475 1.06 2.93 0.16 0.56 0.26 1874 4.13

Jiuquan 3.39 1467 1.08 2.70 0.25 0.55 0.20 1947 6.58
Xian 3.08 378 1.07 2.98 0.17 0.51 0.31 1041 6.08

Xianyang 3.31 657 1.10 2.83 0.20 0.56 0.23 891 3.03
Baoji 3.45 766 1.19 2.74 0.23 0.58 0.19 1363 7.08

Hanzhong 3.50 982 1.23 2.69 0.23 0.61 0.15 1128 5.95
Ankang 3.57 2027 1.40 2.50 0.28 0.64 0.07 1047 7.74
Weinan 3.26 928 1.11 2.87 0.19 0.55 0.25 674 3.49

Shangluo 3.56 1463 1.32 2.56 0.27 0.61 0.09 1085 5.72
Tongchuan 3.55 1057 1.21 2.59 0.24 0.61 0.11 1131 3.17

Yanan 3.57 1428 1.22 2.54 0.25 0.62 0.09 1251 3.74
Yulin 3.54 1276 1.15 2.71 0.22 0.61 0.16 1226 3.01

Yinchuan 3.30 641 1.04 3.09 0.13 0.51 0.35 1279 3.34
Shizuishan 3.46 903 1.04 3.02 0.15 0.53 0.31 1278 3.56
Wuzhong 3.46 557 1.07 2.84 0.20 0.56 0.24 1482 2.99
Zhongwei 3.48 1108 1.10 2.73 0.24 0.55 0.21 1651 3.94
Guyuan 3.56 1022 1.23 2.68 0.23 0.62 0.14 1888 4.51
Urumqi 3.54 433 1.07 2.79 0.21 0.57 0.21 1570 6.84
Tulufan 3.50 1348 1.07 2.72 0.24 0.55 0.20 1010 5.48
Hami 3.53 1389 1.08 2.73 0.22 0.59 0.18 1196 5.66

Bayingolin 3.44 1068 1.09 2.79 0.21 0.57 0.21 2198 9.32
Tiemenguan 3.04 360 1.03 2.84 0.21 0.52 0.26 904 1.03

Hotan 3.39 1090 1.06 2.89 0.21 0.48 0.31 2778 10.14
Kunyu 2.48 342 1 3.1 0.17 0.38 0.45 1380 2.88

Kashgar 3.52 945 1.06 2.82 0.23 0.48 0.28 2521 11.02
Kumul 2.99 886 1.08 3 0.14 0.58 0.27 1101 1.34
Kizilsu 3.53 1530 1.12 2.69 0.25 0.56 0.19 3125 14.03
Aksu 3.54 1283 1.06 2.76 0.23 0.54 0.23 1519 6.97
Aral 3.22 1353 1.05 2.76 0.23 0.55 0.21 1011 1.06

Ili 3.42 586 1.09 2.82 0.22 0.52 0.25 2016 10.92
Kokdala 2.71 305 1.02 3.16 0.17 0.33 0.5 593 0.69

Shuanghe 3.17 726 1.06 2.73 0.19 0.69 0.12 369 0.65
Bortala 3.29 1197 1.11 2.81 0.21 0.57 0.22 1423 6.22
Tacheng 3.47 896 1.07 2.65 0.28 0.52 0.20 1092 5.71
Karamay 3.47 952 1.05 2.97 0.17 0.53 0.30 295 0.37

Huyanghe 3.21 942 1.06 2.79 0.23 0.52 0.25 317 0.38
Shihezi 2.93 512 1.05 3.05 0.12 0.58 0.29 569 1.14
Changji 3.3 685 1.08 2.97 0.19 0.47 0.34 1057 5.36
Wujiaqu 2.91 1025 1.06 2.81 0.24 0.46 0.3 449 0.57

Altay 3.49 1125 1.12 2.55 0.31 0.51 0.17 1175 4.88
Beitun 3.21 585 1.05 2.81 0.23 0.48 0.28 544 0.58
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