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Abstract: Spatial object matching is one of the fundamental technologies used for updating and 

merging spatial data. This study focused mainly on the matching optimization of multiscale spatial 

polygonal objects. We proposed a granularity factor evaluation index that was developed to pro‐

mote the recognition ability of complex matches in multiscale spatial polygonal object matching. 

Moreover, we designed the granularity factor matching model based on a backpropagation neural 

network (BPNN) and designed a multistage matching workflow. Our approach was validated ex‐

perimentally using two topographical datasets at two different scales: 1:2000 and 1:10,000. Our re‐

sults indicate that the granularity factor is effective both in improving the matching score of complex 

matching and reducing the occurrence of missing matching, and our matching model is suitable for 

multiscale spatial polygonal object matching, with a high precision and recall reach of 97.2% and 

90.6%. 
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1. Introduction 

Spatial object matching is one of the most challenging and indispensable procedures 

in the processing and application of spatial data [1]. It is defined as the process of identi‐

fying the same real‐world objects from different sources and establishing a corresponding 

relationship [2]. Spatial object matching has been applied widely in the updating, mainte‐

nance, and fusion of spatial data [3–5]. 

In recent years, following the rapid increase of volunteered geographic information, 

spatial object matching has received increasing attention regarding the improvement of 

the quality and evaluation of volunteered geographic information data [6,7]. However, 

geospatial data from different sources are often inconsistent in actuality, scale, geometry, 

and semantics [8–11]. These discrepancies can cause complications and low efficiency in 

spatial data matching, especially for data with different scales, because complex matching 

(1:N and M:N matching) is widespread in multiscale matching [12] and the characteristics 

between matching data are more blurred [13]. 

Traditional matching methods are based mainly on using the similarities of the geo‐

metric, attribute, and topological information of objects to obtain matching results [14–

16]. In spatial polygonal object matching, the geometric measure is one of the most widely 

used information elements. Shape, length, size, and direction have all previously been 

used for the measurement of similarity [17–20]. Deng et al. [21] introduced the Hausdorff 
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distance as a metric indicator for different types of spatial objects, which was then im‐

proved by Tong et al. [22] for two polylines in matching road networks. The ratio of the 

area of overlap is considered an effective metric with which to measure polygonal object 

similarity [23,24] and it can be used to identify corresponding polygonal objects that are 

associated through shape, size, and direction [25–27]. Multifeature combination matching 

has received increasing attention because of its reliable matching performance [3]. How‐

ever, despite its acceptable performance in terms of matching objects of the same scale, its 

performance is unsatisfactory in multiscale matching. This is because traditional matching 

methods have satisfactory efficiency and accuracy only in simple matching (1:1 matching) 

[28–30]. Therefore, Tong et al. [22] obtained complex matches via multiple iteration detec‐

tion. Wang et al. [20] applied a traditional two‐way matching strategy to obtain candidate 

matching pairs, but when the deviation of the positions of objects was large, many com‐

plex matches were missed. Moreover, a two‐way matching strategy can tend to neglect 

smaller objects [31]. 

Because of the excellent performance of machine learning algorithms in classification 

problems, many spatial object matching models introduce machine learning algorithms 

to avoid the need of weighing feature similarity and select matching thresholds. Zhang et 

al. [18] proposed a one‐to‐one matching approach that aimed at the maintenance of a mul‐

tiple representation database and tested the approach with four machine learning meth‐

ods in building polygonal object matching: C4.5 algorithms proposed by Quinlan [32], the 

classification and regression tree proposed by Breiman et al. [33], the Naïve Bayes classi‐

fier proposed by Rish [34], and support vector machines proposed by Hsu and Lin [35]. 

McKenzie et al. [36] solved the weight assignment problem of multiple attributes in points 

of interest (POI) based on the regression model, and arrived at a weighted combination of 

all matchers; they also evaluated the results against an ordinal weight combination and 

an unweighted baseline. Ruiz‐Lendínez et al. [37] proposed a methodology for matching 

the bidimensional objects of both area and point features extracted from geographical da‐

tabases, and polygon‐to‐polygon matching is obtained by means of a genetic algorithm 

that allows the classification of area features from two geographical databases. Tong et al. 

[22] proposed an improved linear object matching approach, which combines the optimi‐

zation model and logistic regression model to obtain a better matching result by detecting 

incorrect matches and missed matches that are included in the result obtained from using 

the optimization method for object matching in conflation. BPNN accumulates knowledge 

in weighted connections to mimic the function of a human brain [38]. Wang et al. [20] 

proposed an approach for multi‐represented feature matching based on spatial similarity 

and BPNN. Although machine learning algorithms have a high level of automation and 

strong data adaptability, their ability to identify complex matching types is relatively 

weak, and it requires a machine learning feature factor to deal with complex matching. 

To address the aforementioned problems, we propose a multiscale spatial polygonal 

object granularity factor matching method based on a backpropagation neural network 

(BPNN). We constructed a granularity factor evaluation index (GFEI) to promote the 

recognition ability of complex matches in multiscale spatial polygonal object matching 

(MSPOM), and we used BPNN to improve further the accuracy of MSPOM by our de‐

signed multistage matching workflow. This article is organized as follows. The proposed 

method is presented in detail in Section 2. The experimental design and the experimental 

results of the approach are presented in Section 3. Finally, Section 4 draws conclusions 

based on the findings of the research. 

2. Methodology 

2.1. MSPOM Similarity Evaluation Indices Combined with Minimum Bounding Rectangle 

(MBR) 

To describe the geometric characteristics of MSPOM, a series of commonly used 

methods for evaluating similarity has been established through analyzing the spatial 
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difference of MSPOM in terms of their geometric metrics such as distance, size, direction, 

and shape [16,20]. The minimum bounding rectangle (MBR) is generally used to represent 

the source objects and the target objects in MSPOM. For source objects 𝒂
𝑎 , 𝑎 , … , 𝑎 |𝑛 1  ,  and target objects 𝒃 𝑏 , 𝑏 , … , 𝑏 |𝑚 1  from a candidate 

matching pair, we combine geometric metrics with MBR. The MBR is the smallest rectan‐

gle parallel to the coordinate axes, which contains objects. It is simple, efficient, and is the 

most widely used approximate expression of geographical objects [39]. In our study, an 

MBR contains a set of spatial polygonal objects that contains one or more spatial polygonal 

objects. The maximum and minimum coordinates 𝑐|𝑥 , 𝑥 , 𝑦 , 𝑦  in the X and 

Y directions are calculated for the space coordinates of the vertices of all polygonal objects 

in this set, and the rectangle surrounded by the lines 𝐿 𝑐|𝑐 𝑥 , 𝑥 , 𝑦 , 𝑦  

corresponding to 𝑐 is used as MBR. 

2.1.1. Distance Similarity 

When describing the relative distance between 𝒂 and 𝒃, we use the distance be‐

tween the MBR centers of 𝒂 and 𝒃, as shown in Figure 1. The smaller the relative distance 

between 𝒂 and 𝒃, the higher their distance similarity. The formula for calculating the 

distance similarity between 𝒂 and 𝒃 is as follows: 

𝑆
𝑑 𝑑

𝑑 𝑑 𝑑 𝑃 𝑃
 (1)

where 𝑃  is the MBR center of 𝒂, 𝑃  is the MBR center of 𝒃, 𝑑 𝑃 𝑃  represents the 

distance between the MBR centers of 𝒂 and 𝒃, 𝑑  and 𝑑  represent half the diagonal 

lengths of the MBRs of 𝒂 and 𝒃, respectively, and 𝑆  represents the distance similarity 

of 𝒂 and 𝒃. 

 

Figure 1. Distance between MBR centers of 𝒂 and 𝒃. 

2.1.2. Overlap Rate of Area 

First, the MBR centers of 𝒂  and 𝒃  are obtained (i.e., 𝑃  and 𝑃 , respectively). 

Then, 𝑃  and 𝑃  are coincided. Finally, the shape and size similarities between 𝒂 and 

𝒃 are reflected by the overlap area after the translation. As shown in Figure 2, the shaded 

part is the overlap area. In the figure, because 𝑏  does not overlap with 𝒂 after the trans‐

lation, 𝑏  is excluded in the calculation; thus, the final corresponding relationship is 

𝑎: 𝑏 , 𝑏 . The formula for calculating the overlap rate of area of 𝒂 and 𝒃 is as follows: 

 𝑆
𝐴𝑟𝑒𝑎 ∩

𝐴𝑟𝑒𝑎 𝐴𝑟𝑒𝑎
 (2)

where Area ∩  denotes the overlapping area after the alignment of the MBR centers of 𝒂 

and 𝒃, 𝐴𝑟𝑒𝑎  denotes the total area of the objects overlapping with 𝒃 in 𝒂 after the 

translation (𝐴𝑟𝑒𝑎  is the same as 𝐴𝑟𝑒𝑎 ), and 𝑆  denotes the overlap rate of area of 𝒂 

and 𝒃. 
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Figure 2. Overlapping area of 𝒂 and 𝒃. 

2.1.3. Direction Similarity 

Directions of 𝒂  and 𝒃  are replaced by the diagonal directions of the MBRs. As 

shown in Figure 3, 𝐿  and 𝐿  are the directions of 𝒂 and 𝒃, respectively. 

 

Figure 3. Directions of 𝒂 and 𝒃. 

Therefore, the direction similarity formula of 𝒂 and 𝒃 is as follows: 

𝑆 1
|𝜃 𝑎 𝜃 𝑏 |

𝜃
 (3)

where 𝜃 𝑎  and 𝜃 𝑏  are the directions of the polygonal objects 𝒂 and 𝒃, 𝜃 𝑎 ∈ 0, , 

𝜃 𝑏 ∈ 0, , and 𝜃  is the direction threshold (generally, 𝜃 ). 

2.1.4. Shape Similarity 

The shape similarity of 𝒂  and 𝒃  is measured by the relationship between the 

lengths and widths of the MBRs of 𝒂 and 𝒃. The closer 𝒂’s length and width are to 𝒃’s, 

the more similar 𝒂 is to 𝒃. The MBR shape similarity formula of 𝒂 and 𝒃 is as follows: 

𝑆
𝑚𝑖𝑛 𝐻 , 𝐻
𝑚𝑎𝑥 𝐻 , 𝐻

𝑚𝑖𝑛 𝑊 , 𝑊
𝑚𝑎𝑥 𝑊 , 𝑊

 (4)

where 𝐻  and 𝐻  represent the lengths of the MBRs of 𝒂 and 𝒃, respectively, 

𝑊  and 𝑊  represent the widths of the MBRs of 𝒂 and 𝒃, respectively, and 

𝑆  represents the MBR shape similarity of 𝒂 and 𝒃. 

2.2. Granularity Factor Evaluation Index (GFEI) 

In the field of geographic information, granularity refers to the length, area, or vol‐

ume of the smallest recognizable spatial object, namely, resolution [40,41]. The finer the 

granularity, the more accurate is the spatial attribute information expression. In contrast, 

the coarser the granularity, the coarser is the spatial attribute information expression [42]. 

In this study, we use the difference between the number of source objects and the number 

of target objects of the spatial polygonal object matching pair in spatial data as the granu‐

larity feature scale, so as to introduce the granularity factor. In geographic phenomena, a 

large proportion of statistical data follows a heavy‐tailed distribution. The heavy‐tailed 

distribution refers to the serious right deviation of the data distribution, i.e., a few high‐
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value datasets are in the “head” of the distribution, while most low‐value datasets are in 

the “tail.” In MSPOM, there are mainly four matching types: 1:1, 1:N, M:N, and 1:0. 

Among them, 1:1 and 1:N matchings account for the majority, while M:N and 1:0 match‐

ing account for only a small proportion. Faced with this heavy‐tailed distribution, it is 

usual for data distributions to be described by an exponential function, logarithmic nor‐

mal distribution, or power law. 

In this study, we constructed for the first time a unified evaluation index (i.e., GFEI) 

to measure complex matching and simple matching, which combines the distribution of 

matching types of MSPOM with the ʺhead–tail segmentation function” [43]. This index is 

more advantageous and natural than the natural interval segmentation method. 

The value of GFEI is between 0 and 1. When there are many m:n matchings (m > 0, n 

> 0), the mean value and the standard deviation of the value m/n are brought into the 

“head and tail segmentation function” and the value of GFEI is the normalized function 

value. GFEI is used to describe the matching scale, which refers to the ratio of the target 

object(s) and the source object(s) in a matching pair, which reflects the scale difference of 

two matching object sets in a matching pair. The larger the matching scale, the higher the 

value of GFEI of MSPOM, and vice versa. The formula of GFEI used in MSPOM can be 

expressed as follows: 

𝐺𝐹𝐸𝐼
1

2𝜋𝑆  
𝑒𝑥𝑝 

𝑙𝑛 𝑅 𝑀

2𝑆
 (5)

where 𝑅  is the ratio of the fragmentation degree, 𝑀  is the average of 𝑅 , and 

𝑆  is the standard deviation of 𝑅 . We use the following concrete formulas 𝑃 to cal‐

culate 𝑅 , 𝑀 , and 𝑆 : 

𝑃：

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑅 𝑚 /𝑛

𝑀
1
𝑛

𝑅

𝑆
1
𝑛

𝑅 𝑀

 (6)

where n is the number of 𝑅 , i.e., the number of matching pairs. 

When using GFEI to optimize the geometric similarity evaluation indices (Section 

2.1), it is necessary to normalize GFEI. The normalization method used here can be defined 

as follows: 

𝑁 1
𝐺𝐹𝐸𝐼 𝑚𝑖𝑛 𝐺𝐹𝐸𝐼

𝑚𝑎𝑥 𝐺𝐹𝐸𝐼 𝑚𝑖𝑛 𝐺𝐹𝐸𝐼
1 𝜀  (7)

where 𝜀 is the threshold for determining correct matching pairs. 

For M: N matching and partial 1: N matching, the low values of evaluation indices 

such as Overlap Rate of Area (Section 2.1.2) led to a low score of matching, which is lower 

than the evaluation threshold of correct matching, and therefore it is misjudged as incor‐

rect matching. The head–tail segmentation classification further groups or stratifies the 

matching types in the heavy‐tail distribution. First, the values of 𝑁  are calculated, 

which divide all candidate matching pairs into two parts. It then continues to divide the 

head values higher than the average until the head values are no longer in the heavy‐tail 

distribution. After the weighted processing of 𝑁 , the scores of M: N matching and 

partial 1: N matching in Table 1 are improved, as shown in Table 2, such as 

𝑎 , 𝑎 : 𝑏 , 𝑏 , 𝑏 , 𝑏  and 𝑎 : 𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 . Thus, the score of the entire candi‐

date matching pairs is no longer a heavy‐tail distribution. Finally, the number and interval 

of the matching types are determined naturally. The correct matching candidate pairs will 

be identified for the corresponding matching types; for example, different types of 
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matching pairs in Table 2 are identified correctly. 𝑁  produced using this procedure 

is one of the characteristics of training samples of “BPM training” in the data‐processing 

workflow. 

2.3. Matching Model Based on BPNN (BPM) 

An artificial neural network (ANN) is an operation model consisting of a large num‐

ber of interconnected neurons. Each neuron is a set output function. The connection be‐

tween neurons is based on the weight of two neurons. ANNs mainly focus on neuronal 

characteristics, neural network topology, and learning rules. ANNs have reasonable intel‐

ligent characteristics, associative storage, self‐learning, and fast search capabilities for de‐

termining optimal solutions. ANNs have been used successfully to solve many practical 

problems in various fields such as pattern recognition, automatic control, intelligent ro‐

bots, and prediction. ANNs are used widely in scientific and engineering problems and 

attempts to simulate the recognition pattern of biological nervous systems [44]. 

In MSPOM, identical spatial polygonal objects in different maps have similarities in 

many feature descriptions. Therefore, the problem of MSPOM can be regarded as a prob‐

lem of pattern recognition by an ANN. BPNN is a feed‐forward learning model of back‐

propagation [45] and can achieve a global optimal approximation for the desired mapping 

and it has strong generalization ability [46]. We established a BPNN structure to judge 

whether candidate polygonal object matching pairs match or do not match. 

The BPNN used here comprised three layers: an input layer, a hidden layer, and an 

output layer. The input layer refers to the characteristics described by similarity evalua‐

tion indices combined with MBR (Section 2.1) and GFEI (Section 2.2) of multiscale spatial 

polygonal objects. The hidden layer consists of the nodes set up in the BPNN. The output 

layer is the output of the matching result information of the model operation, i.e., 1 or 0, 

corresponding to “match” and “does not match,” respectively. At the same time, the out‐

put layer will derive the probability of a “match” (𝑝) and the probability of a “does not 

match” (1 𝑝) outcomes. The criteria for judging whether to match are as follows: 

1. When 𝑝 0.5, the matching result is “match”; furthermore, the closer the value of 𝑝 

is to 1 or the value of 1 𝑝 is to 0, the more similar the matching pair. 

2. When 𝑝 0.5, the matching result is “does not match”; furthermore, the closer the 

value of 𝑝 is to 0 or the value of 1 𝑝 is to 1, the more dissimilar the matching pair. 

2.4. Matching Workflow 

To efficiently apply BPM, a workflow was designed, as shown in Figure 4, compris‐

ing three processes: preparation, matching, and evaluation. 

Step 1: In the preparation stage, the data are preprocessed, which includes format 

conversion, topology checking, and geometric coordinate transformation. The pur‐

pose of preprocessing is to resolve systematic errors between data from different 

sources [47]. 

Step 2: The matching stage is the focus of this study, which includes BPM training, 

first‐matching, and last‐matching. Model training is performed to acquire the geo‐

metric features and matching results of the training data. In first‐matching, 1:1 and 

1:N candidate matching pairs are detected using the MBR combinatorial optimiza‐

tion [48] (MBRCO) algorithm. MBRCO uses the objects’ MBR to replace them so as 

to find their candidate matching objects, and adopts the combination threshold to 

avoid the excessive calculation of the exhaustive method, which can quickly and ef‐

fectively screen the candidate matching pairs. Then, 1:1 and 1:N correspondences are 

obtained using the trained BPM. In final matching, spatial districts (SDs) are divided 

based on Delaunay triangulation, in which the remaining unmatched objects (M:N 

and 1:0) are distributed. The M:N candidate matching pairs are detected using the 

MBRCO algorithm and the M:N correspondences are obtained using the trained 

BPM. The remaining unmatched objects are 1:0 correspondences. 
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Step 3: In the evaluation stage, we evaluate the matching results by comparing them 

with the results of manual inspection. 

Matching recall

Matching accuracy

Format conversion, topology check, and 
coordinate transformation

Preparation

Matching Stage

Evaluation

BPM training

 Obtain 1:1 and 1:N candidate matching 
pairs using MBRCO algorithm

First Matching

 Divide SDs based on Delaunay triangulation

Last Matching

 Obtain M:N candidate matching pairs using 
MBRCO algorithm

 Identify M:N matching pairs using matching 
models 

 Identify 1:1 and 1:N matching pairs using 
matching models 

 1:1 and 1:N correspondences

 M:N and 1:0 correspondeces

 

Figure 4. Multiscale Spatial Polygonal Object Matching workflow. 
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3. Experiments and Discussion 

3.1. GFEI Index Analysis 

Test data of GFEI index analysis is shown in Figure 5. The test data in Figure 5 include 

source data A and target data B. The source data A include 11 polygonal objects, namely, 

𝑎 , 𝑎 , … , 𝑎 } and the target data B include 26 polygonal objects, namely 𝑏 , 𝑏 , … , 𝑏  

in Figure 5. There are six pairs of 1:1 matchings, three pairs of 1:N matchings, one pair of 

M:N matching, and zero pairs of 1:0 matching, and the 0:1 matching includes six polygo‐

nal objects in B. The proportions of simple matching and complex matching in the exper‐

imental data are reasonable, making them suitable for the analysis test of GFEI. 

 

Figure 5. Test data of granularity factor evaluation index (GFEI) index analysis. 

We define the formula of the combination of similarity evaluation indices as follows: 

𝑆 𝑆 𝑤1 𝑆 𝑤2 𝑆 𝑤3 𝑆 𝑤4)/( 𝑤1 𝑤2 𝑤3 𝑤4) (8)

where 𝑤1, 𝑤2, 𝑤3, and 𝑤4 are weights of 𝑆 , 𝑆 , 𝑆 , and 𝑆 , respectively. 

𝑆 𝑁 𝑆 /2 (9)

The weight ratio of the four similarity evaluation indices (Section 2.1) is set to 1:1:1:1 

based on experience, which indicates that 𝑤1 1，𝑤2 1，𝑤3 1， and 𝑤4 1. The 

listed matching pairs are all correct matching pairs from manual recognition. The test re‐

sults are shown in Table 1, where 𝑆  represents the total similarity of the pairs to be 

matched and 𝑅 𝑆  represents the matching result based on the four similarity evaluation 

indices. We set the criterion of matching to 𝑆 0.75 (𝑅 𝑆 : Match) and 𝑆 0.75 

(𝑅 𝑆 : Not recognized). 
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Table 1. Experimental results of the four similarity evaluation indices (Section 2.1). 

Matching Type  Matching Pair  𝑺𝒅𝒊𝒔  𝑺𝒐𝒍𝒑  𝑺𝒅𝒊𝒓  𝑺𝒔𝒉𝒂𝒑𝒆  𝑺𝒂𝒍𝒍  𝑹 𝑺  

1:1 

𝑎 : 𝑏   0.745 0.859 0.973 0.742 0.830 Match 

𝑎 : 𝑏   0.709 0.909 0.971 0.882 0.868 Match 

𝑎 : 𝑏   0.805 0.922 0.998 0.943 0.917 Match 

𝑎 : 𝑏   0.721 0.865 0.922 0.778 0.822 Match 

𝑎 : 𝑏   0.940 0.903 0.992 0.813 0.912 Match 

𝑎 : 𝑏   0.739 0.848 0.943 0.803 0.833 Match 

1：N 

𝑎 : 𝑏 , 𝑏 , 𝑏   0.779 0.496 0.902 0.643 0.705 Not recognized 

𝑎 : 𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏   0.811 0.359 0.885 0.684 0.685 Not recognized 

𝑎 : 𝑏 , 𝑏   0.822 0.874 0.988 0.784 0.867 Match 

M:N 𝑎 , 𝑎 : 𝑏 , 𝑏 , 𝑏 , 𝑏   0.776 0.598 0.890 0.646 0.726 Not recognized 

As indicated in Table 1, when the weighted similarity of the four indices 0.75 is 

taken as the criterion, all six matching pairs in 1:1 matching can be recognized as correct 

matching pairs. However, the values of 𝑆  and 𝑆  of the matching pairs are low in 

the complex matching. One matching pair is recognized in the 1:N matching, while two 

further matching pairs are not recognized as correct matching pairs. One matching pair is 

not recognized in the M:N matching. For example, the value of 𝑆  of matching pair 

𝑎 : 𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏  is only 0.359 and that of 𝑆  is 0.684, leading to a value of the 

weighted similarity 𝑆  of 0.685 (i.e., below the threshold value of 0.75), which means 

this matching pair cannot be recognized as a correct matching pair. 

Now we introduce the proposed GFEI for further experiment. We use the normalized 

results of GFEI, 𝑁 , and 𝑆  to do the 1:1 weighted processing. The test results are 

shown in Table 2. 

Table 2. Test results of GFEI. (where 𝑆  represents the total similarity values of the matching pairs after the 1:1 weighted 

processing). 

Matching Type  Matching Pair  𝑹𝒑𝒔𝒅  𝑴𝒑𝒔𝒅  𝑺𝒑𝒔𝒅  𝑮𝑭𝑬𝑰  𝑵𝑮𝑭𝑬𝑰    𝑺𝒂𝒍𝒍  

1:1 

𝑎 : 𝑏   1 

1.8 1.249 

0.113 0.75 0.790 

𝑎 : 𝑏   1 0.113 0.75 0.809 

𝑎 : 𝑏   1 0.113 0.75 0.833 

𝑎 : 𝑏   1 0.113 0.75 0.786 

𝑎 : 𝑏   1 0.113 0.75 0.831 

𝑎 : 𝑏   1 0.113 0.75 0.792 

1：N 

𝑎 : 𝑏 , 𝑏 , 𝑏   3 0.091 0.86 0.783 

𝑎 : 𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏   5 0.063 1 0.842 

𝑎 : 𝑏 , 𝑏   2 0.108 0.775 0.821 

M:N 𝑎 , 𝑎 : 𝑏 , 𝑏 , 𝑏 , 𝑏   2 0.108 0.775 0.751 

We find the total similarity values of the matching pairs 𝑆  are all above the correct 

matching threshold of 0.75 after the weighted processing by 𝑁 , which avoids the oc‐

currence of missing matching. For example, for matching pair 𝑎 : 𝑏 , 𝑏 , 𝑏 , 𝑏 , 𝑏 , 

𝑅  is 5, and 𝑆  is only 0.359. Through the weighted processing of 𝑁 , 𝑆  effec‐

tively rises from 0.685 to 0.842, which takes this matching pair from being a not recognized 

matching pair to being a correct matching set whose threshold is 0.75. We propose the 

correct matching recognition rate 𝑃 𝑇  to describe the overall degree of improvement. 

The formula can be expressed as follows: 

𝑃 𝑇
𝑁 𝑇

𝑛
100% (10)
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where 𝑛 is the number of correct matching pairs, and 𝑁 𝑇  is the number of matching 

pairs that can be recognized as the correct matching pairs in the candidate matching pairs 

based on the evaluation indices of MSPOM, which themselves are correct matching pairs. 

The experimental results of the sample data in this section show that the recognition 

rate 𝑃 𝑇  is raised from 70% to 100% by the weighted processing of GFEI, which effec‐

tively reduces the occurrence of missing matching. 

3.2. Experimental Data 

BPM was compared and analyzed in the experiment of matching between 1:2000 and 

1:10,000 polygonal objects of residential buildings and industrial facilities in the city of 

Zhoushan, Zhejiang Province (China). The statistical description of the experimental data 

is shown in Table 3. 

Table 3. Statistical description of experimental data. 

  Dataset  𝑨  Dataset 𝑩 
Place Zhoushan, China 

Area 36 km  

Scale 1:2000 1:10,000 

Production time 2012 2009 

No. of polygons 6774 778 

As shown in Figure 6, the relative deviation of the positions of larger polygonal ob‐

jects is small, while that of smaller polygonal objects is comparatively larger. There are 

obvious differences in the data expression granularity, geometry, and location. 

 

Figure 6. The superposition of dataset 𝑨 and dataset 𝑩. 

3.3. Model Training 

3.3.1. Sample Selection 

In the experiment, 950 candidate matching pairs, generated by about 20% of the po‐

lygonal objects in target dataset 𝑩, were selected at random as a sample for training BPM 

and comparison models. Half the sample data were selected as training data and the other 
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half used as test data. The number of 1:1 candidate matching pairs was 98, which included 

58 correct matching pairs and 40 incorrect matching pairs. The number of 1:N candidate 

matching pairs was 827, which included 356 correct matching pairs and 471 incorrect 

matching pairs. The number of M:N candidate matching pairs was 25, which included 5 

correct matching pairs and 20 incorrect matching pairs. The purpose of incorrect matching 

pairs in the sample in Figure 7 is to allow the BPM to learn the mismatched features, so 

that BPM can better select the correct matching pairs from the candidate matching pairs. 

The matching results of the sample were artificially distinguished. The matching type dis‐

tribution of the sample is shown in Figure 7. 

 

Figure 7. Matching type (1:1, 1:N, and M:N) distribution of the sample. 

3.3.2. Models and Parameters 

In this experiment, BPM was compared with multivariate logistic regression [22] 

matching model (MLRM) and SVM regression [49] matching model (SRM). Five indices 

proposed in Section 2.1 and 2.2 (distance similarity, overlap rate of area, direction similar‐

ity, shape similarity, and GFEI) were used as input factors in both BPM and comparison 

model settings. The traditional empirical weight matching model (EWM) was used as a 

control experiment, and the weights of the five factors were set to 1:1:1:1:1 in turn. Ma‐

chine learning models can obtain weights by learning samples, whereas EWM is a model 

that allows us to assign weights to different factors according to experience. 

The parameters of BPM, MLRM, and SRM were as follows: 

1. BPM: We established a three‐layer BPNN structure. The activation function was a 

logistic function, number of nodes in the hidden layer was 9, momentum factor was 

0.9, learning efficiency was 0.01, and maximum number of iterations was 1000. 

2. MLRM: The confidence interval of parameter estimation was 95%, maximum num‐

ber of iterations was 1000, convergence value of parameters was 10 , and singular‐

ity tolerance was 10 . 

3. SRM: The random number state was 1, kernel function was the radial basis function, 

and gamma value was 20. 

3.4. Experimental Results and Discussion 

To quantitatively evaluate the performances of MLRM, SRM, BPM, and EWM, this 

paper compares the matching results with the results of manual discrimination. To train 

the machine learning models better, matching was performed manually by cartographic 
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engineers. We used the MBRCO method to obtain candidate matching pairs for carto‐

graphic engineers’ matching discrimination. With the help of auxiliary information, the 

multi‐phase remote‐sensing image, according to cartographic engineers’ matching expe‐

rience, they made expert visual discrimination for complex matching such as M:N. Accu‐

racy, recall, and F1‐Measure evaluation methods are adopted. The calculation formulas 

𝑀 can be defined as follows: 

𝑀: 

⎩
⎪
⎨

⎪
⎧𝑃

𝑇𝑃
𝑇𝑃 𝐹𝑃 𝐴𝑀

100%

𝑅
𝑇𝑃

𝑇𝑃 𝐹𝑁
100%

𝐹
2 ∗ 𝑃 ∗ 𝑅

𝑃 𝑅

 (11)

where 𝑃 is the accuracy, 𝑅 is the recall, 𝑇𝑃 is the number of correct matching pairs, 𝐹𝑃 

is the number of incorrect matching pairs, 𝐴𝑀 indicates ambiguous cases that cannot be 

judged explicitly through manual inspection, and 𝐹𝑁 is the number of missing matching 

pairs. In the experiment, the buffer distance 𝜇 in obtaining candidate matching pairs was 

30 m and the search threshold 𝜀 of MBRCO was 0.2. The matching performance of the 

four models is shown in Table 4. 

Table 4. Matching results of four matching models. 

Models  TP  FP  AM  FN  P  R  𝑭𝟏 

MLRM 
631 42 14 91 

91.8% 87.4% 89.5% 
81.1% 5.4% 1.8% 11.7% 

SRM 
667 15 14 82 

95.8% 89.1% 92.3% 
85.7% 1.9% 1.8% 10.5% 

BPM 
687 6 14 71 

97.2% 90.6% 93.8% 
88.3% 0.8% 1.8% 9.1% 

EWM 
619 51 14 94 

90.5% 86.8% 88.6% 
79.6% 6.6% 1.8% 12.1% 

To show the matching performance intuitively, a comparison histogram of accuracy, 

recall, and F1‐Measure of the four matching models is shown in Figure 8. 
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Figure 8. Comparison of 𝑃  (Accuracy), 𝑅  (Recall), and 𝐹  (F1‐Measure evaluation) of the four matching models, multi‐

variate logistic regression matching model (MLRM), SVM regression matching model (SRM), Matching Model Based on 

Backpropagation Neural Network (BPM), and empirical weight matching model (EWM). 

The matching accuracies of the MLRM, SRM, and BPM are all higher than the EWM 

by 1.3%, 5.3%, and 6.7% respectively. As shown in Figure 9, the number of correct match‐

ing pairs of the MLRM, SRM and BPM is higher than the 619 pairs achieved by the EWM, 

which shows that the machine learning models avoid matching errors caused by inaccu‐

rate empirical factor weights. Through the training of the sample data, reasonable evalu‐

ation criteria are established. Among them, the matching accuracy of the BPM is highest, 

i.e., 6.7% higher than that of the EWM, which indicates that BPM is most suitable for im‐

proving the matching accuracy of multiscale spatial polygonal objects. 

 

Figure 9. Comparison of the number of correct matching pairs and missing matching pairs of 

MLRM, SRM, BPM, and EWM. 

The recalls of the MLRM, SRM, BPM and EWM are reasonably high with small dif‐

ferences because these four models adopt MBRCO to acquire candidate matching pairs. 

MBRCO can obtain more candidate matching pairs, which is conducive to selecting the 

best matching pairs in multiple candidate matching pairs. It also helps the missing match‐

ing situation and makes the recall satisfactory when the location deviation between the 

source data and the target data is large. As shown in Figure 9, the number of missing 

matching pairs of MLRM, SRM and BPM is slightly lower than the 94 pairs of the EWM, 

which shows that the machine learning models can also both reduce the number of miss‐

ing matching pairs and improve the recall to a certain extent. 

As shown in Table 4, the matching accuracies and recalls of MLRM, SRM, and BPM 

are all higher than the EWM and thus their overall performance (𝐹 ) is also better. The 𝐹  

index of the EWM is 88.6%, while that of the BPM is the highest (93.8%). This shows that 

the overall performance of BPNN is the best. The overall behavior of BPM matching re‐

sults depends on the interconnection and interaction among the neurons that comprise 

the neural network, avoiding limitations. BPNN has a strong generalization ability and it 

can achieve global optimal approximation for the desired mapping. The 𝐹  index of the 

SRM is second best at 92.3%. This is because SVM follows the principle of seeking the 

optimal hyperplane and thus its classification accuracy is higher than that of either the 

MLRM or the EWM. 

The similarity evaluation indices describing matching similarity, combined with 

GFEI, are not sufficiently accurate. MBR is an extent rectangle whose sides are parallel to 
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the coordinate axes, and the extent is an approximation of the shape. In the future, we will 

construct a minimum area bounding rectangle, oriented toward the main direction of the 

object or the group of objects, that will better depict the shape, and substitute the direction 

similarity (Section 2.1.3) and shape similarity (Section 2.1.4) with one measure. 

4. Conclusions 

This study considered the matching optimization of multiscale spatial polygonal ob‐

jects. The construction of matching similarity evaluation indices and matching optimiza‐

tion based on GFEI and BPNN were discussed. The proposed matching optimization 

method was demonstrated in an experiment of matching between 1:2000 and 1:10,000 po‐

lygonal features of residential buildings and industrial facilities in Zhoushan, Zhejiang 

Province (China). 

Based on MSPOM similarity evaluation indices combined with MBR, GFEI was pro‐

posed to deal with complex matches in MSPOM. Experiments showed this index effective 

in improving the matching score of complex matching and in promoting the ability of 

matching recognition. Sample data were selected to train BPM, and BPM was then used 

to discriminate candidate matching pairs automatically. Experiments showed that com‐

bining machine learning models could effectively improve the accuracy of matching, and 

BPM was found most suitable for MSPOM among them. 

The head–tail segmentation function was used to partition and quantitatively de‐

scribe the complex matching and simple matching when constructing GFEI. In the future, 

we will consider looking for other effective functions with which to construct the factor 

model and we will compare their applicability. 
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