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Abstract: Interest in and use of 3D visualizations for analysis and communication of flooding risks
has been increasing. At the same time, an ecosystem of 3D user interfaces has also been emerging.
Together, they offer exciting potential opportunities for flood visualization. In order to understand
how we turn potential into real value, we need to develop better understandings of technical
workflows, capabilities of the resulting systems, their usability, and implications for practice. Starting
with existing geospatial datasets, we develop single user and collaborative visualization prototypes
that leverage capabilities of the state-of-the art HoloLens 2 mixed reality system. By using the 3D
displays, positional tracking, spatial mapping, and hand- and eye-tracking, we seek to unpack the
capabilities of these tools for meaningful spatial data practice. We reflect on the user experience,
hardware performance, and usability of these tools and discuss the implications of these technologies
for flood risk management, and broader spatial planning practice.
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1. Introduction

With changing climate and growing sea levels, coastal and riverine flooding is a
growing concern across the world. With projected increases in the magnitude and fre-
quency of flooding, understanding the risks and developing policies to address them is an
integral part of urban planning. Visualizations play a crucial role in understanding and
disseminating information from flood simulations and scenario modeling for planners,
as well as negotiating adaptation pathways among exposed stakeholders [1–3]. Given
the institutional nature of flood risk management (FRM), most developed visualizations
attempt to fit into the existing planning/risk management infrastructure. This integration
makes the flood visualization domain particularly interesting, as the developed tools can
be analyzed within the applied context of spatial analysis of risk and its communication
to stakeholders.

Over the last decade, 3D visualizations of flood impacts have been increasingly promi-
nent in scholarly literature [1,4,5]. These are mostly produced for risk communication
purposes, often with an assumption that perspective 3D views of the landscape are easier
to interpret for non-experts [6]. Although many developed tools are compelling, we still
lack empirical studies to turn novelty and claims of improved understanding of data into
demonstrable value for users. This trend has certainly been influenced by increased gener-
ation and use of 3D data (e.g., LiDAR, structure-from-motion (SfM), building information
management (BIM)) where the vertical characterization of space is more complex [7,8].
This has, in turn, increased both the need and demand for software that can adequately
represent topology in three dimensions and provide interactive and querying capabili-
ties. However, now most of the viewing of and interaction with 3D content is mediated
through 2D displays and windows, icon, mouse, pointer (WIMP) interfaces. This is signifi-
cant, because it eliminates binocular depth cues, the potentially invaluable opportunity
to view/manipulate and experience inherently 3D data in three dimensions and restricts
interaction to keyboard and mouse inputs.
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Concurrently, researchers are investigating ways to leverage emerging 3D interfaces
to improve interaction with, and perceptual experiences of, 3D data. Within the FRM
domain in particular, mobile augmented reality tools have been developed to visualize
flood impacts in situ (e.g., [9–12]), ex situ (e.g., [13]), and immersive virtual environments
have been created to visualize potential futures for coastal adaptation [11,14,15]. This
growth in research interest has mirrored the development of a new generation of mixed
reality (MR) interfaces that have potential to alter, and potentially improve, our interaction
and understanding of complex 3D data. When discussing mixed reality tools, we largely
follow the definition of an augmented reality (AR) system offered by Azuma [16], where
the system combines virtual and real content, is registered in three-dimensional space, and
is interactive in real time. The visualization solution described in this paper is distinct
from other types of tangible interfaces, such as AR sandboxes, where physical objects are
augmented with digital overlays of data (e.g., [17,18]). We use the term MR instead of AR
for two reasons: AR systems often focus on augmenting the real landscapes with virtual
content, while our application is more environmentally agnostic (thus, further along the
virtuality continuum of Milgram and Kishino [19]. Secondly, the term MR has been used
widely by researchers and developers to describe head-mounted display-based systems for
AR/MR (e.g., [20,21]).

MR geographic visualization has been developing as a distinct domain over the
last three decades, but we are now at the pivotal point, where such tools are becoming
usable enough to be introduced into routine work [22–25]. In this medium, real world
views can be augmented with spatially registered three-dimensional content [16]. With
advances in display technology, processing power, cloud computing, computer vision, hand
and eye tracking, registration and occlusion management, these tools provide numerous
opportunities for development of alternative data interfaces. This moment presents a
unique opportunity for researchers and practitioners to evaluate their application in spatial
data practice.

While this trend is sparked by the availability of new devices, the interest in emerg-
ing interfaces is not about the specific hardware or software. The mixtures of content
and narrative are mediated through user interfaces, displays, input/output channels to
deliver unique perceptual experiences of spatial data for the user. Each of the compo-
nents making up an interface between the underlying data and user have the ability to
influence understanding of the phenomena, whether in terms of topology of risk (e.g.,
flood extents and depths), or the associated narrative (e.g., risk perception, willingness to
act) [26]. The preceding introduction and commentary reveal that interfaces are far from
being just novel display devices or interaction systems. They are multifaceted perceptual
and experiential relationships between humans and phenomena, mediated by the data
that represent them, the visualizations that attempt to convey them, and the interfaces that
mediate this exploration. Mixed reality interfaces, in particular, are a promising tool to
improve user interaction with three-dimensional spatial data due to the combination of
visual, sensory-motor, and proprioceptive feedback in the interaction with virtual objects
in real spaces [27,28]. Proprioception refers to the person’s awareness of their own body
in space/environment, which is preserved when using MR tools [28]. This multi-sensory
nature of the interface may improve the comprehension and interaction with complex 3D
data. With hand tracking, we can develop interfaces that leverage a user’s knowledge
about interaction with real objects to manipulate virtual content, potentially simplifying
interaction with complex 3D content (compared to a WIMP interface).

Furthermore, mixed reality interfaces offer distinct and significant features for ap-
plied spatial data practice, especially when it comes to collaborative tasks in a shared
environment. In particular, the legacy spaces in which most routine work happens will
require dedicated open spaces to leverage completely virtual environments (VR), while
we might get most of the benefits of virtual environments in MR systems (e.g., immersion,
binocular 3D, natural user interfaces), with a more flexible integration into work spaces.
MR tools preserve the ability to see and interact with other people and the surrounding
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environment, and to interact with non-MR tools (e.g., paper maps, sketches), without the
need to exit the interface. Numerous researchers have recognized this potential over the
years [22,28–31]. Much of the research in the past has focused on overcoming technical
hurdles in implementing MR systems. While current MR devices are not yet ubiquitous,
much of the development infrastructure needed to create usable visualizations exists. This
presents exciting opportunities for researchers to develop and evaluate emerging platforms
for their ability to deliver meaningful and useful interaction with rigorous spatial data.
Furthermore, much conceptual work is needed to understand the role of various compo-
nents of the MR interface (data, display, interaction, visualization approaches) in mediating
understanding of data and associated phenomena by user.

This paper sits at the intersection of evolving modes of flood risk analysis and commu-
nication, and emerging interface technology. Its objective is to report on an applied mixed
reality FRM visualization system and then unpack the interplay between interface capabili-
ties, informational experiences grounded in FRM practice, and contemporary workspaces.
The sections that follow describe the workflows through which we explored the feasibil-
ity of developing MR flood risk visualization tools; the resulting visualization interfaces;
critical reflection and review of these systems from the perspectives of their performance,
usability, and potential as operational tools; and their potential to integrate with current and
future spaces of FRM practice. In the first of these, we report the design and development
of a set of prototypes developed to demonstrate the possibilities of single-user and collabo-
rative MR flood visualizations. Using the case study of flood risk management along the
shore of the Fraser River in Vancouver, we develop 3D visualizations of the area, associated
impacts, and potential mitigation infrastructure. By integrating this visualization into
the state-of-the-art mixed reality system HoloLens 2, we aim to understand the usability
of such tools and highlight how the distinct aspects of the interface alter the perceptual
outcomes of 3D visualization. Informed by this experience, we present a discussion of
the potential concerns for integration of MR visualizations into practice. Ultimately, this
effort seeks to assess MR tools for potential to improve interaction, understanding and
communication of flood risks through visualization by planners, decision-makers, and
stakeholders.

2. Methodology

This section describes the development methodology for the mixed reality flood
visualization tools. The workflow consists of data preparation in a geographic information
system (GIS) environment, conversion of data into 3D objects in CityEngine, integration
of mixed reality capabilities, and development of the user interface in Unity, based on
the mixed reality toolkit [32]. This development workflow mirrors other attempts at 3D
geovisualization using HoloLens, with some changes in the software used [21,33]. A high
level summary of the process is presented in Figure 1 below, with details expanded in the
following sections. The development process was guided by our experience interacting
with local planners and observing their policy meetings. We aimed to create visualizations
that would reflect (i.e., be useful) current data and flood risk management practices and
policies developed by the City of Vancouver. The visualizations are evaluated based
on their hardware performance, usability (using Vi et al. [34] usability heuristics) in the
Results section.

2.1. Study Area

The choice of the study area for this project was guided by existing adaptation efforts at
the City of Vancouver for the shore of the Fraser River (Figure 2). This area is currently being
assessed for development of appropriate adaptation measures, and numerous resources
exist to develop contextually rich visualizations of flood impacts in the area [35,36]. Located
on the south of the City, the Fraser River shore consists mostly of industrial land use, with
some critical urban infrastructure located in the area. Given the fact that most of the
shore area is vulnerable at current water levels, timely adaptation becomes an increasingly



ISPRS Int. J. Geo-Inf. 2021, 10, 82 4 of 18

pressing concern. The extensive mapping and proposed adaptation policies available for
this area made them relevant for developing contextually rich visualizations.
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2.2. GIS Data to 3D Models

To develop the visualizations, various layers were used, including the digital eleva-
tion model (DEM) at 0.5 m resolution (later converted to 1 m resolution for improved
performance of the visualization system), orthophoto, flood depths, building footprints,
and river setbacks. DEM, orthophoto, and building footprints are available on the City of
Vancouver Open Data Portal, while flood depths, and river setbacks were provided to us
by municipal planners. Other layers (e.g., protection infrastructure) were digitized based
on existing adaptation proposals developed by the City [36]. All layers were projected to
UTM10N in QGIS and clipped to the appropriate extent. To develop 3D representation of
flood depths, the flood depth layer was overlaid with DEM to derive DEM-adjusted flood



ISPRS Int. J. Geo-Inf. 2021, 10, 82 5 of 18

depth, where the height of water was calculated as flood depth + current elevation (i.e.,
flood elevation is now relative to absolute elevation, not referencing the DEM elevation).
Once the layers were prepared and clipped to an appropriate extent (discussed below),
raster layers were exported in GeoTIFF format, and vector layers as shapefiles. These
layers were then imported into CityEngine software, with DEM and DEM-adjusted flood
depths as terrain layers, and buildings, dikes, and setbacks as vector layers. DEM was
textured with orthophoto at 0.2 m resolution, and flood depth was textured identically to
existing flood maps published by the City. To derive 3D geometry from vector layers, base
heights were adjusted to the DEM and building layers’ attribute height information was
used to extrude buildings. The proposed dikes do not contain specific information on their
dimensions, so they were represented as 4-m wide and 6-m high splines, colored in red.
The setback lines were visualized as 2 m wide 10 m high splines, colored in white. The 3D
geometry generated in CityEngine was exported in Filmbox (.fbx) format, which can be
imported across 3D modeling/game engine software, including Unity, which was used to
integrate mixed reality capabilities [37].

2.3. Integration with Mixed Reality Toolkit

To develop mixed reality visualization based on the created 3D models, we used the
mixed reality toolkit (MRTK), which is a platform built to integrate mixed reality capa-
bilities in existing applications [38]. It is developed by Microsoft and is an underlying
infrastructure used to develop most applications for the HoloLens platform. The HoloLens
2 device is a head-mounted computer system that has stereoscopic displays, 6 degrees-
of-freedom positional tracking of the user, spatial mapping, and occlusion management
of environment, eye-tracking, and articulated hand tracking [39]. Using the MRTK in-
frastructure, we can also use synchronized coordinate systems across multiple devices
(through Azure Anchors), and develop multi-user applications (through Photon Unity
Networking) [40,41]. Documentation describing the development process exhaustively is
openly available on the Microsoft website.

We used MRTK version 2.3, using Unity 2019.2 and 2019.3 for collaborative, and
single user applications respectively. The different versions of Unity were used since
some features are only available in the newer version (e.g., eye-tracking), and collaborative
capabilities are only available in the older version. We do not present all the minute changes
done in Unity to integrate MRTK, since the ongoing changes to the toolkit and changing
software versions will make our development guide outdated by the time of publication.
Rather, we discuss higher-level content and user interface (UI) design decisions made
throughout the development process. For instance, the entire Fraser shore is approximately
10 km, and given the resolution of DEM at 0.5 m and flood depths at 1 m, visualizing
the entire shore would be unfeasible given the processing limitations of the device used.
Throughout testing and development, it was determined that a clipped area of the shore
about 300 × 300 m resulted in smooth performance (stable at 55–60 fps). A final extent
ended up being 347 by 391 m, at 1 m resolution for floodplain and digital elevation model.
Larger areas would hinder rendering performance on our devices. This can be addressed
through the use of remote rendering, whether in the cloud or on a local machine, but was
not used in this case since it limits the capabilities of the device in the current version of
MRTK. In particular, articulated hand tracking and eye tracking did not work in our tests,
and understanding the capabilities, use, and shortcomings of these aspects of the interface
was deemed more important than visualizing larger areas with off-device rendering. The
final visualization landscape model (Figure 3a) is approximately 1.5 m wide when a user
launches the application.

2.4. Development of the User Interface

Although mixed reality research has been going on for several decades, it is only
relatively recently that robust, high-performance, consumer-grade MR systems have be-
come available (e.g., HoloLens, Magic Leap). Hence, there are few guidelines for the
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development of appropriate user interfaces for MR applications. Some suggestions for
the design of user interface for MR systems have been made in literature, and others
are suggested by Microsoft in its design guidelines [34,42–45]. The guidelines presented
by Vi et al. [34] seemed particularly relevant, as they were written with last generation
head-mounted augmented reality devices (e.g., HoloLens), while many of previous studies
concerned themselves with handheld augmented reality visualizations (e.g., [46]). We
emphasize that UI design decisions were based on the above literature and our develop-
ment experience. Development of usable and useful MR user interfaces for spatial data
requires much research to understand what aspects of the design contribute to ease of use
and provide a compelling user experience. Our goal was to develop an invisible/natural
interface, to allow users to remain focused on the task and content at hand, rather than be
distracted by novel technology. To this end, we utilized HoloLens’s hand- and eye-tracking
capabilities, as well as use the spatial map of the environment for occlusion management
and content placement.
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The goals for the user interface were fourfold: (1) provide interactive capabilities to
visualize alternative shore adaptation scenarios developed by City of Vancouver on-the-fly,
(2) provide inter-connected contextual information to the user based on the state of the
3D model, (3) integrate virtual content into the physical space of the user, and (4) use the
available features of the device (hand and eye-tracking) where it seemed to add value to
the user experience.
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2.4.1. Content Layout

The layout of the UI was guided by the desire to utilize virtual space to effectively
display contextual information related to FRM. We integrated an existing conceptual
drawing created by urban planners to illustrate potential layout of the physical space
under a specific adaptation scenario. The associated description of potential adaptation
scenarios is displayed on the text panel above the 3D content, with a legend for flood
depth information (Figure 3). To contextualize the visualized shore, we added a scale
bar and a directional arrow to the visualized section of the Fraser shore. The 2D content
elements (drawings, text, legend) are placed on 3D slates, which are a thin 3D cube. Once
the user launches the application, 3D content appears at a distance of about 1.25 m in front
of the user, with the text panel and conceptual drawings panel appearing at user’s eye
level. This was a compromise between a desire to enable near interaction and reducing
vergence-accommodation conflict, caused by proximity of virtual content to user’s eyes.
The 3D visualization of the Fraser shore flood risks is slightly below the eye-level of the
user. The default location of content is informed by ergonomics of head-mounted displays,
where putting content more than 15 degrees below the eye level introduces neck strain [42].
Furthermore, to reduce unnecessary motion, all of the content fits into the field of view of
HoloLens 2.

2.4.2. Interaction

Hand tracking is used across the application for manipulation of 3D content (move-
ment, rotation, scaling), as well as changing the state of content through a virtual menu.
The capabilities of MR systems to track the hands and recognize gestures can be used to
integrate interaction metaphors for virtual content (e.g., grabbing an object) that leverage
the user’s knowledge of interacting with real objects. Articulated hand tracking allows the
user to manipulate virtual objects at a close distance using their hand (pinch to grab) and
at a distance with a virtual ray coming out of the user’s index finger. This allows a user to
interact with a single hand to move content, and two hands for scaling and rotation. These
interactive capabilities were added to all virtual objects in the scene. Given the nature of the
content (text, drawings, geographic landscape), we restricted rotation for all information
objects to keep them aligned vertically to the orientation of the user and environment.

For the 3D visualization, we added a wireframe bounding box, which provides
information on total extents of visualization, and provides a metaphor for interaction
with the visualization (virtual box). For the 3D slates holding the 2D content, we added a
capability to align rotation of the slates to the physical walls, leveraging the spatial mapping
and solvers (surface magnetism) capabilities of the MRTK [47]. This capability is enabled
once a user grabs the object (slate), with ray cast from the user’s index finger detecting
a wall and aligning the slate to it. The slate’s rotation is updated every 0.6 s during the
interaction, with the spatial map of the environment being updated every second. By
default, this value is set to 0.1 s, but the interaction was jittery at this update rate. The
spatial mapping capabilities and solvers allow a flexible integration of virtual content
across real world environments in which the MR tools can be used. To further the ability of
application to quickly adapt to new environments, we designed the hierarchy of objects
with slates being children of the main 3D visualization of the shore. This allows a user
to just move the model of the shore, and the rest of the user interface follows. However,
this can introduce problems from the usability standpoint too, for instance, if the slates are
already aligned to the wall, and the user rotates the 3D model, slates will rotate as well,
requiring re-alignment.

The hand tracking also allows users to press virtual menu buttons using their index
finger, which has a virtual collider. Control of the state of the displayed scenarios is realized
through a virtual menu, where users can interact with buttons using their index finger
at a close distance, and through a “pinch” gesture at a distance. While it did not seem
detrimental to usability to enable user to scale, rotate, and move content freely, for the 3D
model of the landscape, rotation is locked to a single axis (i.e., visualization orientation is
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always aligned to the floor). Audio feedback is provided throughout the application every
time the user clicks a button or interacts with visualization contents.

We did not explore interactive capabilities of eye-tracking, apart from a subtle use of
gaze detection to show appropriate interaction hints, when a user looks on an interactable
object. Another use of eye-tracking, which is integrated by default in MRTK, is a highlight-
ing pointer added to a surface that is hit by the articulated eye-gaze (i.e., not just a ray
pointing out of the center of the user’s head), highlighting content. For instance, when a
user looks at a button it becomes highlighted with a slight glow; when a user looks at either
of the clipping planes (described in the next paragraph) a text hint appears prompting the
user to move it.

2.4.3. Querying Data

To investigate the possibilities of querying the topology with mixed reality tools,
we utilized MRTK capabilities to clip through 3D content using a 2D plane. We used a
transparent 2D cut plane with outline (handles), and applied a simple grid with 50 m cells
to the surface to provide scale reference when looking at the cross-section of 3D geometry.
By default, the 2D clipping plane is orthogonal to the displayed direction of 3D content,
allowing users to have define east and west boundaries of the 3D visualization.

2.4.4. Guidance

Within the single user application, we also integrated some guidance in case the
application is used by a novice user. By default, once the application is launched, the text
panel describes the visualized section of the Fraser shore, as well as describing the 2D
panels, and basics of interaction. Virtual animations (part of MRTK) that show an outline
of hand were integrated with text prompts to explain how to move the clipping planes,
open the menu, and disable guidance. The 3 animations are shown sequentially, delayed
by 5, 10, 15 seconds since the last detection of the user’s hand. If user’s hand is not present,
animations are shown by default.

2.5. Development of Collaborative Visualization

To develop the collaborative tools for mixed reality applications we needed to resolve
three aspects: synchronization of content, position of content in the local coordinate system,
and positioning of the coordinate systems across devices. To synchronize the local position
of content in the scene, we used basic Photon Unity Networking setup (described in MRTK
documentation) [41]. To enable synchronization of content state/interaction, we used
remote procedure calls, which enabled us to synchronize state of scripts/objects across two
users. To co-locate virtual objects in a shared environment, we used the Azure Anchor
infrastructure [40]. All of the content of the visualization is attached to a virtual cube,
which is used as an anchor. When a user moves the cube and creates an anchor using
a button, and then shares it to the network, another user can retrieve this anchor and
co-locate it in space based on the similarities of spatial maps of the environment scanned
by two HoloLens devices. Both Photon Unity Networking and Azure Anchors rely on
local wi-fi network to update state of the content across two devices. This infrastructure is
visualized in Figure 4 below.
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3. Results

Based on the workflow presented above, we developed two visualization prototypes
for single user and collaborative MR visualization of flooding and associated adaptation
scenarios. In the sections that follow, the user experience, reflections on hardware perfor-
mance and usability are presented. Through unpacking the developed prototypes through
multiple lenses, we highlight the state-of-the art capabilities of MR as realized within our
prototypes.

3.1. Developed Applications

As mentioned above, we developed a single user version to demonstrate the capabili-
ties of current MR devices, while also developing a collaborative prototype, with minor
changes. Two versions were created as some functionality of the single user application
could not be realized (given our development resources) in a shared version. Specifically,
content scaling was disabled, as well as the hand-bound content menu, which was moved
into the environment. This can also be considered advantageous to the user experience, as
the state of menu is displayed next to the 3D model for both users. Below, we discuss the
user experience and capabilities of developed visualizations.

When a user launches the application, the digital content (3D visualization, text panel,
conceptual drawings) is presented in front of the user. The text panel describing the
visualization presents a brief description of the visualization, interaction, and the legend
for the floodplain depth layer. Within the single user application, gesture guidance is
provided to the user upon the start of the application, describing how to move content
(pinch and hold), bring up the menu (bring palm up) and toggle the guidance off with
a switch on the text panel (pinch/air tap). The 3D visualization itself can be moved and
scaled freely in space and persist in a specific real-world location. The text and conceptual
drawing panels provide contextual information related to the presented flood visualization,
as well as serve relevant information when a user chooses a specific adaptation scenario. By
selecting one of the four adaptation scenarios, relevant changes to 3D content appear (e.g.,
display a shore dike), the textual information is switched to describe pros and cons of a
specific adaptation approach, and the conceptual drawings illustrate artistic sketches of the
future shore layout. This ability to dynamically explore the spatial and policy implications
of a particular adaptation approach mirror the role of maps and other 3D visualization tools
designed to understand and communicate risks and relevant mitigation policies [1,3,26].
Another aspect of FRM in the City of Vancouver is the development of setback policies to
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preserve shore areas for potential adaptation infrastructure. The 3D splines representing
setbacks from the shore are available to a user in the menu, and the conflicts between the
proposed policy and existing buildings can be seen.

Since the environment is mapped by the devices using the array of sensor, occlusion
management is done on the fly in a given environment. This map of the environment is
also used to align the virtual slates with text and drawings to the real-world walls. In case
the alignment to walls does not make sense in a given environment (or the space is poorly
mapped), two-handed manipulation rotating the slate can override it. This flexibility of
content scaling, movement, and alignment enables integration of visualization across a
range of environments, from a single user desk to a room-scale visualization.

Two movable clipping planes placed orthogonally to the content present the user with
a simple tool to define extents and query 3D geometry of visualization along the clipping
plane axis (i.e., transect). The resulting “slice” of the landscape is similar to the cross-
section of shore displayed in the conceptual drawings panel. We designed this capability to
provide a simple solution to query the 3D geometry of shore, while also providing visual
correspondence to “slices” of the shore in conceptual drawings.

The shared application provides the capabilities of mixed reality visualization in a
co-located, synchronous interactive collaborative setting. In terms of actual user experience,
the only difference from a single user application is the need to move the anchor (virtual
cube to which the content is attached) to a position with sufficiently complex real-world
geometry (i.e., not just mid-air, e.g., on a table corner). By moving the cube, the user can
use virtual buttons to start the Azure session, create anchor, and share it to the network.
At this point, the anchor cube is locked in space and cannot be moved. The second user
then starts an Azure session on their device and gets the shared network anchor. At this
point, the position of the anchor cube is identical for both users, and the virtual coordinate
systems of co-located users are synchronized, meaning the virtual content appears at
the same real-world location. Once both users establish a common coordinate system,
the 3D content position, rotation, scale (fixed), and scenario state are all synchronized
in real time across users, allowing users to see and share visual information from their
own perspective and position in a shared mixed reality environment. This ability to
experience and interact with data in a collaborative environment can help to build shared
mental models of environmental risks, risk reduction options and spatial policy based on
a collaborative experience of 3D visualizations. Furthermore, this MR application setup
preserves most of the rich context available to co-located collaborators: an ability to see
and interact with the surrounding workspace, to talk and to see a peer’s body language
and gestures [22]. This setup was tested with two users, but it is scalable for more users.

3.2. Hardware Performance

In this section, we reflect on the device performance in processing, robustness of
spatial mapping, and hand- and eye-tracking.

Processing across single and shared user versions were practically identical, given
much of processing power is spent on loading 3D visualization. Notably, in Figure 5
illustrates that the application utilizes almost 100% of single core GPU capacity of the
device, with framerates beingly fairly stable in the range of 50–60 frames per second.
Since we attempted to optimize content to utilize as much of local processing as possible,
this demonstrates the limits of current state-of-the art devices. We are slightly above
the recommended limit of 100 thousand polygons for the device, with the final model
being at ~106 k polygons. It is important to note that local device limitations should not
restrict applications to simple 3D content, low resolution or small aerial footprint. With
remote rendering on a machine within a local network (Remote Rendering) or with cloud
rendering (Azure Remote Rendering), HoloLens-based tools can fit tens of millions of
polygons, which is especially relevant for large/complex spatial datasets.
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Mixed reality displays on HoloLens 2 have a fairly limited field of view, which is a
limitation inherent to all current head-mounted mixed/augmented reality devices, meaning
that much of the peripheral view is not augmented, which does affect immersion and limits
the “virtual real estate” that can be used without a need for user to move their head.
Another notable limitation of this device is brightness limitations of current displays: the
device becomes practically unusable in bright (e.g., lit by direct sunlight) environments.

Spatial mapping was satisfactory for our goals of occlusion management, digital
content persistence, and alignment of virtual slates to walls. The default update rate
of spatial mesh of the environment is 3.5 s in MRTK. We increased the update rate to
once per second, which resulted in better performance of the above-mentioned features,
without apparent performance penalty. There is still room for improvement, especially in
environments with complex geometry/shadows. Nevertheless, the spatial mapping of
environment and stability of digital content in real space is robust in a well-lit environment
and is especially impressive given the lack of any external sensors or use of fiducial markers.

Hand tracking performance on HoloLens 2 is difficult to capture without a reference
to other tracking setups. In our experience, the tracking is not on an “appliance level” of
usability. After initial adaptation to the idiosyncrasies of hand tracking (e.g., hand needs to
be a certain distance away) and interaction (i.e., gestures and buttons need to be pressed
much further than you would expect based on visual feedback), the accuracy of tracking is
satisfactory/usable, but still has substantial room for improvement.

Despite the limited use of eye-tracking, we need to acknowledge almost uncanny
accuracy of this capability of HoloLens. The tracking is practically flawless, and this is
especially exciting for potential approaches to evaluate user interfaces in mixed reality
based on rich articulated eye-tracking data, beyond a simple gaze from a center of the
camera/head of the user.

The performance of shared application in synchronizing coordinate systems and con-
tent state across two devices was satisfactory, with little (<100 ms) lag. The establishment
of the anchor to share the coordinate system requires a sufficiently complex scanned real
environment. If the anchor is placed on a fairly uniform surface (empty table) or in mid-air,
the resulting coordinate synchronization is inaccurate and can be off by 50+ cm. Since both
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content and coordinate synchronization rely on networked services, local wi-fi overload,
poor signal, and low speed might impact the delay across two users.

3.3. Usability

To understand and unpack the usability of developed MR visualization tools, we used
Vi et al.’s [34] framework of 11 MR user interface heuristics framework. This set of design
guidelines has been developed with capabilities of head-mounted systems in mind and
provide a useful framework to discuss the user interface design decisions made.

1. Organize the spatial environment to maximize efficiency

The ability of MR interfaces to map the physical environment of a user enables
integration of virtual content and physical space. By placing virtual objects on real surfaces
(the truest form of AR, according to Azuma [16], we leverage human capacity for spatial
reasoning and a sense of their own body in space, through strong proprioceptive cues,
to interpret virtual content. This is accomplished by occluding virtual content by real
surfaces, as well as aligning information panels to physical walls. This set of capabilities
makes the application adaptable to complex office environments. We actively tried the MR
applications in several spaces to see how they performed visually, spatially, and cogently
in (and with) different spaces. We tested both shared and single user versions in office,
formal conference, and informal co-working spaces (Figure 6). The on-the-fly spatial
sensing/mapping of the device supported impressive agility and flexibility in adapting
to different environments. Furthermore, the robustness of spatial awareness capabilities
allowed movement of content from one space (meeting room) to another (open office area)
without a loss of tracking or synchronicity of content placement in a shared version.
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For instance, we can place a Fraser shore visualization on a table, and information
panels on a wall (e.g., Figure 6, bottom-left). By leveraging the real environment of the user,
we provide a set of visual and proprioceptive cues that help understand the scale of virtual
object and their relative positions [28]. From the user experience perspective, it might be
easier to automatically “snap” content to detected surfaces, which is possible through the
use of semantic understanding of environment by device (“scene understanding”) but was
not realized here due to technical complexity.

2. Create flexible interactions and environments

We sought to leverage hand tracking capabilities of HoloLens to provide intuitive/
natural interaction with virtual objects, mimicking real objects. Beyond the ability to
manipulate content directly with hands, users can use a virtual ray to grab distant objects.
The ability to move, scale, and rotate content as desired by a user makes the visualization
adaptable to a given environment.

3. Prioritize user’s comfort and 5. Design around hardware capabilities and limitations

Content placement was guided by the desire to make interaction and viewing com-
fortable for the user, without intruding into personal space or requiring excess movements,
which is realized through the ability to interact with content at a distance. Furthermore,
content placement at approximately 1.25 m in front of the user by default requires the user
to move their hands within the view of device cameras for hand tracking. To accommodate
the limited field of view of MR displays on HoloLens, content was placed compactly so as
to minimize user’s need for neck movement during the use. Processing limitations of the
device were addressed by optimizing spatial extents of Fraser shore visualization.

4. Keep it simple: do not overwhelm the user

To keep the user focused on the flood impacts, adaptation and associated policy
implications, the UI design is minimal and includes only features directly relevant to the
displayed content. There is also a clear correspondence in the results of interaction, where
a user’s choice of scenario reflects a simultaneous change in relevant conceptual drawing,
text, and 3D content.

5. Use cues to help users throughout their experience and 8. Build upon real world knowl-
edge

Once the user launches the application, the first thing appearing in the field of view
is the text panel describing visualization contents and interaction. Within the single user
version, users are also presented with gesture guide animations for opening the content
menu, moving content and distant clicking (air tap) to disable guidance. The subtle use of
eye-tracking to show text prompts and highlights at the user’s gaze position also seeks to
guide the user through interaction.
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6. Create a compelling XR experience

This set of MR visualization prototypes seeks to leverage the existing information
related to flood visualization to provide a complete understanding of flooding phenomena.
We used most of the information related to shore adaptation of the area available within
the visualization, and leveraged the capacities of MR interface (as discussed throughout)
to provide an engaging, simple to use tool to interact with spatial data. While prototypes
we developed are certainly compelling to experience and use, we anticipate that spatial
data users will expect to be able to use much larger geographic datasets, based on their GIS
experience. This can be accomplished with off-device rendering. There are other aspects of
MR interface that can especially highlight the potential of interactive MR environments for
data exploration, particularly, data with more complex characterization of 3D space, and
dynamic content (e.g., animated output of a flood simulation).

7. Provide feedback and consistency

When users interact with content, they get the visual, audio, and proprioceptive
feedback based on their interactions. For instance, when a user chooses a particular
scenario in the menu, the associated radial button changes color, a clicking sound is played,
and the content is changed. We sought to provide users with a feedback on how the device
sees their hand/hand gestures, thus we kept the visualization of hand mesh observed
by device on, so that a user sees what the device sees (Figure 7). The interaction across
different content is consistent, with single handed interaction moving the content, and
two-handed manipulation used for scaling and rotating (and moving) virtual objects.
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the significant displacement/difference between virtual and real hand only appears on captured
videos/screenshots.

8. Allow users to feel in control of the experience

The displayed content is inert when a user launches the app (apart from hand guidance,
which is animated, but fixed in space). This means that content changes state or moves only
due to explicit interaction by the user. While good in theory, in practice, some general hand
movements were recognized as gestures by the device, leading to unexpected movement of
content. This is not a persistent feature of hand tracking, but rather a noticeable “accidental”
limitation when using application for prolonged time.

9. Allow for trial and error
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The only critical error that critically affected the experience and required a restart of
the application was accidental movement of content behind a physical object/surface/wall.
Due to the nature of MR interfaces and management of occlusion, content can sometimes be
practically “lost” in physical space, such as behind a wall (i.e., users cannot see or interact
with it). This movement of content behind walls is likely fixable through the addition of
colliders to walls and virtual objects, but resulted in unexpected behavior (virtual content
bouncing off and flying around the room). We wanted to implement the ability to restart
the visualization to default position, but restarting a scene with MRTK components in
Unity is not straight-forward (see [48]) and was not implemented due to practical time
constraints.

4. Discussion

This section offers critical reflection and review of these systems from the perspectives
of their performance and potential as operational tools, and their potential to integrate with
current and future FRM and planning practice; and finally, theorization of their significance
as data interfaces.

Devices that can deliver usable 3D visualizations with natural user interfaces that are
robust enough to support everyday information science work have appeared only recently
and, while there is much room for improvement, they provide distinct and compelling
experiences of interacting with 3D data [25]. Growth of dedicated development frameworks
and communities significantly reduces the complexity of development of MR experiences.
While contemporary systems have their limitations, we are at a critical juncture where
the MR systems are becoming usable enough to focus on the applied problems. With
decreasing barriers and streamlined integration of geospatial data into MR interfaces, these
tools can become a meaningful addition to the planner’s toolkit to investigate topologies of
impacts, explore datasets across scales, and understand the interplay between inundation
scenario and proposed adaptation policies.

With the capabilities of HoloLens 2, we can develop flexible collaborative flood vi-
sualizations that can be used within real offices without a need for dedicated spaces (as
needed for VR), or specialized knowledge for interaction. This work demonstrates the
practical workflow and seeks to highlight the significant infrastructure available to build
powerful MR tools without significant development experience. The developed prototypes
only demonstrate a particular case of ex situ, and in case of the shared version, co-located
synchronous MR. Many researchers are also investigating in situ visualizations of flood
impacts using MR/AR [11,15]. This range of applications highlights the significant poten-
tial these tools can have for analyzing and responding to flooding risks, as well as provide
compelling environments to provide on-site information to broader set of stakeholders (e.g.,
decision-makers, businesses, residents, etc.). At the same time, we see massive potential in
how MR visualization can transform the flood scenario visualizations done ex situ to under-
stand the impacts and adaptation based on the available data. Although this work focuses
on collaboration in shared physical environment, possibilities for remote collaboration
using emerging interfaces could have a qualitative change to how the risks are understood
and managed, given the potential of remote collaborators to develop robust, shared mental
models of risks, and possible adaptation based on interactive 3D visualizations.

The visualization development process outlined here was guided by datasets available
for flood risk management in the local context. Within developed tools (and underlying
datasets), the third dimension is only used to display elevation information at a location
(ground elevation, flood depth, building height), without much vertical complexity in data.
However, to realize the potential of 3D displays and natural user interfaces, we need an
integration of data with more complex 3D characterizations of space. With increasing use
of truly 3D data, such as LiDAR, 3D models derived from structure-from-motion, and
BIM to characterize urban landscape and structures, the added value of MR visualizations
and interaction over a WIMP interface will likely be more significant. This can result in
a richer analytical experience, as well as improve practical accuracy of understanding of
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potential impacts of flooding (e.g., [7,8]). Although this work focuses on collaboration in
the shared physical environment, possibilities for remote collaboration using emerging
interfaces could have a significant influence on how the risks are understood and managed,
and potentially enable remote collaborators to develop robust, shared mental models of
risks and possible adaptation based on interactive 3D visualizations.

To integrate the tools meaningfully into planning generally, and flood risk manage-
ment in particular, we need much more empirical work to understand what aspects of
mixed reality interfaces provide value for the user. The current moment presents numerous
research opportunities to investigate these tools for spatial data practice as they become
widely available and used across numerous industries. However, it is not clear how to
investigate tools developed for complex tasks and goals, such as exploring and supporting
policy discussion. Simple usability metrics and task completion times typically used to
compare interfaces do not capture the perceptual outcomes, and the potential of MR tools
to engage broader set of users in exploring geospatial data (i.e., without the complexities of
a desktop GIS).

5. Conclusions

This research aimed to integrate existing datasets related to shore adaptation to flood-
ing risks in the state-of-the-art mixed reality interface system. We presented the workflow
used to integrate rigorous geospatial data into single user and collaborative MR interfaces.
The developed prototypes demonstrate the capabilities of the contemporary MR interfaces
to deliver 3D visualization, hand-based interaction, and integration with surrounding
environment while being stable and usable in real-world settings. These platforms provide
compelling tools to explore spatial data and have a distinct potential to be integrated
into actual practice due to their flexibility and potential benefits arising from the distinct
perceptual experiences of data in MR. Our work was guided by a desire to develop visual-
izations that reflect actual flood risk management practice, while focusing on designing
a simple and effective user interface, while being mindful of device limitations. Recent
developments in enabling interface technologies present exciting critical opportunities for
researchers and practitioners to experiment and explore their data in MR environments.
Through this work, we sought to demonstrate the potential of the state-of-the-art interfaces
to mediate interaction with spatial data in an applied context of flood risk management. It
is our hope that the technical workflows reported, and conceptual perspectives offered,
will be useful to support the work of other colleagues in this emerging field. Ultimately,
emerging interfaces need to be evaluated for their utility and relevance by practitioners on
the ground, and this will help and to understand the perceptual and cognitive implications
of working interactively with data in 3D MR environments.
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