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Abstract: The development of generalisation (simplification) methods for the geometry of features 

in digital cartography in most cases involves the improvement of existing algorithms without their 

validation with respect to the similarity of feature geometry before and after the process. It also 

consists of the assessment of results from the algorithms, i.e., characteristics that are indispensable 

for automatic generalisation. The preparation of a fully automatic generalisation for spatial data 

requires certain standards, as well as unique and verifiable algorithms for particular groups of fea-

tures. This enables cartographers to draw features from these databases to be used directly on the 

maps. As a result, collected data and their generalised unique counterparts at various scales should 

constitute standardised sets, as well as their updating procedures. This paper proposes a solution 

which consists in contractive self-mapping (contractor for scale s = 1) that fulfils the assumptions of 

the Banach fixed-point theorem. The method of generalisation of feature geometry that uses the 

contractive self-mapping approach is well justified due to the fact that a single update of source 

data can be applied to all scales simultaneously. Feature data at every scale s < 1 are generalised 

through contractive mapping, which leads to a unique solution. Further generalisation of the feature 

is carried out on larger scale spatial data (not necessarily source data), which reduces the time and 

cost of the new elaboration. The main part of this article is the theoretical presentation of objectifying 

the complex process of the generalisation of the geometry of a feature. The use of the inherent char-

acteristics of metric spaces, narrowing mappings, Lipschitz and Cauchy conditions, Salishchev 

measures, and Banach theorems ensure the uniqueness of the generalisation process. Their applica-

tion to generalisation makes this process objective, as it ensures that there is a single solution for 

portraying the generalised features at each scale. The present study is dedicated to researchers con-

cerned with the theory of cartography. 

Keywords: digital generalisation; metric space; contractive self-mapping; banach theorem; general-

isation standard; lipschitz continuity condition; cauchy convergence test; minimum dimensions of 

salishchev; polyline (segmented line) of binary tree structure; contraction triangles; GIS; MRDB 

 

1. Introduction 

The development of methods of generalising (simplifying) a geometry object in dig-

ital cartography involves, for the most part, the improvement of existing algorithms, and 

also the disregarding of mathematical objectivity in the verification of the geometry of 
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figures before and after the process, i.e., the features necessary for the automatic general-

isation of the object [1–8]. Currently, a big challenge for automatic digital generalisation 

in multi-resolution databases (MRDB) [9] involves increasing the scope of use and the 

searching of data collected in such a way (which is related to database queries and geo-

visualisation) [10–12].  

One of the basic tasks of the MRDB, especially in the geodata databases maintained 

by the state cartographic services, is the harmonisation of data obtained from other data-

bases [13,14]. This makes it necessary to establish constant “cartographic control points in 

MRDBs” [9,15]. The overriding goal set by the UN-GGIM (United Nations Committee of 

Experts on Global Geospatial Information Management) for state mapping services is the 

interoperability of databases. The condition for fulfilling this task is the development of 

generalisation algorithms, free from the subjective decision of the authors [8,15,16]. 

The development of a fully automatic generalisation method for the entire spatial 

database (Digital Landscape Model) [17–19] and for the cartographic portrayal of this da-

tabase (Digital Cartographic Model) [20–23] calls for algorithms that are clearly verifiable 

for a particular group of objects. This will allow cartographers from the aforementioned 

bases to choose any objects. This follows from the aforementioned needs that once-ac-

quired data and their unambiguous, objective generalisation at various scales are the re-

quirements for the INSPIRE (INfrastructure for SPatial InfoRmation in Europe) directive 

[24] for the purposes of database harmonisation and interoperability. 

The paper presents a new solution for digital automatic cartographic generalisation 

for the geometry of linear and areal objects. It uses the properties of contractive self-map-

ping, which in a strict mathematical manner allows the source data of the object belonging 

to the metric space to be clearly mapped and verified. At scales s <1 of polygonal general-

isations— uł , there is one objective mapping result if the mapping data meet the properties 

of the metric space—Lm, as well as the following additional conditions: 

 The necessary condition: the Lipschitz condition (contraction), i.e., p> h, and the Ba-

nach theorem in the shrinking projection for TG [12,25] are preserved in each enve-

lope with the sequences of points on the polyline—the contractive mapping with the 

participation of the binary tree system for the considered triangles:;  

 The sufficient conditions of: 

(a) Cauchy’s criterion [25] in the contractive mapping at the scale—s < 1,  

(b) Minimum dimensions according to, e.g., A. Salishchev [26]: bases—p and 

heights of triangles TK of the generalised line; 

(c) The verification of the rejected dimensions for source line points. 

2. Metric Space 

Metric space is a set with an imposed metric, i.e., with a function that defines the 

distance between any two members of the set. Metric spaces are the most general class of 

sets, which use the concept of distance—patterned on the distance known from Euclidean 

spaces (line, plane, three-dimensional space) [27] 

In each envelope, the ordered polyline is transformed with a contractive mapping 

and fulfils the necessary and sufficient conditions in polyline generalisation. Also needs 

to have objective result for scales s <1, dependent only on scale s. This is confirmed by the 

test results (Table I, and Table II) and in line with the Banach theorem [12,27]. Further-

more, the generalisation of the geometry of objects, which is one of the three reefs of map-

ping established by E. von Sydow in 1857 [1],following the procedure giving here, is no 

longer a reef due to the fact that it has one objective solution at every scale  

In digital cartographic generalisation, the continuity of the sequence of points in in-

tervals of this space, as well as their sum, mean that there is only one objective result. 

Moreover, the generated information has an increased degree of credibility. 

For the purposes of digital cartography, the linear and areal objects of a metric space 

are sequences of points describing the geometry of natural and man-made objects. The 
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data of these objects require ordering for their processing, in accordance with the rules of 

the Lm metric space, which in turn is a generalisation of the properties of Euclidean space. 

Thanks to the requirements of the said space, the results of the digital cartographic gener-

alisation can be seen to be objective, which leads to an increase in the degree of the credi-

bility of the generated information. 

2.1. Cartographic Control of Linear and Areal Objects in a Metric Space [25] 

Cartographic control base (OKO) consists of fixed points of the base, distinguished 

by the properties of the object’s location, shape and dimensions. The determination of 

them allows their temporal exclusion from the process in order to preserve their invari-

ance in contraction mapping (contractor). In multiresolution databases (MDRB), the selec-

tion of OKO improves the scope of application of these databases and the range of the 

data search within them (which is connected with inquiries and geo-visualisation) [10].  

OKO is made up of the following objects: 

 Natural: 

(a) Open linear, represented by sequences of fixed points, the beginning and end of 

which define one axis of the local coordinate system,  

(b) Areal or base objects, the outline of which is divided into two parts, creating 

triangles with a common base. The common base has a maximal length (Figure 

1), which assures the preservation of the contraction condition when mapping 

polyline envelopes.  

 Snthropogenic:  

(a) Buildings, linear objects (roads, engineered rivers) and areal objects.  

Points belonging to the anthropogenic objects within OKO are determined in a simi-

lar way to those of a natural object, i.e., with their beginning and end singled out. 

 

Figure 1. Cartographic control points of an aerial object. 

In order to maintain the stability of the Cartographic Control, the Cartographic Control 

of an Object OKO attribute in meta-data of MDRB bases should be determined automati-

cally only once, by a national mapping agency (NMA). In metric space zL , if OKO 

points are not excluded from the mapping, substantial distortions of the produced map 

may occur.  

3. Definitions and Notations  

Three types of triangles are considered in the paper: 

TB—base triangles, constructed by object points in different coordinate systems 

transformed into one geodetic system. These triangles constitute the base for the creation 

of initial contraction triangles TK (Figure 2) from their left and right edge. Characteristic 

features of these triangles are their bases, which are simultaneously the longest sides of 

triangles TK, as they extend from the beginning to the end in every interval.  

TK—contraction triangles built within the envelopes of the polyline:  
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 The first triangle TK in every envelope of the polyline in the contractive self-mapping 

which has the longest base and fulfils condition (2); 

 Consecutive triangles TK which have (a) common side(s) and are constructed accord-

ing to the binary tree scheme. Their sides are shorter than those of preceding trian-

gles, which results from the assumption of the base TB on the longest section con-

necting cartographic control points of the areal object, 

 The procedure of the contractive self-mapping ends with the triangle TG. 

TG—limiting triangle TK of the contractive self-mapping of polyline envelopes into 

contraction triangles; in TG, at least one side is a section of the source—the ordered pol-

yline uł . 

The following notations are used in the paper: 

uł = ordered polyline, i.e., continuous sequences of points in closed intervals, with nodes;  

i = 1, 2, 3, ..., n,  

j = 1, 2, 3, …, k—numbers of triangles—envelopes, built of segments of the polyline;  

αj—Lipschitz constant (of contraction); 

(X, X)—metric space with metric X; 

f—contraction mapping :f X X , the images of which are triangles TK). 

Contraction triangles TKj form an irregular grid on segments, or envelopes, of the 

polyline. The grid arises from the base triangle TB according to the scheme of the data 

binary tree (Figure 2). Contraction triangles TKj are images of a contraction mapping op-

erator, and are under the following assumptions: 

 Triangle sides (edges) are oriented clockwise—when observed from its base (Figure 

2); 

 In a triangle, for j = 1 (TK1), with base p1, sides are marked as: 

(b) left: pI1, 

(c) right: pII1,  

 Consecutive envelopes of the polyline are created according to the binary tree scheme 

in the form of two triangles with sides: 

(a) bases: left p2 and right p3, 

(b) sides: left: pI2 ; pI3 and right: pII2 ; pII3. 

In addition, OKO elements for generalisation are the points of the polyline that de-

termine the contractive triangles TK in envelopes (Figure 2), the bases of which are greater 

than the heights. 

Triangles TK are created in the envelopes (hulls) of the polyline as consecutive itera-

tions of the contractive self-mapping; they are built on the edges of the triangles, which 

are sections of an ordered polyline. In Figure 2, polyline uł  consists of points i = 1–20. As 

an example, a sequence of envelopes of polyline uł  is created by the sections between 

nodes (1–5); (5–10); (10–14); (14–20), which constitute a consecutive iteration of a binary 

tree construction in the form of triangles. 
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Figure 2. In the TB envelope of the creation of contraction triangles TK in accordance with the bi-

nary tree system. 

The following definition explains the contractive mapping ([26], p. 203): 

Contraction, or contractive mapping, is a projection f of metric space  ,X x  into 

metric space  ,Y y , for which there exists real constant (0,1)a  so that for arbitrary 

1 2,x x X   the inequality       1 2 1 2( , ,Y Xf x f x a x x   . is fulfilled.  

For the needs of this paper, contractive mapping f is defined in such a way that it 

transforms an ordered polyline uł  of geographic data into the binary tree structure of 

contractive triangles TK. Therefore, fuł D  and    u jf ł TK , which means that f 

maps a sequence of sections within the envelope of the ordered polyline uł  into a set of 

TK, and the mapping is unique:  

 : u uf ł f ł  (1)

4. The Necessary and Sufficient Conditions for the Contractive Mapping in Digital 

Generalisation Process 

The introduction of contractive mappings to digital generalisation yields unique ob-

jective results of the process. It can be achieved, provided certain conditions are imposed 

on data and one-way mappings. 

In digital generalisation, one strives to eliminate the inconclusiveness of its results. 

Polylines uł  contain points (nodes) which cause inconsistencies in results [8] Chrobak et 

al. 2015], and which were named singular points. They can be found through triangles 

created on polyline uł  from its consecutive three points. The bases of these triangles 

(which do not belong to the polyline) form a single axis of a local orthogonal coordinate 

system. Their geometry is verified by condition (2), from which it uniquely results that the 

longest side of the examined triangle is its base, which in turn fulfils Equation (3). The 

positive result of the verification of condition (2) allows for the examination of the remain-

ing triangles of the polyline. If condition (3) is not fulfilled by the lengths of the examined 

triangle, the vertex positioned opposite to the side determining the axis of local coordinate 

system is a singular point. The identification of the singular points of the examined pol-

yline allows for: 

(a) The exclusion of these points from the mapping procedure by setting them limits of 

intervals; 

(b) The preservation of the continuity, repeatability and uniqueness of mapping; 

Ad. (a) Fulfilment of condition (2) assures that every created triangle TK has a base 

longer than its other sides (Figure 3). Its vertex becomes a singular point when one or both 

sides are longer than the base. The triangle is then defined as in Figure 4, with condition 

(3); 
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Ad. (b) In self-mapping, triangles TK preserve condition (2) and the intervals of the 

polyline are composed of continuous sequences of points. Their continuity assures that 

the contractive self-mapping of an ordered polyline fulfils the contraction condition and 

the Banach theorem on unique solutions. The solution is the original polyline (created 

before mapping) and, thanks to that, the mapping is repeatable. 

4.1. Determination of Singular Points—Nodes of Polyline uł  in Metric Space zL   

The determination of singular points on the polyline is achieved by the sequential 

creation of triangles from its three consecutive points. Moreover, the bases of these trian-

gles do not belong to the line. In these triangles (Figure 3), their dimensions are verified 

by condition (2), which highlights the singular point or vertex positioned opposite the 

base and fulfilling condition (3). 

 

Figure 3. Determination of singular vertex. 

, ,
max środ
i j i jp h  and 

2

0

1

2
środ n

h p


  (2)

i = 1, 2, 3…, m (nodes of the polyline) 

j = 1, 2, 3,…, k (contractive triangles TK) 

n—number dividing base p of triangle TK, if abscissa of height h is not in the middle 

of base p (n = 2, 3, 4, …, w) 

0

3

2
środh p  

When n = 2, condition (2) confirms that every base p0 of triangle TK is longer than its height. 

A local coordinate system is created in every triangle of the polyline under examina-

tion. In a triangle for which condition (2) is not fulfilled, the longest side is determined by 

Equation (3):  

   
2 22

0 0 0 0
roz
i i i ic h b d    

2 2 2
0 0i i iH a d   

and hence 

   
2 22 2 2 2

0 0 0 0 0 02roz
oi i i i i i i i ic a d b d a b b d        

2 2
0 0 0 02roz

i i i i ic a b b d    
(3)
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Figure 4. Triangle with vertex B in a node which is a singular point. 

5. Contractive Self-Mapping of Ordered Polyline (Segmented Line) uł   

In metric space  ,X  , images in contractive self-mapping :f X X of pol-

yline uł , envelopes, built on geographic data and possessing the structure of a binary tree 

(Figure A1 ), while triangles TK (Figure A2) fulfil condition (2). 

The polyline is split into envelopes whose borders are marked by the singular points 

in accordance with Equation (3) and create sections of the polyline. The base triangles TBs, 

the vertices of which are the beginning and end points of the polyline uł  forming trian-

gles TB, which are created in these sections of the polyline uł  (Figure 2). The edges TBL 

and TBP (Figure 2) determine the points of the limit of the section, connecting the begin-

ning-to-middle edge TBL with the middle-to-end-of-the-section edge TBP. Within the en-

velopes, the binary tree system triangles are created on polyline uł . The first triangle 

TK—the beginning one (of each envelope polyline)—determines the length limit between 

the beginning and end points of the TBL edge, which is the base of the first triangle TK. 

The remaining edge TBP of the base triangle TB is determined in the same manner (Figure 

2). 

The contractive self-mapping has an application in the geometry of open figures, and 

the closed ones are separated into two base triangles TB (Figure 1) with a common base. 

The singular points of the polyline uł  are temporarily excluded from the mapping. The 

triangles TKj in the envelopes are created by a top–down approach, with inequality (2) 

being maintained. Each triangle TK (consecutive in iteration) has a common side with its 

neighbour. 

The experience gained from the examination of the currently used algorithms for 

digital cartographic generalisation, mentioned at the beginning of the paper, calls for their 

broader application complemented by contractive self-mapping, fulfilling the contraction 

condition at arbitrary scale s  1. The generalisation of every linear object is well justified 

[8]. Contractive self-mapping has the following properties: 

 An unequivocal and user independent result; 
 Verification of contractive self-mapping of an ordered polyline uł  result by its 

original data; 
 Preservation of the similarity condition of the polyline by original points in 

contractive mappings at scales s < 1, which according to the Cauchy condition and 

minimum dimensions of Salishchev (so univocally) are not removed at a given scale.  

Research on the application of contractive self-mapping for the digital generalisation 

of linear objects at scales s ≤ 1 point out that it can become a standard of such generalisa-

tion (Figure A3). They led to the formulation of the following thesis: 



ISPRS Int. J. Geo-Inf. 2021, 10, 107 32 of 25 
 

 

In metric space (X, ), the f: X  X contractive self-mapping of the ordered polyline uł  into 

triangles TK with a binary tree structure, is created if the Lipschitz condition is preserved, and if 

its result is objective and independent from the user at all scales of the generalisation.  

Proof: bases p1 and p2 of triangles TK are determined in the binary tree structure through 

self-mapping with the preservation of the following assumptions for the neighbouring 

triangles  

 Each pair of neighbouring triangles of polyline uł , of two consecutive iterations of 

their construction, has a common side, 

 In the envelope of the polyline uł , the length of the base of each created triangle TK 

is greater than the length of its edges, which is guaranteed by condition (2). 

Fulfilling the assumptions means that p1 > p2, since the common edge of triangles “1” 

and “2”  2 1
Ip p  (Figure 5) is shorter than base 1p , but longer than edge 2

Ip  of the 

triangle “2” of which it is the base. 

In this way, triangles TK are created according to the binary tree structure, with the 

preservation of the Lipschitz contraction condition, in the form of: 

   1 2 1 2 1 2
I If p f p p p a p p      (4)

 

Figure 5. Relation of two neighbouring triangles TK1 and TK2. 

Considering the boundary case where 1 2
I Ip p p  , which means that triangle “2” 

is equilateral (Figure 6), we obtain:  

2

2 2=
2

p
p h

 
  
 

 (5)

From which: 
3

=
2

h p , 0.866 0p h    

In other words, p h , which fulfils condition that is given by formula (2).  

Relation (4) can then be written as 

   1 2 1 2 1 2=0I If p f p p p a p p      (6)

Dividing both sides of inequality (6) by α and 1p , we obtain 2

1

0 1
p

p
  , and then 

2

1

1
p

p
 . 

In each contractive mapping, the base of triangle “1” is longer than its sides, which is 

reflected by the inequality. 
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In the binary tree system, each iteration of two neighbouring triangles that have a 

common side of contractive mapping fulfils the condition 2

1

= 1
p

p
  . In the section of 

polyline uł  of each binary tree, the iteration of a sequence of triangles TK of unidirec-

tional contractive mapping fulfils the condition of α <1. This is due to the fact that the 

limits of the polyline section are triangles that follow the mentioned rules: the first with 

the maximum possible length of its sides and the end-of-the-section boundary triangle 

with the minimum lengths of the triangle TK edges create the lengths of the sides of the 

source polyline uł .The binary tree interactions of TK triangles are continuous in the sec-

tion (because α < 1), which results in the contraction condition being fulfilled in each sec-

tion of the polyline uł . Moreover, the mapping-preserving contractions of the polyline 

uł  belong to the metric space in its sections, so the summation of the partial generalisa-

tions in the sections of the polyline uł  is the result of the mapping. Thus, the usefulness 

of the required and sufficient conditions in contractive self-mapping has been proven to 

be necessary to obtain an objective result in digital generalisation at each scale.  

 

Figure 6. Equilateral triangle. 

The extreme case of an equilateral triangle was included in the examination of the 

contraction condition for the contractive triangles of a polyline (Figure 7). If the triangle 

fulfils condition (2), it preserves the condition of the contractive self-mapping of polyline 

envelopes. In summary, triangles TK created in the envelopes of the polyline according to 

the binary tree scheme (Figure 5) maintain the properties of contractive self-mapping. This 

is because in the case of two TK triangles having common side, the Lipschitz condition (4) 

with constant  < 1 is fulfilled. 

Values  are not stable within the procedure of contractive mapping of triangles con-

tained in the polyline uł  envelopes (Figure A8., col. 10). In every iteration of the map-

ping, the “local constant” assumes another value from the interval 0 <  < 1. This is due to 

the irregular structure of polyline sections processed into triangles TK. Therefore  

changes but does not exceed the value of 1 (which is caused by the fulfilment of condition 

(2)). The contractive self-mapping preserves the contraction condition, and is unidirec-

tionally continuous, repeatable and possesses a unique solution: the source data of the 

polyline. 

The second task of the contractive mapping of a polyline uł  at scales s < 1 is to im-

prove the self-mapping for scales used in arbitrary generalisations of the line. This would 

yield at every scale s < 1, due to self-mapping and the properties of its continuity and 

repeatability preservation, a unique (one) result. Such mapping would cause a unique 

removal of points undistinguishable at a given scale, which would not preserve the Cau-

chy condition with Salishchev’s minimum dimensions (Figure A3). 

Figure 7 presents part of the polyline uł , which illustrates the fulfilment of contrac-

tion condition (4) for mapping, with local constant  < 1. Sections 1–5 is the base of base 
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triangle TB (1-4-5). On its edge 1–4, and by fulfilling condition (2) of the tree system, tri-

angles TK with decreasing lengths of their bases are formed according to the binary tree 

system and variable mapping scales. Relations between the sides of the constructed trian-

gles are shown in column C of Table 1, while the contractive character of the local map-

pings is confirmed by the results shown in column D.  

 

Figure 7. Operation of contractive self-mapping of a polyline into triangles TK.  

Table 1. Results proving the Lipschitz condition for constant  < 1 in the contractive mapping of a 

polyline. 

No TKj TK Base pj Left Edge pjI Right Edge pjII Relations  = pj+1/pj 

A B C D 

1 1-4-5 p1 = 1-5 pI4-5 pII1-4 p1 > pII1-4 = p2 0 < p2/p1 < 1 

2 1-2-4 p2 = 1-4 pI1-2 pII2-4 p2 > pII2-4 = p3 0 < p3/p2 < 1 

3 2-3-4 p3 = 2-4 pI3-4 pII2-3 p3 > pII2-3 = p4 0 < p4/p3 < 1 

4 1-2-3 p4 = 2-3 pI1-3 pII2-1 
p4 > pI1-3 

p4 > pII2-1 
0 <  < 1 

6. The Application of the Contractive Self-Mapping of Polyline uł  for Digital Gener-

alisation at Scales s < 1 

In contractive self-mapping, ordered polyline uł  belongs to metric space zL . The 

polyline is transformed into contractive triangles TK with the application of the binary 

tree system, the Lipschitz condition, and the “p” bases of TK triangles in the top–down 

approach. Additionally, the heights hmax of the triangles TK fulfil the p > h condition in 

accordance with condition (2). The created triangles TK of the contractive self-mapping 

also fulfil the recognition norm of the minimum dimensions of triangles, as defined by, 

for example, A. Salishchev. If its recognition is set as a norm, the unequivocal removal of 

edges from the self-mapping triangles not meeting the set norm is made possible (Figures 

A4–A7). The remaining triangle edges form (in envelopes) the sequences of sections of the 

generalised line that belong to the metric space. The properties of the metric space of the 

generalised polyline also allow for the summation of the segments created in the enve-

lopes. The sum of this is the objective and only result of the generalised polyline (Figure 

A3a–A3d). Then, in the created envelope, there occurs an examination of the control of 
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the points removed from the generalised section of the segment. In the examination, this 

segment forms the x axis of the coordinate system, while the y axis consists of the ordi-

nates of the points removed from the x axis. In the examined sequence of the envelope, 

the maximum y coordinate point (Figures A4–7) is the height of the triangle, with the 

height evaluating the result in the examined envelope in accordance with the recognition 

norm. The results received from the envelopes that do not meet the recognition norm, end 

the generalisation of the polyline uł  at the s < 1 scale. 

There are cases that exist where the generalisation of the polyline of triangle TK does 

not meet the norm on one edge. In such a case, the solution is to reject the second edge, 

and the result is the base of the triangle meeting the norm (Figure A6). 

7. The Application of the Contractive Self-Mapping in Digital Generalisation at 

Scales s < 1, Exemplified by the Geometry of A Vistula River Fragment 

The examination of the viability of contractive mapping for the objective digital gen-

eralisation of linear objects was conducted using data obtained from the Centre of Geo-

detic and Cartographic Documentation (NMA in Poland). The order of the data for the 

examination and the automation of the process has been separated into algorithms for: 

(A0) Contractive self-mapping (s = 1) of polyline uł , 

 Input data (Figure A4): 

(a) Loading of vertices of line uł  (col. 3–5); 

(b) Entering the thickness of line uł  at scale s (col. 12); 

(c) Examining the recognisability of line uł  in accordance with the A. Salishchev 

metric (col. 8–9); 

(d) Determining the upper vertices of line uł , which are the polyline’s singular 

points (col. 3–5).  

 Creation of the base triangles TB (the so-called envelopes) on line uł  (Figure A4): 

(a) Loading of singular points, which form boundaries on line uł  (and which dou-

ble as bases of triangles TB);  

(b) Determination of the length of “p” chords of triangles TB from the beginning 

and end points of their bases (col.11); 

(c) Determination of the centres of the bases of TB triangles (col.11); 

(d) Determination of the upper vertices of TB triangles, determined from the source 

points of line ł (as a y intercept of the centre of the base TB with a side of line ł, 

and its moving to a closer point on polyline uł ) (col.10). 

 Creation of triangles TK in envelopes of line uł  in accordance with the binary tree 

scheme (Figure A4.) 

(a) Determination of the left and the right side of the base triangle TB (col.6–7); 

(b) Determination of the vertex for the left and the right edge in triangle TB, in the 

same manner as described in point II.4. This results in the first triangles TK1L 

and TK1P of the envelope (col.10); 

(c) Determination of the consecutive iterations of triangles TKLi+1, TKPi+1 from the 

edges of the triangles from the previous iteration step, in the same manner as 

described in point III.2, and in accordance with the binary tree scheme (col 10); 

(d) Creation/formation of triangles TK on the edges of triangles TBiP, TBiL in each 

envelope with the top–down approach and in accordance with the binary tree 

scheme (col 10); 

(e) Contractive self-mapping ends the process in the segment of the section if the 

lengths of the edges of either the TKLk or TKPk triangles are the lengths of a 

segment of the polyline uł  (col.12).  
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 Verification of the contractive self-mapping of line uł :  

(a) In the envelope of each line ł, point III.5 is fulfilled.  

(A1) Mapping of generalisations of line uł  at the scale s < 1 with the use of contrac-

tive self-mapping (Figure A4.). 

 Algorithm A0 yields copies of: 

(a) Input data, 

(b) Triangles TB of base polylines ł, called envelopes, and  

(c) Triangles TK in the envelopes of line ł, created in accordance with the binary 

tree scheme.  

 Creation of generalised triangles TK, depending on the scale s < 1 (Figure A8) 

(a) In each envelope of the polyline ł, creating the generalised polyline has an in-

verse relation to contracted self-mapping (i.e., bottom-up) (col.11–12);  

(b) Comparison of the dimensions of bases and the height of triangles TK with the 

A. Salishchev norm (col. 8–9);  

i. Preservation of triangles TK meeting the A. Salishchev norm (col.12);  

ii. The base of triangles TK remains while their edges are discarded if their 

dimensions do not meet the A. Salishchev norm (Figures A5–A6); 

 Creating the generalised polyline ł from the remaining points, with an unchanged 

order of markings of the source line (Figures A5–A6).  

(A2) Verification of generalised line uł  of the mapping at the scale s < 1.  

 Control of the results of the generalisation of line uł  at scale s (Figure A9): 

(a) Measurement of the rejected h points of the source line uł  in the y coordinate 

envelopes against the generalised line and its created segments p of the gener-

alised line (Figures A5–A7). 

(b) Verification of dimensions of the Salishchev triangle at scale s through compar-

ison (Figures A5–A7) of the generalised maximum height of the y coordinate h 

from the points of the source line uł  to the generalised line with a height di-

mension, as well as the segments p created for the generalised line with the norm 

of the dimensions of the base. 

(c) Fulfilment of the Cauchy condition from point 2 (Figure A4) and of the lengths 

of dimensions of the bases and the height, in accordance with the Salishchev for 

the generalised line ł, ends the process of Figures A5–A7. 

The positive results of the test examinations showcased in (Figures A5–A7) and their 

verification in Figures A4 and A5 allowed for the beginning of the development of the 

objective automated digital generalisation algorithm which is in progress. 

8. Conclusions 

The results of the test examinations on digital objective generalisation of object ge-

ometry allow for the following conclusions: 

Each linear object in metric space in contractive self-mapping based on the binary 

tree structure, with the Lipschitz condition and the Banach theorem on self-contracting 

triangles being fulfilled has a single objective solution, which is its source data. In metric 

space, the multiplication operation does not change the properties of self-mapping. When 

adding a fixed scale s < 1 to the self-mapping and by multiplying the dimensions of the 

sides of the created contractive triangles by the constant “s”, we get the lengths of triangle 

sides for a given simplification scale. The verification of the gained data at scale “s” occurs 

through satisfying the Lipschitz condition and the Cauchy condition with the minimum 

dimensions of Salishchev, and then eliminating the sides of any contractive triangles 

which do not satisfy both conditions. The following conclusions are the result of their de-

tailed study: 
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1. Mapping, which constructs iterative images of polyline uł  in the form of triangles 

TK according to the structure of a binary tree is a contraction (Figures A5-A7); 

2. In every contraction iteration, the nodes of the polyline remaining before and after 

contractive self-mapping :f X X  into contractive triangles are invariant and 

identical (columns 3, 4, 5 with column 11 in Figure A4). This proves that triplet ( uł , 

f ,  TK ) is the only one contractive mapping of an ordered polyline into itself;  

3. In a metric space, the contractive self-mapping f: X  X is continuous, as it fulfils the 

Lipschitz condition. The equation ( )u uł f ł  has one solution that results from the 

Banach fixed-point theorem. In addition, the sequence uł  , ( )uf ł , ( (( ))ułf f ,

( ( ((( )))ułf f f  is convergent at the “fixed point”—the polyline uł ;. 

4. The ordered polyline with a binary tree structure belonging to the metric space is a 

constant contractive self-mapping into the contractive triangles TK of the digital gen-

eralisation at each scale s < 1, if the Lipschitz and Cauchy conditions, and the Sa-

lishchev dimensions are fulfilled. Figure A8; 

5. In metric space, the contractive mapping leading to generalisations of the polyline 

uł  follows the top–down approach; 

6. In metric space L2, the contractive self-mapping of the polyline uł  is verified via its 

data (Figure A9). The positive result of the verification allows for the application of 

the contractive mapping of the polyline at scales s <1. (Figure A8, col 12); 

7. The generalised polyline is unequivocally mapped if it fulfils the following condi-

tions: 

(a) Source data of the polyline uł  belong to the metric space zL , i.e., zuł L  

(b) Data of the polyline uł  have the binary tree structure in the mapping;  

(c) Transformation f of polyline uł  into triangles TK in its envelopes fulfils the fol-

lowing conditions: 

i. The contractive self-mapping (data after mapping an object are source 

data) and at each scale s 1 fulfil: The Lipschitz contraction condition, and 

The assumptions of the Banach theorem;  

ii. at scales s < 1 (Every contraction is uniformly continuous in metric space 

X, as it fulfils the Lipschitz condition. The continuity of a function results 

from its uniform continuity.), also: the Cauchy condition with minimum 

dimensions of Salishchev—compatibility of summation of the after-the-

mapping and removed vertices of the polyline with the number of the ver-

tices of the source polyline uł ; 

8. The method for the object geometry generalisation using the contractive self-map-

ping is an objective digital generalisation and has economic rationale, as: 

(a) One-time update of the source data can be used for all scales s  1, which signif-

icantly lowers the costs of constantly updating through their automation; 

(b) Data of an object at scales s < 1 are generalised with the contractive mapping, 

which at each scale has a single solution, in turn increases the credibility of the 

gained information. Contractive self-mapping used for the harmonisation of da-

tabases in which changing the scale of data is a common occurrence—and con-

tractive self-mapping should complement the metadata of every object.  

9. The test examinations of the ordered polyline uł  in the contractive self-mapping 

and its generalisations included in Figures A8 and A9 yielded a positive result that 

validates the creation of an automated application for the objective digital generali-

sation. Work on this problem is in progress. 

10. The generalisation of geospatial data appears broadly representative of current re-

search trends, where significant positive progress can be expected in the near future 
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[28,29]. As cartographers progress, they strategically expand existing techniques, ex-

plore new computational paradigms, and broaden their field of view [30]. Formal 

methods of geometry generalisation and the assessment of their impact are still not 

widespread or used. It seems that cartographic generalisation methods should be de-

veloped, with the aim of becoming independent from the decisions of an individual 

operator. 

Finally, it should be emphasised that the generalisation of geospatial data is a time-

less research task. It has been topical ever since the year 1857, in which von Sydow defined 

the three reefs of cartography. One of them is the generalisation of spatial objects, which 

is necessary, among other things, for the realisation of the INSPIRE directive in terms of 

the automation of harmonisation and the interoperability of data, which require the crea-

tion of an objective method of cartographic generalisation, of which the results are inde-

pendent from the operator. The search for such a method is showcased in this paper. 

An objective generalisation of data at any given scale is possible thanks to the use of 

the following properties: metric space, the Lipschitz contractive self-mapping theory for 

the triangles created with the binary tree system, the Banach theory, and the Cauchy cri-

terion. In the verification of the generalisation results for the triangles created through the 

mapping, the Salishchev norms for drawing recognisability were used. The test results 

fully confirm the premises of this paper, especially the Banach theorem on unique solu-

tions at each generalised scale. Currently, research on the creation of a calculation algo-

rithm for the showcased spatial data generalisation method is in progress. 

Author Contributions: Conceptualization, Tadeusz Chrobak,(15% in article); methodology, Tade-

usz Chrobak, Anna Barańska (30% in a.); software, Anna Barańska; validation, Joanna Bac-

Bronowicz (30% in a.), Dorota Dejniak (10% in a.); formal Analysis, Dorota Dejniak; investigation, 

Stanisław Lewiński (10%) Artur Krawczyk(5%.); resources, Opensource; writing–original draft 

preparation, Tadeusz Chrobak; writing—review and editing, Joanna Bac-Bronowicz, Stanisław 

Lewiński; visualization, Tadeusz Chrobak, Joanna Bac-Bronowicz. All authors have read and 

agreed to the published version of the manuscript. 

Funding: APC was financed by three scientific institutions: AGH University of Science and Tech-

nology, Wroclaw University of Science and Technology and Space Research Centre of Polish Acad-

emy of Sciences. 

Acknowledgments: In this section, you can acknowledge any support given which is not covered 

by the author contribution or funding sections. This may include administrative and technical sup-

port, or donations in kind (e.g., materials used for experiments). 

Conflicts of Interest: The authors declare no conflict of interestThe funders had no role in the design 

of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, 

or in the decision to publish the results 



ISPRS Int. J. Geo-Inf. 2021, 10, 107 15 of 25 
 

 

Appendix A 

 

Figure A1. Scheme of the binary tree of polyline (ordered broken line) uł  envelopes, in contractive self-mapping into contractive triangles TK. 
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Figure A2. Ordered source line— uł  with base triangle—TB. Scale 1: 10,000. 
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Figure A3. Ordered polyline— uł  with contractive mapping of the triangles TK created in binary tree system. Scale 1: 10,000. 
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Figure A4. Generalisation of ordered polyline— uł  to scale 1:25,000 (from the source scale 1: 10,000) with contractive mapping of the triangles TK created in binary 

tree system and the verification of dimensions of triangles in accordance with Couchy condition and minimum dimensions of Salishchev for: bases-pAS =17.5 m, pmin 

= 18.0m ± 4.0 m → pAS < p min, heights-hAS = 8.5m, hmax = 8.5m ± 2.0 m → hAS > h max. 
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Figure A5. Generalisation of ordered polyline— uł  to scale 1:50,000 (from the source scale 1:10,000) with contractive mapping of the triangles TK created in binary 

tree system and the verification of dimensions of triangles in accordance with Couchy condition and minimum dimensions of Salishchev for: bases-pAS =38.0 m, pmin 

= 38.0m ± 6.0 m → pAS < p min, heights-hAS = 16.5m, hmax = 9.0m ± 3.5 m → hAS > h max. 
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Figure A6. Generalisation of ordered polyline— uł  to scale 1:75,000 (from the source scale 1:10,000) with contractive mapping of the triangles TK created in binary 

tree system and verification of dimensions of triangles in accordance with Couchy condition and minimum dimensions of Salishchev for: bases-pAS =54.0 m, pmin = 

56.0m ± 8.0 m → pAS < p min, heights-hAS = 21.5 m, hmax = 17.0m ± 5.1 m → hAS > h max. 
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Figure A7. Generalisation of ordered polyline— uł  to scale 1:100,000 (from the source scale 1:10,000) with contractive mapping of the triangles TK created in binary 

tree system and verification of dimensions of triangles in accordance with Couchy condition and minimum dimensions of Salishchev for: bases-pAS =98.5 m, pmin = 

108.0m ± 15.0 m → pAS < p min, heights-hAS = 31.5 m, hmax = 17.0m ± 9.0 m → hAS > h max. 
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Figure A8. Analysis of polyline (broken line) uł  data generalisation by contractive mappings X  X. 
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Figure A9. Verification of scale-dependent contractive mappings of polyline (broken line) into TK triangles of bases pi, according to the Cauchy condition and 

minimum dimensions of Salishchev. 
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