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Abstract: Spatial information technology has been widely used for vehicles in general and for fleet
management. Many studies have focused on improving vehicle positioning accuracy, although few
studies have focused on efficiency improvements for managing large truck fleets in the context of the
current complex network of roads. Therefore, this paper proposes a multilayer-based map matching
algorithm with different spatial data structures to deal rapidly with large amounts of coordinate
data. Using the dimension reduction technique, the geodesic coordinates can be transformed into
plane coordinates. This study provides multiple layer grouping combinations to deal with complex
road networks. We integrated these techniques and employed a puncture method to process the
geometric computation with spatial data-mining approaches. We constructed a spatial division
index and combined this with the puncture method, which improves the efficiency of the system
and can enhance data retrieval efficiency for large truck fleet dispatching. This paper also used
a multilayer-based map matching algorithm with raster data structures. Comparing the results
revealed that the look-up table method offers the best outcome. The proposed multilayer-based map
matching algorithm using the look-up table method is suited to obtaining competitive performance
in identifying efficiency improvements for large truck fleet dispatching.

Keywords: spatial information technology; large truck fleet dispatching; multilayer-based map
matching algorithm; spatial data structure; dimension reduction technique; spatial data mining

1. Introduction

Spatial information technology (SIT) has been extensively applied to vehicle navi-
gation. Intelligent transport systems (ITS) have been successfully applied to transporta-
tion management, and the map matching algorithm plays an important role in such
systems [1–5]. The efficiency and accuracy of map matching have been discussed for many
years. Large trucks (i.e., those over fifteen tons) with freight containers, and therefore, large
turning circles are commonly used in fleet dispatching. Although previous studies have
provided turning radius studies for general vehicles [6,7], the driving tracks of large trucks
are different from those of ordinary vehicles. It is difficult for the map matching procedure
to efficiently handle situations such as when a driver makes a U-turn on a complex and
narrow road, or when dealing with large trucks using large-scale positioning data, which
can reduce computing accuracy in determining their positions. In general, large fleet
positioning is monitored by global positioning systems (GPS), which have rapidly gained
importance in accurately locating the position of large trucks in logistics applications. Not
all roads and road sections are suitable for a large truck fleet and, since actual road networks
are highly complex, it is very important to be able to display real-time location information.
Improvements in fleet dispatching are therefore imperative and in this paper we propose
a new, more efficient system to assist vehicle navigation and to rapidly determine the
positions of large truck fleets.
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Map matching involves placing the positions from a GPS on a digital map. Many
studies utilize computers to perform such map matching procedures, which use coordinate
computations received by the GPS tracking information from the vehicles that correspond
to the road on the map. Moreover, the map matching method involves using the road
network information in a digital map as the classification basis for pattern recognition
to correct the GPS positioning errors according to the identified results [1,2]. Obtaining
accurate large-scale location data using currently available technology is the first step
toward determining the most appropriate driving route. In the context of location-based
services (LBS), this paper employed SIT in ITS to collect large-scale data from various
sensors in order to handle the routing problems of large trucks.

Geographic information systems (GIS) have developed using projection technology
to convert three-dimensional data into two-dimensional maps. Since map projection is
conducted using three-dimensional space, the procedures for coordinate conversion used
by projection technology can take considerable time. To limit this timeframe, it is necessary
to complete the procedure of converting all coordinates using a map matching algorithm.
GPS point data of maximum size, depending on the amount of data, are continuously
received for all processing operations [5,8]. Logistics services are now commonly employed
and smart transportation management has emerged, which uses state-of-the-art fleet man-
agement for automatic vehicle dispatching, together with GIS, which provides real-time
information on the actual road network. Intelligent fleet management and dispatching
involves an interconnected information system that is applied to allow for more effective
completion of logistics tasks. With the rapid development of information and communica-
tion technology (ICT), the Internet of Vehicles (IoV) has become the most popular smart
transportation tool for information collection from sensors and the analysis of vehicle
dispatching data to provide full services for intelligent transportation. With the ongoing
increase in road transport globally, effective fleet management has thus become imperative.
Fleet management systems use computer-based technology to handle large-scale datasets
for analysis [2,3,5] and combine SIT with ICT for vehicle dispatching. This system needs
to be able to continuously monitor the fleet location and frequently match the position to
ensure that the vehicles operate at optimum capacity. Large fleet dispatching strives for
efficiency and to offer the most appropriate fleet management services. However, complex
road networks result in distance calculation errors so the calculated precise position of the
fleet may not always be accurate. As a consequence, many studies have been conducted on
position error correction using map matching algorithms.

Probe vehicles (or floating vehicles) are now used to collect floating data to obtain
real-time road information and can also be used in a variety of effective ways with ITS
data. Probe vehicles communicate at a fixed frequency with the control center and track the
vehicles’ positions on the road. These large-scale data are immediately used for reception,
converting different types of data structures into useful traffic information for processing
the map matching algorithm [9–11]. Data structures include vector-based and raster-based
formats for the map matching algorithm. The processed spatial data can be converted into
both data formats, while data from different structures can be converted into each other [5].
Therefore, in this paper, we used the probe vehicle concept in large truck fleet management.
Traffic information was collected from the current traffic situation, and the driving time
was also provided for each segment of the road to facilitate urgent dispatching.

In general, many types of traffic information can be displayed in digital road networks.
Map matching algorithms focus on position error correction and efficiency improvements
to show the current positions of the vehicles. However, most studies on map matching
algorithms discuss position accuracy. Moreover, the road network is becoming increasingly
more complex. For the practical application of transportation, road network planning
affects the performance of map matching which, in turn, influences the paths of large truck
fleet dispatching. In this paper, we present a novel method to develop an effective map
matching application. With limited resources to upgrade the hardware and software for
improving the map-matching algorithm to implement map positioning, two key factors
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including time and money (cost) had to be considered in this study. The aim was to enhance
the efficiency of large fleet dispatching, provide efficient map positioning based on large
fleet data volumes, and solve the relevant big data problems to improve computational
efficiency.

The rest of this paper is organized as follows. Section 2 provides a brief review of
map matching algorithms and their spatial data structure. In Section 3, we develop the
multilayer-based map matching approach. Section 4 provides comparison results and
analysis using our presented multilayer-based map matching algorithm with two different
types of data structures. Section 5 reflects on the results, on the basis of which we present
the most important discussion and conclusions.

2. Algorithms and Spatial Data Structures in Geographic Information Systems (GIS)

GIS is commonly applied to vehicle management, and vehicle navigation for logistics
tasks has been a research interest for many years [2–5]. Unlike large truck fleets, typical
vehicle dispatching problems have been solved in various studies, and map matching
algorithms have drawn attention in transportation management for intelligence logistics.
Statistical methods have also been used for the analyses of vehicle management with
GIS applications. More spatial data mining information, statistical models, classification
methods, and spatial regression analyses are found in [8,12–14].

2.1. Map Matching Algorithms

Many map matching algorithms are used in navigation studies for matching GPS posi-
tions and many studies have been conducted on position error corrections. For positioning
deviations, many researchers have extended existing map matching algorithms to solve
the imprecise positioning problems and adjust for errors. Geometric information can use
point-to-point, point-to-curve, or curve-to-curve matchings [15], and these three methods
have been extended to develop map matching studies for transportation and other areas to
develop efficiency in spatial data modeling, road network matching, and visualization for
transport in a range of applications [16–18].

The development of transportation and SIT are closely interrelated. Map matching
approaches are arranged into four main categories: geometric, topological, probabilistic,
and advanced algorithms [4,19,20]. Velaga and Quddus [21] improved map matching
performance using error detection and correction. Quddus et al. [13] employed statistical
analysis to compare the performance of geometric, probabilistic, and fuzzy logic map
matching algorithms. For more statistical applications, the probabilistic method is based on
the historical matching of results to match the current position of the vehicles. Probability
and statistics were used to build error models by receiving GPS data, and statistical methods
were applied for SIT. In order to improve matching position accuracy, Pfoser et al. [19]
used a fuzzy map matching method to handle uncertainty in a fleet management system.
Luo et al. [22] proposed a hidden Markov model (HMM) map matching method to improve
mobile phone positioning efficiency and accuracy and made comparisons using GPS data
to yield better performance and demonstrate that such models could help to resolve road
matching problems.

Recently, OpenStreetMap (OSM) has been extensively discussed in many studies and
applied to achieve accuracy. OSM is a type of digital map that can be freely edited to revise
the deviation between the trajectory of positioning and actual roads. Liu et al. [23] provided
buffer radius calculations to update a new road map with OSM data. Fan et al. [24] applied
polygon matching as a map matching approach for OSM road networks, providing high
precision and matching efficiency. Brovelli and Zamboni [25] applied the map matching
method to verify the spatial precision of point locations and to detect position errors in
building footprints using OSM vector maps. To integrate the road network information,
the above methods search all OSM road combinations around the area of vehicle tracks
to match a combined route, and then use the combined road with the best match as the
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current driving route. Since road networks feature various complicated combinations in
urban areas, most studies have focused on positioning accuracy.

Other related approaches seek to enhance positional accuracy using different combi-
nations of points, lines, and curves. White et al. [1] calculated the error of a GPS position
point and road network using curve-to-point distance, curve-to-curve distance, and curve-
to-curve angle by applying the concepts in [15]. Geometry-based map matching can use
low-sampling or high-sampling frequencies as the basis for improving the trajectory-based
matching process to obtain greater positioning accuracy [1,26]; lower sampling frequencies
for GPS signals may have large positioning errors and signal losses. The Fréchet distance is
used in the curve-to-curve matching process, which determines the path for using trajec-
tory data to perform positioning accuracy [27], and the global map matching algorithm
includes a map matching method based on this distance. Local map matching is another
method and uses point-to-line matching, although its matching accuracy is lower than
that of global map matching. Liu et al. [22] proposed a local map matching method and
an intersection segment matching method to enhance efficiency and accuracy in urban
road networks. The extended approach involves adding a weighting method in the map
matching algorithm, for example, as shown by Kuijpers et al. [20] and Quddus et al. [13].
Hashemi and Karimi [28] presented a weight-based map matching method using urban
road network data, while Kong and Yang [29] studied complex networks with weighting
scores to ensure accuracy, and various map matching methods were applied in [30]. How-
ever, these methods have proved successful in solving map matching issues for vehicles in
general, but large truck fleets are more challenging.

ITS technology is deployed in the analysis of floating vehicle data (FCD), which
are extracted using advanced intelligent transport technology. Li et al. [9] discussed
using large-scale FCD for traffic surveillance. Given data volumes, cloud-computing
technologies including Bigtable and MapReduce can be effectively adapted to handle FCD.
Zheng et al. [31] used the MapReduce technology to enhance floating car efficiency with
map matching methods. Chen et al. [11] presented a multi-criteria dynamic programming
map matching algorithm that could be successfully used for matching FCD. This probe
car technique, which collects FCD car data, can obtain significant road information from
real-time traffic. Thus, floating car data can be used to update the road networks and
explore points of interest.

As noted above, there are many approaches to resolve position error correction
[21,22,26,27,32], but there are few studies on efficiency improvements for map match-
ing methods in complex road networks and for large truck fleet management. In this paper,
efficiency improvement is of vital concern for practical large truck fleet management.

2.2. Spatial Data Structure

Spatial data structures comprising vector-based and raster-based formats have been
well studied. These two formats have various advantages in different scenarios [2,5]. In
recent years, spatial data structures and characteristics have become more sophisticated
as data volume has increased, requiring higher levels of computing power. In response,
various widely applied technologies have been adopted to handle large-scale spatial
data [12,18,33–35].

The vector data structure provides a representation of real-world spatial information.
The real-world landscape includes surface, ground, and underground areas along with
various geographical features. Vector data are traced by points, lines, or polygons based on
the spatial environment and geographical information, while the attribute data refer to the
descriptive material, which is composed of text or numbers. Points can be positioned with
x and y coordinates, while road networks can be represented by lines. Polygons are the
most common type of spatial information, and a bounding box can represent a complicated
spatial area. A bounding based on vector-based data is included in the GIS platform.
Suppose that a target point (s) falls within a polygon, which means that the point is
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captured. When s has a coordinate (xs, ys), the area of the polygons of Equations (1) and (2),
described in [5], is expressed as

Xmin < xs < Xmax, (1)

Ymin < ys < Ymax, (2)

where Xmin, Xmax, Ymin, and Ymax denote the eigenvalues of the vertices. A road network
described on the basis of the vector-based format features a group of linked segments and
nodes.

The raster-based format provides the spatial position for each grid by labelling the
grid with a row and column serial number, and encodes each grid based on the property
that fully represents all the geographic information. The actual area represented by a grid
cell on the ground is the spatial resolution of the grid. The higher the resolution of the
image, the greater the spatial recognition rate. Moreover, for raster-based applications,
the digital differential analyzer (DDA) method can be used to capture the grid polygon
boundary. Boundary algebra filling (BAF), which is based on the concept of integration,
is an algorithm for a vector to raster conversion approach; moreover, the grid segment
of the polygon boundary can be captured by BAF [5]. Common tree structures such as
R-tree and Quadtree are discussed in [5,36]. R-tree is the solution used to overcome the
limit that a node can only have two sub-nodes. Quadtree is a hierarchical data structuring
technique that encodes space by dividing it into four quadrants until the property encoding
value of the sub-quadrant becomes only one. Quadtree is a popular data structure and
image compression method in the application of GIS. The Quadtree method provides a
very useful data structure for many spatial database applications. Sun et al. [36] proposed
a unique identification method using a Quadtree grid, and Yao and Li [18] listed other
progressive techniques such as Hadoop architecture for Quadtree.

Data compression is a coding technique that reduces the amount of space required
for data storage. It is an important technique to reduce the storage space of raster data.
Since a large volume of raster data is collected from the GPS-based vehicle probe, a suitable
approach for data compression is used to improve the efficiency of data processing. There
are two main compression methods. Run-length encoding (RLE) is one application of
data compression algorithms and offers highly efficient compression that can achieve
one-dimensional data compression. The number of random samples is increased when the
maps become too complex. The extended popular method is Quadtree Morton digital code
(Quadtree MD code), which is used to achieve two-dimensional compression. Quadtree
MD code is used to decrease the number of raster data retrieved and reduce the time need
for spatial identification. For instance, RLE and Quadtree MD code can be used if the
polygons do not have extremely slender shapes. The aim of mode selection and coding is
to achieve efficient compression [5,36].

The vector-based format requires complex mathematical procedures, while the raster-
based format does not use difficult mathematical equations or programming languages. In
general, the vector-based format has high accuracy but in the case of large fleet management,
it is necessary to consider the processing costs, which may be high due to data volumes.
Digital maps based on raster data can also be useful over extended periods if constructed
appropriately.

3. Research Methodology

Since the return of coordinate data from vehicles is continuous, the fleet dispatching
management platform may quickly become overloaded. This paper uses a point-to-polygon
method to deal with the high volumes and rates of location GPS data returned by large
truck fleets. We also used the same technology to process large fleet location data and found
that multiple layer grouping combinations can be used to reduce loading. Figure 1 shows
four steps of the process to achieve efficiency improvements with a new multilayer-based
algorithm for map matching.
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Figure 1. Flowchart for the multilayer-based map matching process.

Step 1: Initially, there are two procedures for traffic facility and road data. The traffic
facility can be constructed as a polygon. For road data, center lines using vector data are
collected from ArcGIS [37]. These center lines were used to produce buffers, and then the
road can be constructed as a polygon. For the proceeding multilayer-based map matching,
we constructed a large fleet management system based on a structured query language
(SQL) database for several segments from the road network data to process map matching.

Step 2: Truck fleet data were collected from onboard GPS and plane coordinates of
TWD 97 TM 2◦ obtained for sample testing.

Step 3: The puncture (traditional) method using vector data that has more relevant
but complex structures was used to partition and compose the digital map. Thereafter,
we used an improvement method, adding a spatial division index, which still requires
complex mathematical procedures. Since more large-scale data are used for reception and
cause a computational bottleneck, we proposed a look-up table method using raster data
to improve efficiency.
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Step 4: A comparison of the methods based on the two data types was made to provide
guidance for large truck fleet management.

3.1. Multilayer-Based Map Matching

To construct the framework of the multi-layer structure in Step 1, we assumed that
the digital map of the national road network took a single-line network in a vector-based
format based on the road center lines. The road center lines were used to complete the
conversion procedures of the segments. These procedures include road data stratification,
defining the segments and facility ranges, and determining the surrounding point distance.

In the past, road networks were described according to each section of the road
but were not considered altogether. Large truck fleets usually have common routes for
dispatching. To enhance the technology of map matching efficiency in a fleet management
system, we proposed a multi-layer method with road networks for large fleet dispatching.
We suggest that the constraint of road networks can be divided into two categories, viz.
traffic facilities and roads, and can be written as

QTY(GPS) = QTY(TFi(GPS)) + QTY
(

Rj(GPS)
)
, i ≥ 0 and j ≥ 0, (3)

where GPS is the quantity (QTY) of GPS data. TF denotes the quantity of GPS data for
each traffic facility and there are i categories of TF. R denotes the quantity of GPS data for
each road and there are j categories of R. Usually, traffic facilities have smaller categories
than roads. It is very important to enhance efficiency when the large truck fleet data
volume increases in size. Several layers are taken from road network information. For the
planning of large truck dispatching routes, multi-layer selection can be associated with
the road network. This study considered the road network as the interplay between traffic
facilities and roads. Different combinations can affect the performance of the map matching
algorithm. The multilayer-based map matching can have an important influence on the
efficiency of the map matching algorithm; therefore, we proposed this approach to enhance
the overall efficiency for determining map positioning.

3.2. Coordinate Conversion

In executing map matching, this study also used coordinate conversion to improve
time efficiency. In Step 2, we used linear coordinate transformation to enhance map
matching performance and used the area of coordinate conversion with an interval of
2 arcminutes for the transformation procedure. Here, we adopted the formulae for linear
coordinate transformation as described in [38]; this is written as:

X = x0 + ar(γ− γ0) + aθ(θ − θ0), (4)

Y = y0 + bθ(θ − θ0) + bγ(γ− γ0), (5)

where X and Y, respectively, denote the values of the plane coordinates; γ and θ are the
values of the longitude and latitude; x0 and y0 are the initial values of the transformation of
coordinate areas; γ0 and θ0 are the initial values of the longitude and latitude; and aγ, aθ , bθ

and bγ are undetermined coefficients. When applying the transformation procedures, the
values of aγ, aθ , bθ , and bγ may be different due to the location and size of the coordinate
conversion area. aγ and bθ are the key conversion coefficients from the longitude and
latitude to the X and Y coordinates. aγ and bθ have a proportional relationship. aθ and
bγ are auxiliary transformation coefficients, where aθ indicates an increase of the same
latitude with longitude, and bγ indicates an increase of the same longitude with latitude.
Moreover, ∆γ and ∆θ are the increments of longitude and latitude from the origin to the
end of the coordinate conversion area. The ranges of four points, (γ0, θ0), (γ0 + ∆γ, θ0),
(γ0 + ∆γ, θ0 + ∆θ), and (γ0, θ0 + ∆θ), provide an approximately trapezoidal area. Since
∆γ and ∆θ are very small, the longitude and latitude can be regarded as approximately
parallel. There is a linear correspondence between the geographical coordinates of points
and the increase in the longitude and latitude of points relative to (γ0, θ0) and the plane
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coordinates. Moreover, the transformation errors can be controlled within a certain range
for the coordinate conversion area [38,39]. Using the dimension reduction technique, linear
transformation can simplify complicated conversion and enhance traditional coordinate
transformation.

3.3. Comparative Methods

This study evaluates our proposed multilayer-based map matching algorithm under
both spatial data structures, vector and raster (Step 3), in order to compare performance
(Step 4). The point-in-polygon algorithm described in [40,41] was applied to verify perfor-
mance efficiency using the puncture (traditional) method to determine whether the point
falls within the polygon. In this scenario, the puncture method can be used with vector
data to process the mapping between coordinates and map features and can be applied to
map matching algorithms [39].

This paper extends the puncture method to multilayer complex road network design.

Assume that ray
→

AB extends A(x1, y1) to point B(x2, y2), and P(x3, y3) is the initial point to
make a ray from left to right. For each edge of the polygon, the puncture method is used to

determine whether P is on
→

AB or if P and
→

AB are intersected. We then distinguish this into
four regions for the puncture method, as shown in Figure 2. The lines of P1, P2, and P3 and
→

AB do not intersect, while P4 and
→

AB are intersected. P5 is on the ray
→

AB and P5 is within
the polygon. To provide all edges of the vertices on the polygon, the difference-product’s
y-coordinate is given by

y−Value = (y− yi)(y− yi+1), (6)

where y is for P; yi is for A; and yi+1 is for B. As stated above, the polygonal areas of A, B,
and P can be shown as

S =

∣∣∣∣∣∣
x1 x2 x3
y1 y2 y3
1 1 1

∣∣∣∣∣∣ = (x1 − x3)(y2 − y3)− (x2 − x3)(y1 − y3), (7)
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A segment polygon was built in the continuous-node data table using the puncture
method. A polygon is a set of node coordinates built on the feature. The proposed approach
uses the polygon features as the road segments. This functions like an electronic fence,
where the number corresponding to the feature is the segment code. The surrounding
point coordinates are composed of the surrounding points on the perimeter line of the
segments. The number of surrounding points is set according to the size of the segment
region, and the density of the surrounding coordinates affects the fineness of the segments.
This study used 50 m as the criterion for the collection of the surrounding points. When
considering the length of a road segment, the goal is to make the large truck fleet travel at
a normal speed on the road, where each return can be on a different segment. Performance
bottlenecks may occur when applying the puncture method to process large amounts of
data. In general, sophisticated mathematical and computational techniques are required
for vector data structures and, when the data sources are themselves complex, it becomes
difficult to solve the problems.

The second approach involves adding the spatial division index in the puncture
method. In this way, a simple division operation can be used to quickly determine which
point coordinates of the square block are located. This multilayer-based map matching
algorithm uses a method with a spatial division index. However, large-scale data can
seriously reduce the retrieval efficiency. If the spatial division index table is well established,
it can more efficiently determine the improvements to the multilayer-based map matching.

According to the literature in [40], the authors concluded that the polygon in raster
format using the grid method was more efficient due to a few mathematical computations.
Therefore, we extended the idea and proposed a third approach that involves a look-up
table method using a raster-based format. The raster data structure has the same square
size as the grid, and no complicated mathematics are required. For the grid procedures, the
DDA is considered to take the grids of the polygon boundary. The polygon boundary grid
point of the extraction operation is shared among the segments. The DDA method uses
the slope of a line segment to take a grid point on a line at a unit interval (the minimum
grid size) to determine the corresponding integer value on the other axis of the closest
line. The polygon boundary of the grid data can be extracted without using complicated
trigonometric functions. BAF is used to determine the entire grid within the polygon. The
whole polygon grids are achieved using DDA and BAF. Encoding and compression are the
last steps needed to complete the raster-based procedure before the grid spatial database is
ready for use.

The above three spatial data structure approaches can be used for comparing perfor-
mance using multilayer-based map matching. Based on Equation (3), we constructed an
equation to calculate the time as below:

T =


QTY(GPS)_SPu

QTY(GPS)_SInd
Pu

QTY(GPS)_Lt

nL < n < nU , (8)

where T denotes the computation time; QTY of GPS includes the QTY of traffic facilities
and roads of GPS data; Pu is the puncture method; Ind is the puncture method with the
spatial division index; S is based on Equation (7); Lt is the look-up table method; and
n denotes the sample, which has lower bound (nL) and upper bound (nU) samples. In
general, the sample is based on the scale of large truck fleet. This study aimed to use this
multilayer-based method with different data structures to effectively achieve improvement
for map matching under existing limited software and hardware resources.

4. Results and Analysis

This section illustrates the comparison results using multi-layer map matching algo-
rithms. Based on spatial map matching of a complex road network, this study used the
national electronic map road center single-line vector data produced by the GIS Research
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Center, Feng Chia University (GIS.FCU), and processes the segments by buffers according
to the width of the road. This method then utilizes the surrounding points on the perimeter
of the road segments to generate the nodes of the road segments. We adopted different
categories of segments in Taiwan’s road networks for the case study. This study provides
an applicable map matching algorithm and efficiently matches geographic coordinates to
an actual route. The empirical data were actual GPS car driving records from Taiwan’s
large truck fleet dataset, which were collected from car kits on large trucks. The coordinates
were taken from large trucks ready to travel, and the proportion of GPS coordinates was
chosen to match the actual road for navigation.

We considered that traffic facilities consisted of interchange and service stations. Roads
included national highways, express highways, provincial highways, county highways,
district roads, and normal roads. Our large fleet management system included the segment
data arranged as in Table 1. Traffic facilities and roads as eight-segment layers on Taiwan
main island were collected from GPS instruments installed on large trucks. Table 2 shows
that the quantity (QTY) of GPS data has one million empirical data points. Transmission
was the fourth generation of mobile phone mobile communication technology standards
(4G). The source data were collected from 35 trucks with eight working hours per day for
one month, and the sampling interval was 30 s. Plane coordinates were used in the large
fleet management system, thus type of orography was not considered in this study. Table 3
gives an example of an interchange, which includes one center point and 99 vertices from
our system. A polygon was composed of 99 vertices. Figure 3 illustrates the example from
Table 3 on a map using ArcGIS software. When a point falls within this polygon, the point
information can be displayed in the caption field.

Table 1. Segment data.

Category Total

Center point 441,287

Layer description Number of vertices

Interchange 15,934
Service station 353

National highway 58,337
Express highway 39,495

Provincial highway 220,689
County highway 151,213

District road 525,619
Normal road 1,637,631

Total 2,649,271

Table 2. Data collection.

Source Transmission QTY of Trucks Period Interval Total

GPS data 4G 35 1 month
(8 h per day) 30 s 1,000,000
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Table 3. An interchange example.

Category Node_ID X (TM2◦) Y (TM2◦) Caption

Center point 1000238 320,518 2,776,740
Dahua System Interchange,
National Highway No. 1,
Qidu Dist., Keelung City

Category Order Node_id Node_sequence X (TM2◦) Y (TM2◦)

1 1000238 0 320,631.54598 2,776,896.05615
2 1000238 1 320,679.75089 2,776,909.23300

Vertices 3 1000238 2 320,729.08397 2,776,917.19750
...

...
...

...
...

99 1000238 98 320,611.60494 2,776,899.41189
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Figure 3. Illustrative example of the interchange.

For the map matching comparison of the two data structure types, it is necessary
to convert the geodetic coordinates to plane coordinates. For all GPS coordinates, the
WGS 84 longitude and latitude geodetic coordinates can be immediately used via linear
transformation formulae to transform them into Taiwan TWD 97 TM 2◦ plane coordinates.
The scope of implementation and testing was based on Taiwan’s main island. The scope
ranged from 120◦ to 122◦ eastern longitude, 21◦55′ to 25◦31′ northern latitude, spanned
south and north by 216 arcminutes, and crossed east and west by 120 arcminutes. According
to 2 arcminutes sections, there were 60 × 108 coordinate conversion areas. The two orders
in Table 4 are expressed as:

Nθ =

[
θ − 7200

2

]
, (9)

Nγ =

[
γ− 1315

2

]
, (10)

where Nθ is the longitude order, and θ denotes the longitude value. Nγ is the latitude order,
and γ denotes the latitude value (units: arcminutes). Here, 120◦ was 7200 arcminutes,
21◦55′ was 1315 arcminutes, 2 denotes arcminutes sections, and square brackets denote
Gauss notation.
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Table 4. Two arcminute interval linear coordinate transformation.

Nγ

Nθ

1 · · · 60
1 (X, Y, aγ, aθ , bθ , bγ)(1,1) · · · (X, Y, aγ, aθ , bθ , bγ) (60,1)
2 (X, Y, aγ, aθ , bθ , bγ) (1,2) · · · (X, Y, aγ, aθ , bθ , bγ) (60,2)
...

... · · · ...
107 (X, Y, aγ, aθ , bθ , bγ) (1,107) · · · (X, Y, aγ, aθ , bθ , bγ) (60,107)
108 (X, Y, aγ, aθ , bθ , bγ) (1,108) · · · (X, Y, aγ, aθ , bθ , bγ) (60,108)

This paper used the two arcminute interval linear coordinate transformation formulae
with six parameters, as shown in Table 4. The notations have already been described in
Equations (9) and (10). There were 60 longitude serial numbers, and 108 latitude serial
numbers, representing a total of 6480 points. The results showed that the conversion errors
could be controlled within one meter, which represents the overall efficiency improvement
of map matching.

For example, the linear transformation formulae employed in this study used two
arcminute intervals to transform WGS84 coordinates into TWD 97, which is the commonly
used coordinate projection system used in Taiwan. The transformation errors were within
one meter, both latitudinally and longitudinally. The linear transformation computation
time was about 1.737 × 10−5 s. For the traditional coordinate transformation using the GIS
software tool, the computing time was 2.784 × 10−5 s [39]. Therefore, linear transformation
was used in this study to enhance the efficiency of our large truck fleet case study.

Moreover, the space is divided horizontally and vertically over 5000 m. Using Taiwan’s
main island as the range, the origin coordinates are (135,000; 2,400,000) from the lower
left corner coordinates (which are origin coordinates (135,000; 2,400,000)) to the upper
right corner coordinates (355,000; 2,800,000), which can be divided into 44 × 80 square
blocks. In the empirical operating procedure, the longitude and latitude coordinates are
converted into TM 2◦ plane coordinates, and the plane coordinates are subtracted from the
origin coordinates (135,000; 2,400,000). The coordinate values are divided by the division
distance of 5000 m, and (Xi, Yi) are index values using Equations (11) and (12). For example,
assuming that X is 230,529 and Y is 2,621,656, the values of index code can be given as
follows:

Xi=

[
X− 135, 000

5000

]
= 19, (11)

Yi=

[
Y− 2, 400, 000

5000

]
= 44 (12)

Index(Xi , Yi) = (19, 44). (13)

Furthermore, the raster-base format consists of horizontal encoding, vertical encoding,
and Quadtree MD code. As most of Taiwan’s roads run in a north and south direction,
vertical encoding and compression obtain the best performance. The procedure for en-
coding and compression may take time, but it can be replaced by subsequent efficiency
improvements since digital maps are not changed frequently.

For the output of Equation (8), the computing time (T) divided by 50 runs is the
average processing time (i.e., the average case), which is calculated by the following
formula:

Average case =
∑50

i=1 Ti

50
. (14)

For the outcomes, the performance of the best and worst case have been shown. The
experiments included 100,000 samples with 50 runs, and the computational results are
shown in Table 5. According to the performance of the individual segment layers for the
puncture method, normal roads offered the worst results. All the values were large. An
individual segment layer for the puncture method with the addition of a spatial division
index showed significantly improved performance. The values for computational time
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were between 24 and 1076 s. Adding the spatial division index was more efficient than
using the puncture method, except for service stations.

Table 5. The individual segment layer using 100,000 samples with 50 runs.

Method Layer Description
Computation Time (s)

Average Case Best Case Worst Case

Puncture method

Interchange 147.54 145 152
Service station 17.82 17 19

National highway 365.32 364 366
Express highway 365.52 363 368

Provincial highway 2007.22 1996 2012
County highway 1391.02 1381 1429

District road 4782.36 4717 4878
Normal road 11,765.76 11,654 11,999

Puncture method
supplemented

with the spatial
division index

Interchange 25.12 24 27
Service station 27.66 26 32

National highway 52.94 52 54
Express highway 47.72 46 48

Provincial highway 71.70 70 74
County highway 62.48 60 64

District road 172.70 171 173
Normal road 1073.50 1072 1076

Look-up table
method

Interchange 11.06 11 12
Service station 11.08 11 12

National highway 12.04 12 13
Express highway 12.06 12 13

Provincial highway 12.86 12 13
County highway 12.84 12 13

District road 13.64 13 14
Normal road 16.80 14 18

According to this 50-run outcome, as Table 5 shows, the values for the normal road
case were slightly higher than those of the other seven layers. The look-up table method
yielded the excellent results listed in Table 5. The best case for the normal road using the
look-up table method yielded good performance, from 11,654 down to 14 s. Since the
quantity of service station had less data and the position distribution was scattered, service
stations with a spatial division index may not be efficient. Figure 4 shows that the puncture
method provided a steep increase from the county highway and included 100,000 samples
with 50 runs. Overall, the look-up table method with individual segment layers could
produce a more stable performance than the other two methods.
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Figure 4. Standard deviations of three methods using 100,000 samples with 50 runs.

As stated above, if a normal road is chosen as the first layer, the computational process
may take a great deal of time; thus, a normal road should not be chosen as the first layer.
Moreover, once the individual computation of each layer is done, then the combination
of all layers together may also be time-consuming. To improve efficiency, we grouped
interchanges and service stations for traffic facilities and the other six layers for roads.

In Table 6, the experiments still featured 100,000 samples with 50 runs. To compare
individual calculations with the groupings, Table 6 performed better than Table 5. The
grouping of roads took more time than the grouping of traffic facilities. In this case, the
puncture method reduced the efficiency of process execution and affected the output
performance. The look-up table method still required much less computation time than the
other two methods. The look-up table method also produced a stable performance. The
three categories of standard deviations are summarized in Table 7. For traffic facilities and
roads, the puncture method had larger standard deviations. Grouping traffic facilities and
roads provided better results than using individual layer calculations. All eight-segment
layers were grouped together (i.e., traffic facilities and roads). The puncture method
provided a very large standard deviation value of 49.8420, whereas the other two methods
had low standard deviations. Therefore, different grouping combinations can affect the
efficiency of multilayer-based map matching in different ways. The category of roads is
also more complicated than traffic facilities, so applying the puncture method with vector
data may yield excess computing loads and delays. However, the grouping using the
puncture method supplemented with the spatial division index and look-up table method
can retain small standard errors of measurements.
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Table 6. Two groups using 100,000 samples with 50 runs.

Method Category Average Case Best Case Worst Case Range

Puncture method
Traffic facilities 151.9800 148 164 16

Roads 2902.3200 2876 2931 55

Puncture method supplemented with the
spatial division index

Traffic facilities 43.88 43 46 3
Roads 222.40 221 224 3

Look-up table method Traffic facilities 14.04 14 15 1
Roads 16.66 15 18 3

Table 7. Standard deviation of the eight-segment layers for the three methods.

Standard Deviation

Category Puncture Method

Puncture Method
Supplemented with
the Spatial Division

Index

Look-Up Table
Method

Traffic facilities 5.5420 1.0999 0.1979
Roads 14.6377 0.8806 1.0616

Traffic facilities plus
roads 49.8420 0.7887 0.8485

Computation time using all eight-segment layers together and the average processing
time for every point was considered. The experiments outlined in Table 8 still featured
100,000 samples with 50 runs. As shown in Table 8, the puncture method took 2756.76 s, and
its average processing time was 0.0275676 s. The computation time for the puncture method
supplemented with the spatial division index was 217.52 s, and its average processing
time was 0.0021752 s. The computation time of the look-up table method was 15.12 s,
and its average processing time was 0.0001512 s. The puncture method supplemented
with the spatial division index improved the efficiency by 12.67 times compared to the
method without a spatial division index. Using the look-up table method with raster as
the data structure along with the data compression technology improved the average map
matching processing time by 14.39 times compared to the puncture method supplemented
with the spatial division index and by 182.33 times compared to the puncture method.
The computation time of the look-up table method was the shortest. The percentage of
deviation (PoD) was between the best-solution (BS) and the solution-so-far (SSF):

PoD =
BS− SSF

SSF
× 100%. (15)

Table 8. The comparisons of grouping eight-segment layers using three different methods.

Puncture Method

Puncture Method
Supplemented with
the Spatial Division

Index

Look-Up Table
Method

Samples 100,000
Computation time (s) 2756.76 217.52 15.12
Average processing

time for every point (s) 0.0275676 0.0021752 0.0001512

Based on Equation (15), comparing other puncture methods with the puncture method
supplemented with the spatial division index, the improvement was 92.11%; thus, the
efficiency was significantly improved. This indicates that the spatial division index can
enhance the efficiency of map matching. The highest improvement was 99.45% between
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the puncture method and the look-up table method. In terms of average processing time,
the puncture method with the spatial division index was the second-best approach. Thus,
map matching based on a raster data structure using the look-up table method was more
efficient than the other two methods. Figure 5 shows three samples of 10,000, 50,000, and
100,000, and illustrates that the line of the puncture method was higher than the other two
lines when the sample increased. This study employed a statistical test method using the
independent samples test [42] and arranged the values in SPSS software. Table 9 shows
that the P-value for Levene’s test was 0.000, which is statistically significant at a P < 0.05
level. Thus, the variances were not equal. The P-value of the independent T-test was
0.000, which is statistically significant at a P < 0.05 level. Therefore, the puncture method
supplemented with the spatial division index and the look-up table method offer significant
improvements.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 6 of 7 
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Table 9. Independent samples test.

Independent Samples Test
Levene’s Test T-Test for Equality of Means

F-Value P-Value DF T-Value P-Value

Puncture method vs. puncture
method supplemented with the

spatial division index
120.059 0.000 49 360.196 0.000

Puncture method vs. look-up
table method 120.628 0.000 49 388.899 0.000

To evaluate the look-up table method’s performance, four samples of 10,000, 50,000,
100,000, and 500,000 were used. Table 10 demonstrates that the average processing time
for every point with four samples was less than 0.0002. Thus, the look-up table method
is a competitive solution for using a multilayer-based map matching approach to group
eight-segment layers. In the row for the average processing time of every point, the look-
up table method provides stable performance using different samples. To evaluate the
performance, the multilayer-based map matching algorithm using a look-up table with
raster data provided the best efficiency for large truck fleet dispatching.
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Table 10. Comparisons of grouping the eight-segment layers with different samples using the look-up
table method.

Look-Up Table Method

Samples 10,000 50,000 100,000 500,000
Computation time (s) 1.1 7.16 15.12 75.6

Average processing time for every point (s) 0.00011 0.0001432 0.0001512 0.0001512

The computer used for the empirical tests was a desktop PC running Microsoft
Windows 10, with an Intel Core i5-9400F CPU at 2.9 GHZ and 32 GB of RAM. Figure 6
shows the trade-off between efficiency and cost [39]. First, when the data structure and
algorithm procedures are the same, marginal efficiency improvements can be realized by
improving the hardware and software. After the hardware and software are upgraded to a
certain extent, the marginal efficiency increase will gradually decrease. The efficiency limit
is shown in Figure 6. When determining the investment costs of hardware and software,
the actual cost, the market acceptable cost, and the profit should be considered. The best
option may not be to upgrade only the hardware and software.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 7 of 7 
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Ultimately, this study used different data structures to effectively improve map match-
ing and maximize the efficiency of map matching under existing software and hardware
constraints. The number and complexity of the road sections will obviously affect the
efficiency of multilayer-based map matching with the puncture method, but the number of
GPS coordinate data do not greatly affect the computation time when using the look-up
table method. The look-up method uses a database to sort the raster data and build an
index for search and analysis. It is possible to reduce the length of the raster data and
improve searching efficiency through coding and compression. The method of the spatial
division index involves dividing the data into several layers and large blocks, which ef-
fectively reduces the number of data to be searched and improves the efficiency of map
matching. Although multilayer-based map matching using raster data loses the partial
geometry elements of the road networks, which negatively affects accuracy, the efficiency
is also increased.

5. Discussion and Conclusions

The aim of this paper was to enhance the efficiency of large truck fleet dispatch to
achieve timely deliveries. Our proposed multilayer-based map matching method can
provide appropriate grouping combinations to handle complicated road networks for
managing large truck fleet dispatch. The linear transformation process was verified for
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handling GPS coordinates in a short time and rapidly providing all transformation coor-
dinates in the case study. Overall, the computation time for individual layers was higher
than that for the grouping layers.

The multilayer-based map matching approach presented here provided different
outcomes with the three approaches used to compare the efficiency. Employing computers
to perform the puncture method is time-consuming. The puncture method with multilayer-
based map matching, however, can reduce the average processing time for every point.
Establishing a spatial division index for the puncture method can improve performance,
since indexing is a technical approach to reduce the scope of information data. Although
indices speed up queries when many of the fields are indexed, they require even more
space than the original data table. By maintaining the organization of the index tables, it
takes more time for the data to change. Adding a spatial division index is recommended
as the second-best approach. Raster-based compression can also take a great deal of time
unless the map undergoes large revisions. Thus, raster maps cannot be frequently redrawn
in practice.

Previous studies have focused on improving vehicle positioning accuracy and used
the map matching method for general vehicle cases. This paper focused on map posi-
tioning and efficiency performance. Vector-based and raster-based formats have been
shown to have advantages depending on different scenarios and so in this study, we used
the point-to-polygon approach and then integrated these technologies and methods for
improving performance. Based on the conclusion for polygons in raster-based format
from [40], we extended the idea to solve large trucks with large-scale positioning data.
The method contributes to large truck fleet management and shows that multilayer-based
map matching with a raster-based data structure can improve fleet dispatch. Furthermore,
a multilayer-based map-matching algorithm using the look-up table method does not
require complicated mathematical equations or programming languages and can yield
the lowest average processing time. When the sample size increased, the look-up table
method offered a stable performance. With the increase in large truck fleets, our proposed
approach can handle the computational bottleneck. Generally, mobile phones have limited
computational ability, but installing a multilayer-based map-matching algorithm with a
look-up table in the dispatching system can reduce load, and logistics technicians can
operate obtain fleet coordinate information via mobile phone.

A limitation of our study is that we did not consider the overlapping of facilities.
Generally, actual road networks contain various irregular intersections. Future research
could address the intersections in facilities based on extending the center of the road a
certain distance in the horizontal and vertical directions, rather than using a polygonal
design. Internal consistency, which is a reliability topic [43], should be achieved in pre-
liminary evaluations to reduce sample and measurement errors. In this study, the smaller
truck fleet scenario was not our objective to assess the financial viability, and economies
of scale are such that it is probably more feasible economically in large truck fleets, but
this was not a consideration in this paper. Therefore, this study only focused on large
trucks. In the near future, a similar approach can be applied to other regions and countries,
and the types of orography can be considered for further research. The multilayer-based
map matching approach can also determine fleet locations for further comparisons with
different logistics vehicle sizes. This multilayer-based map matching algorithm using the
look-up table method can serve as a useful reference in enhancing the performance of large
truck fleet dispatching. Ultimately, by improving efficiency, our proposed map matching
method can help large truck fleet drivers to quickly obtain the relevant point coordinates
and complete their dispatching tasks.
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