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Abstract: The extraction of roads and centerlines from aerial imagery is considered an important
topic because it contributes to different fields, such as urban planning, transportation engineering,
and disaster mitigation. Many researchers have studied this topic as a two-separated task that affects
the quality of extracted roads and centerlines because of the correlation between these two tasks.
Accurate road extraction enhances accurate centerline extraction if these two tasks are processed
simultaneously. This study proposes a multitask learning scheme using a gated deep convolutional
neural network (DCNN) to extract roads and centerlines simultaneously. The DCNN is composed
of one encoder and two decoders implemented on the U-Net backbone. The decoders are assigned
to extract roads and centerlines from low-resolution feature maps. Before extraction, the images
are processed within an encoder to extract the spatial information from a complex, high-resolution
image. The encoder consists of the residual blocks (Res-Block) connected to a bridge represented
by a Res-Block, and the bridge connects the two identical decoders, which consists of stacking
convolutional layers (Conv.layer). Attention gates (AGs) are added to our model to enhance the
selection process for the true pixels that represent road or centerline classes. Our model is trained
on a dataset of high-resolution aerial images, which is open to the public. The model succeeds in
efficiently extracting roads and centerlines compared with other multitask learning models.

Keywords: multitask learning; deep convolutional neural network; attention gates; aerial images;
extraction of road and centerline; simultaneous extraction process; residual blocks

1. Introduction

Road extraction from remote sensing imagery is of considerable importance because
it affects modern life specifically, such as city and urban planning [1], transportation
engineering [2], and the operation of unmanned vehicles [3]. Therefore, this topic attracts
researcher attention in attempting to address the challenges that affect the quality of
extracted roads, and it consists of two correlated subtasks: road detection and centerline
extraction [4]. Many researchers have studied this topic separately. For road extraction,
their studies employed a hierarchical approach [5], a probabilistic approach [6], and deep
learning algorithms [7–10]. These researchers studied pixel classification to classify road
(foreground) or nonroad (background) pixels.

Centerline extraction extracts the pixels located at the center of the road. Generally, it
is very difficult to extract centerlines from aerial images directly. The centerline needs to be
extracted from road segmentation [11] using several algorithms, such as morphological
thinning algorithms [12,13]. Although the thinning algorithm is easy to implement, it has a
drawback that affects the accuracy. The spurs are generated surrounding the centerline
extracted by the thinning algorithm. The process of centerline extraction, as mentioned
before, emphasizes the strong correlation between these two tasks.

The new evolution in deep learning helped to overcome many difficulties in different
fields of science. The first convolutional neural network (AlexNet) by Krizhevsky and
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Hinton [14] with five convolution layers and three fully connected layers paved the way for
developing improved neural network architectures. Long et al. [15] presented a fully con-
volutional neural network (FCN), where they replaced all the fully connected layers with
convolution layers, increased the efficiency of the predicted images. They implemented
the FCN on the backbone of AlexNet [14], VGGNet [16], and GoogLeNet [17]. The FCN
has been adapted by many neural network architectures. The backbone of the encoder and
decoder helps to create U-Net [18], which is considered one of the best architectures for
semantic segmentation using a small training dataset.

Training two subtasks separately may lead to the loss of considerable information
while moving from one task to another. This was observed in previous researches where
road and centerline extraction was performed separately. The concept of multitask learning
(MTL) helps overcome this issue. According to Caruana [19], “it may be easier to learn
several hard tasks at one time than to learn these same tasks separately.” Although MTL is
not a new concept, it is recently used for road and centerline extraction. The first attempt to
train these two subtasks simultaneously was presented by Cheng et al. [4]. Their attempt
consisted of two models and each model was assigned a task. In their methodology, the
last deconvolution layer was shared from the road model as an input to the centerline
model. However, their model was inadequate to predict a smooth centerline. To obtain
the result for their centerline segmentation, they employed thinning algorithm on their
network segmentation results. This resulted in the loss of the shared information between
the two subtasks during the training process of their proposed model.

In this study, we propose our gated deep convolutional neural network (DCNN),
which is implemented on the U-Net backbone with a combination of residual blocks
(Res-Blocks) [20,21] in the encoder part. The two tasks share the same encoder, and the
two decoders are assigned to perform each task: road and centerline extractions. The
authors added attention gates (AGs) [22] for the better selection of pixels and more efficient
prediction. Our DCNN is trained to extract roads and centerlines simultaneously. The
architecture of our model shares the information of the road and centerline data in the
training process without losing the extracted information.

The main contributions of this study are:

• It proposed a multitask learning (MTL) model for efficient extraction of roads and
centerlines.

• It revealed the importance of MTL to improve the results of both tasks compared with
that of our previous work.

• It proposed an appropriate MTL architecture to successfully train both the tasks.

The paper is organized as follows: Section 2 presents the related works on both road
and centerline extraction tasks; Section 3 shows the proposed model and methodology;
Section 4 implements the proposed models and evaluates the accuracy of the results;
Section 5 summarizes the results and discussion of this study, and the conclusions are
mentioned in Section 6.

2. Related Works
2.1. Road Extraction Method

The road extraction task has attracted considerable attention, and different studies
use different methods and techniques to extract roads from aerial images. Many early
studies used classification-based methods according to the features, textures, and geometric
features of roads [2]. Baumgartner et al. [23] proposed a model to extract roads from aerial
imagery, which consisted of two parts. The first part focuses on the road characteristics
(e.g., width and type). The second part assigns the local context of roads (e.g., background,
buildings, and trees) to the global context. They found that the global context plays a
major role in the quality of the results. Trinder and Wan [24] proposed a knowledge-
based method based on Marr’s theory of vision to extract roads from aerial images. Their
methodology includes three types of processing: Low-level processing to extract features,
midlevel processing for grouping and generating features, and high-level processing for
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road recognition. Dal Poz et al. [25] presented an automatic method to extract roads from
medium- and high-resolution aerial images. Their method consists of two consecutive
steps. The first is the extraction of road seeds using a number of algorithms, such as the
Canny edge detection method and edge linking algorithm, followed by split and merge
algorithms. The second is road completion by linking the extracted seeds. Song and
Civco [26] presented a pixel-object approach based on both classification and segmentation
methods. In the classification phase, they used a support vector machine to extract road
and nonroad pixels. In the segmentation phase, they used the region growing technique
based on the similarity criterion to segment the whole road region. Previous works have
focused on multiple stages based on several techniques and algorithms to extract roads
from aerial images. Advanced studies have focused on machine learning to enhance the
quality of extracted roads. Mnih and Hinton [27] applied a patch-based approach using a
neural network with postprocessing. The network shows promising results compared with
the previous techniques.

With the new evolution in deep learning by the first convolutional neural network
(CNN) presented by Krizhevsky and Hinton [14], many studies have adopted the CNN
concept, especially in road detection from aerial images. Saito et al. [28] extracted roads
and buildings from aerial images using CNN with a patch-based approach similar to
Mnih and Hinton [27]. Bastani et al. [29] presented a CNN-based search algorithm, and
Mattyus et al. [30] proposed an algorithm to address the incomplete connection of roads
from CNN output segmentation. These previous works represent the adaptation of the
CNN concept. With the concept of the FCN by Long et al. [15], different methods and
techniques were proposed to extract roads from aerial images. Zhang et al. [31] used the
FCN with an ensemble strategy using different weights for the loss function. The existence
of stronger architectures, such as U-Net [18], shows great improvement in the classification
and segmentation process. Zhang et al. [7] used Res-U-Net, which consists of Res-Block
implemented on the U-Net backbone, and their model showed a good result compared
with different CNN architectures. Buslaev et al. [8] proposed a model whose encoder part
consists of ResNet-34 [20], while the decoder is implemented on a vanilla U-Net. Previous
works that adopted U-Net architectures show promising results, specifically in the remote
sensing field.

2.2. Centerline Extraction Method

Generally, extraction of centerlines directly from aerial imagery is considered a very
difficult task. Reviewing the previous works, centerline extraction is mainly performed
in two steps: Extraction of road segments and extraction of centerline pixels from road
segments. Due to the relationship between the two tasks, the centerline extraction went
through the same evolution as the road extraction. Guo et al. [32] extracted centerlines
following multistage processes. First, roads were extracted from low- and moderate-
resolution aerial images based on a detection algorithm. Second, the centerline is estimated
by thinning the road segment based on the Newton and square methods. Shi et al. [12]
extracted centerlines from main urban roads following four steps. First, they extract roads
by purposing spectral-spatial classification to classify aerial images into two groups: roads
and others. The second step focuses on improving the extracted road. If the roads are
located in the homogeneous region, they are emphasized by local Geary’s C. The third step
defines the final road segmentation with shape feature filtering. The last step is to extract
the centerline by using local linear kernel regression. Sujatha and Selvathi [33] extracted
centerlines from high-resolution satellite imagery in three steps. First, road segments
are extracted using histogram analysis, applying adaptive global thresholds to select the
road pixels. Then, the connected components are extracted by dilation and mathematical
intersection combinations, such as closing morphological approaches, which closes the
holes in the road component and clears the image from unwanted portions. Finally, the
morphological thinning algorithm is applied to extract the centerline.
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Previous works focused on extracting a clear and connected road first. In the final step,
the centerline was extracted using different algorithms. Hence, the result of centerline ex-
traction is strongly dependent on road extraction, and it is difficult to extract the centerline
directly from aerial imagery. Recently, with advanced research in deep learning, the MTL
has been introduced to train different multitask problems. Shen et al. [34] presented an
MTL-CNN to identify object skeletons in natural images. The first task is to define whether
the pixel belongs to the skeleton by skeleton localization, and the second task is to predict
the skeleton scale. Xiao et al. [35] also presented a skeleton extraction model from natural
images, and they employed the multi-class imbalanced dataset. Liu et al. [36] investigated
the problem of shared private spaces of the latent feature on text, via adversarial MTL to
enhance the text sequence on 16 different text classifications. Chen et al. [37] presented a
model based on MTL-CNN for gadolinium-enhanced magnetic resonance images (GE-MRI)
images to accomplish two tasks: atrial segmentation and classification of pre/postablation.
Gonçalves et al. [38] performed segmentation and recognition of license plates using both
high- and low-resolution images by MTL-CNN.

The aforementioned MTL concept has been used for different tasks in various fields.
However, the extraction of road and centerline simultaneously based on the MTL concept
has not been extensively studied. The first research work was presented by Cheng et al. [4].
They proposed a cascaded DCNN that consists of two models. One is to extract roads,
and the other is for centerline extraction. The two models are concatenated with the
last deconvolution layer of the road extraction model, which is used as an input for the
centerline extraction model. Although the model showed promising results, they still
employed a morphological thinning algorithm for the centerline segmentation results
to enhance the prediction. The MTL scheme used in their model suffers, due to the
weak sharing of information between two subtasks. Yang et al. [39] presented a recurrent
CNN based on the U-Net backbone (RCNN-U-Net). They proposed a full MTL to extract
roads and centerlines simultaneously from aerial images, and their work showed better
results compared with that of their previous approaches. Liu et al. [40] proposed an MTL
neural network named RoadNet to perform simultaneous road and centerline extraction,
and it showed promising results. However, the results for centerline extraction were
inadequate, especially at the intersection. Recently, Shao et al. [41] proposed an MTL model
with pyramid scene parsing (PSP) pooling to extract road and centerline from very high-
resolution aerial images in urban areas. Their research is promising. However, the results
obtained in their study require improvement. The MTL proposed in their study achieved
an intersection over union (IOU) of 0.5553 and F1-Score of 0.7141 for road extraction, and
an IOU of 0.5395 and F1-Score of 0.7009 for centerline extraction.

As mentioned above, road extraction performed by early studies involved processes
within several stages and steps using different methods and algorithms. The results
had several problems, such as disconnection of the roads and difficulties in extracting
a clear segmentation for the roads due to the complex image background: shadows of
buildings and trees. Additionally, for centerline extraction, they had to extract the road
segments first. Using multistage methods, the centerlines were finally extracted. Due to the
multistage method in the extraction process, the results were not perfect for both classes:
road and centerline. Advanced research in deep learning and the adoption of the MTL
concept enables the simultaneous sharing of information between the two classes in the
training and extraction processes, which leads to enhanced results. In this study, we adopt
the MTL concept by proposing our model to address the extraction task for roads and
centerlines simultaneously.

3. Proposed Model

This study introduces an extension of our first work [42]. The work was proposed to
extract only roads from aerial images. In this study, we extended our proposed method to
extract roads and centerlines simultaneously based on multitask learning.
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In this section, we explain the methodology of this research. First, the basic backbone
of our architecture is explained. Subsequently, detailed descriptions of the four proposed
models are presented—highlighting their similarities and differences.

3.1. Basic Backbone of Architecture

To explain our proposed model, we first explain the basic backbone of our first
model [42] based on single task learning (STL). The model is applied to the U-Net [18]
architecture, which consists of contracting and expanding parts. We call them encoding
and decoding parts, respectively. In the encoding part, there are three residual blocks
(Res-Block) [20,21]. Each Res-Block consists of two convolutional layers (Conv.layers). The
first one has a stride of 2 to downsize the feature map before the next Conv.layer. Before
each Conv.layer, batch normalization (BN) is performed, followed by an activation function
(ReLU). The number of filters for each Res-Block is 64, 128, and 256. In the decoding part,
there are also three blocks, and each block consists of two Conv.layers with 265, 128, and
64 filters. Before the Conv.layer, there is a concatenate layer that connects each block in the
decoder with the corresponding Res-Block in the encoder through the skip connection of
the U-Net. The concatenate layer is implemented after an upsampling layer with a stride
of 2. There is one Res-Block between the encoding and decoding parts with the 512 filters.
The feature map of the last Conv.layer in the decoding part is processed in two additional
Conv.layers after upsampling the last feature map. All the layers have a filter size of 3 × 3.
The last layer has a 1 × 1 filter size, where a sigmoid activation function is implemented to
produce a binary output for road and nonroad classes. It should be noted that the input
image size is 224 × 224, similar to ResNet [20,21]. Figure 1 represents the basic backbone
architecture, and Table 1 shows the detailed structure of the model.

The basic model was trained with binary cross-entropy as a loss function and the
Adam optimizer [43]:

LRoad(y, p(y)) = − 1
N ∑ N

i=1(y ∗ log p(y)) + (1 − y) ∗ log(1 − p(y)), (1)

where N is the total number of pixels in the image, y is the true label, and p(y) represents
the probability of the i-th pixel belonging to the road and nonroad class. If y is equal to 1,
the i-th pixel belongs to the road class. When y is equal to 0, the i-th pixel belongs to the
nonroad class.
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Table 1. The network structure of our previous model [42].

Block Name Filter Size Stride Pad Output Size

Input - - - 224 × 224 × 3

Encoder Res.Block1
3 × 3 2 1 112 × 112 × 64
3 × 3 1 1 112 × 112 × 64

Res.Block2
3 × 3 2 1 56 × 56 × 128
3 × 3 1 1 56 × 56 × 128

Res.Block3
3 × 3 2 1 28 × 28 × 256
3 × 3 1 1 28 × 28 × 256

Bridge Res.Block4
3 × 3 2 1 14 × 14 × 512
3 × 3 1 1 14 × 14 × 512

Conv.Block 1
3 × 3 1 1 28 × 28 × 256
3 × 3 1 1 28 × 28 × 256

Conv.Block 2
3 × 3 1 1 56 × 56 × 128
3 × 3 1 1 56 × 56 × 128

Decoder Conv.Block 3
3 × 3 1 1 112 × 112 × 64
3 × 3 1 1 112 × 112 × 64

Conv.layer1 3 × 3 1 1 224 × 224 × 64
Conv.layer2 3 × 3 1 1 224 × 224 × 64

Output 1 × 1 1 1 224 × 224 × 2

Sigmoid - - - 224 × 224 × 2

3.2. Multitask Learning Models (MTL)

Multitask learning refers to the approach of training a neural network to accomplish
multiple tasks simultaneously. Training a neural network for MTL is a difficult process.
MTL is a complicated learning process compared with STL because the role of an MTL
algorithm is to harmonize and tune the learning process for multiple tasks. The elements
that have huge impacts on the MTL process are an appropriate architecture for the network
to ensure sharing of information among multiple tasks and a weighted loss function for the
neural network. In MTL, a loss function is assigned for each task, and each loss function
is summed up for multiple tasks with weights that have huge impacts on the learning
algorithm. The weighted loss functions are discussed in some researches. Cipolla et al. [44]
proposed an approach to dynamically weigh the loss function in MTL with respect to
the homoscedastic uncertainty of the tasks. Liu et al. [45] studied the effects of negative
transfer when the performance of MTL is worse than that of STL. They proposed an
approach of loss balance where the weights will be updated dynamically with respect to
the training process.

Based on the previous studies mentioned above, the authors have considered these
factors in the architecture design and training process of the proposed models. Based on
the architecture described in the previous section, this study proposes four models that
have MTL training processes. Each model has a slightly different architecture of the basic
backbone for STL described in the previous section.

In the next section, the detailed description of the four proposed model architectures
is presented one by one—highlighting both similarities and differences in the design points
within the four proposed model.

3.2.1. MTL Model by Two Branches

This model represents the basic shape of the MTL model. The MTL refers to training
the two tasks simultaneously, which corresponds to extracting roads and centerlines. The
two tasks share the same encoder and decoder, and only the last two layers are divided
into the two branches. Each branch is assigned to produce a probability map for each class.
Each branch is treated as a binary task, as mentioned in the previous section. The model is
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trained by binary cross-entropy as mentioned in Equation (1) for the road class. For the
centerline class, Equation (2) is applied:

LCenterline(c, p(c)) = − 1
N ∑ N

i=1(c ∗ log p(c)) + (1 − c) ∗ log(1 − p(c)), (2)

where c is the true label for the centerline, and p(c) represents the probability of the i-th pixel
belonging to the centerline class. If c is equal to 1, the i-th pixel represents the centerline.
When c is equal to 0, the i-th pixel represents a noncenterline.

The total loss function for the MTL is the summation of LRoad multiplied by the
weight (wRoad) and LCenterline multiplied by the weight (wCenterline). In this study, wRoad
and wCenterline are set to be 1.0. The total loss function for the MTL is as follows:

Ltotal = LRoad ∗ wRoad + LCenterline ∗ wCenterline, (3)

The MTL by the two branches is shown in Figure 2A. The model employs the looka-
head optimizer [46] with Adam.
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3.2.2. MTL by Two Models

The second MTL model consists of two models. The first extracts roads, and has the
same architecture mentioned in Section 3.1. The probability map is produced by a 1×1
Conv. layer, which is fed into the second model to extract the centerline. The centerline
model consists of a relatively small encoder and decoder to avoid overfitting due to the
imbalanced dataset, especially for the centerline. In the encoder, a concatenate layer to
connect with the 1×1 Conv.layer from the road model is employed. The two Conv.layers
are employed with a dropout ratio of 0.5 and maxpooling to downsize the last feature map.
In the decoder, an upsampling layer with a stride of 2 is employed to double the size of
the output. Two Conv.layers and a 1×1 Conv.layer are applied to create the probability
map for the centerline. This model is also trained by the binary cross-entropy, shown in
Equations (1)–(3). The MTL by the two models is shown in Figure 2B.

3.2.3. MTL by Two Models with Attention Gate (AG)

This model has the same architecture, as shown in Figure 2B, except for the attention
gates (AGs) [22]. The AGs help to improve the segmentation process by ignoring irrele-
vant pixels and emphasizing relevant or desired pixels. The feature maps that have been
processed and downsized in the encoder are filtered by the AGs through the U-Net skip
connection. The selection process is enhanced by gating signals, which extracts contex-
tual information from the decoder. This model has the same training process, shown in
Equations (1)–(3). The MTL by two models with AG is shown in Figure 2C.

3.2.4. MTL by One Encoder and Two Decoders with Attention Gate (AG)

To enhance the segmentation process, we propose another model. The model in
this section consists of one encoder, and the two tasks are processed in the two decoders.
There is a decoder for each task connected with the same encoder to extract the contextual
information for each task simultaneously. In addition to the AG similar to the model in
Figure 2C, each decoder has the same architecture as the decoder in the backbone model
in Section 3.1. This model is also trained following Equations (1)–(3). The MTL by one
encoder and two decoders with AG is shown in Figure 2D.

4. Implementation Process

In this section, we explain the datasets for roads and centerlines used in this study,
data augmentation, and evaluation metrics to validate our model. Visual and quantitative
comparisons of the results with the models proposed by other studies are performed in
this section.

4.1. Dataset

In this study, the dataset compiled by Cheng et al. [4] was used. This dataset consists
of road and centerline datasets. There are 224 very high-resolution aerial images with their
corresponding masks in each dataset. Cheng et al. [4] collected images from Google Earth
and manually labeled the ground truth images. The images with a resolution of 1.2 m per
pixel have different image sizes, and the smallest size is 600 × 600 pixels. The width of
the road is 12–15 pixels, and that of the centerline is 1 pixel. Due to the high resolution,
the images have a very complex background, such as the occlusion of the shadows of
the buildings, trees, and cars. Hence, the extraction process for roads and centerlines is
very complicated.

Each dataset is divided randomly into two sets—80% for the training set and 20% for
the test set. The number of images is not enough to train a DCNN. To avoid overfitting,
several methods were used in image preprocessing. First, the images were cropped
to obtain the required image size to train our model (224 × 224 pixels). The cropping
technique with a sliding window with a stride of 64 pixels [9,47] was employed. The
second preprocessing step is to use standard data augmentation in the Keras framework.
All the cropped images were augmented by shearing, zooming, random rotation, horizontal
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and vertical flips, and random width and height shifts. All the models were implemented
on the Keras framework on Windows 10 and one NVIDIA GeForce GTX 1070 with a
learning rate of 0.0001.

4.2. Evaluation Metrics

Because road and centerline extraction is a segmentation task, overall accuracy (OAA)
in Equation (4), intersection over union (IOU) in Equation (5), and dice coefficient (DSC) in
Equation (6) are used as evaluation metrics.

OAA =
TP + TN

TP + TN + FP + FN
, (4)

IOU =
TP

TP + FP + FN
, (5)

DSC =
2TP

2TP + FP + FN
, (6)

where TP, TN, FP, and FN are true positive, true negative, false positive, and false negative
pixels, respectively. These evaluation metrics are calculated for all the proposed models
and all comparative models.

4.3. Comparison of the Results

In this section, we compare the four proposed models in Section 3.2 with the MTL
models by other studies: cascaded net [4], RCNN-Unet2, and RCNN-Unet3 [39].

4.3.1. Road Extraction

First, the results of road extraction are compared. The results are shown in Figure 3
for the visual comparison. Table 2 shows the evaluation metrics.

Table 2. Evaluation metrics of the models for road extraction. The results are the average of the
performance for all epochs of all images in the test set. The bolded values are the highest. OAA,
overall accuracy; IOU, an intersection over union; DSC, dice coefficient.

Models OAA IOU DSC

Cascaded net [4] 0.9856 0.8053 0.9152
RCNN2 [39] 0.9862 0.8161 0.9227
RCNN3 [39] 0.9864 0.8171 0.9233

Proposed model in Figure 2A 0.9877 0.8382 0.9381
Proposed model in Figure 2B 0.9877 0.8381 0.9380
Proposed model in Figure 2C 0.9877 0.8386 0.9384
Proposed model in Figure 2D 0.9885 0.8492 0.9465

In images 1-(b–h), shown in Figure 3, false negative pixels (red color) are found near
the intersections. The false positive pixels (blue color) in images 1-(b–f) of Figure 3 are
found in the upper part of the images. In images 1-(g) and 1-(h) of Figure 3, the two
models predict them successfully as road pixels (green color). The AG helps to filter
the low-resolution images with a very extensive process to choose the road pixels. False
positive pixels (blue color) are also found in the lower part of images 1-(d), 1-(f), and 1-(g)
of Figure 3, while other models are correctly detected in this part.

In images 2-(b–h), shown in Figure 3, all the models have almost the same misseg-
mented regions shown as FN pixels (red color), especially in the upper part of the images.
The results of (RCNN2) 2-(c), (RCNN3) 2-(d), and 2-(f) obtained by the proposed model
in Figure 2B are worse predictions for this part of the image. The proposed model in
Figure 2D has successfully segmented the pixels near the intersection at the upper part of
the image 2-(h) compared with the other models.



ISPRS Int. J. Geo-Inf. 2021, 10, 147 10 of 15

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 16 
 

 

4.3.1. Road Extraction 
First, the results of road extraction are compared. The results are shown in Figure 3 

for the visual comparison. Table 2 shows the evaluation metrics. 

 
Figure 3. Visual comparisons for road extraction by (a) original image with the corresponding ground truth, (b) cascaded 
net, (c) RCNN2, (d) RCNN3, (e) proposed model in Figure 2A, (f) proposed model in Figure 2B, (g) proposed model in 
Figure 2C, and (h) proposed model in Figure 2D. Green, red and blue represents TP, FN, and FP, respectively. 

In images 1-(b–h), shown in Figure 3, false negative pixels (red color) are found near 
the intersections. The false positive pixels (blue color) in images 1-(b–f) of Figure 3 are 
found in the upper part of the images. In images 1-(g) and 1-(h) of Figure 3, the two models 

Figure 3. Visual comparisons for road extraction by (a) original image with the corresponding ground
truth, (b) cascaded net, (c) RCNN2, (d) RCNN3, (e) proposed model in Figure 2A, (f) proposed model
in Figure 2B, (g) proposed model in Figure 2C, and (h) proposed model in Figure 2D. Green, red and
blue represents TP, FN, and FP, respectively.

In images 3-(b–h), shown in Figure 3, all the models have FN pixels in a similar part.
For the FP pixels, we can see them clearly in images 3-(b), 3-(d), 3-(e), and 3-(g). These
models miss segmented pixels as road pixels. From the visual comparison, we can find that
our proposed model gives good predictions, especially for the first two images. This might
be related to the good architecture combined with the attention gates, and the design of the
two separate decoders has enhanced the process of segmentation compared with the other
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models. According to Table 2, the best prediction was achieved by our model in Figure 2D.
This model shows the highest values for all the evaluation metrics: OAA, IOU, and DSC.

4.3.2. Centerline Extraction

Following the same procedure in Section 4.3.1, the results for centerline extraction are
compared in Figure 4. The evaluation metrics are summarized in Table 3.

Table 3. Evaluation metrics of the models for centerline extraction. The results are the average of the
performance for all epochs of all images in the test set. The bolded values are the highest.

Models OAA IOU DSC

Cascaded net [4] 0.9754 0.9387 0.9548
RCNN2 [39] 0.9757 0.9444 0.9578
RCNN3 [39] 0.9759 0.9443 0.9576

Proposed model in Figure 2A 0.9762 0.9642 0.9726
Proposed model in Figure 2B 0.9763 0.9644 0.9726
Proposed model in Figure 2C 0.9763 0.9632 0.9716
Proposed model in Figure 2D 0.9767 0.9723 0.9780

In images 1-(b–h), shown in Figure 4, the result of the cascaded net 1-(b) has more FN
pixels than those of the other models. The errors are particually found at the intersection
and in the lower part of the image. Fewer FN pixels at the upper intersection are found in
the results of (RCNN2) 1-(c) and (RCNN3) 1-(d), and the two proposed models 1-(f) and
1-(g). The fewest FN pixels are found in the result of image 1-(h) of the proposed model in
Figure 2D. In the lower part of the image, an obvious number of FN pixels is found in all
results, but the proposed model (image 1-(h)) in Figure 2D shows the best result among
the other models. False positive pixels are found in the results of all the models, especially
at the lower intersection. In the results of the cascaded net, false positive pixels are also
found at the upper intersection.

In images 2-(b–h), shown in Figure 4, false negative pixels are found at the upper
intersection, and fewer false negative pixels are found at the lower intersection for all
models. The result of the cascaded net has more FN pixels in different parts of the image
compared with the other models. The FP pixels are found at the upper intersection of the
images for all models, and the fewest FN pixels are found in our model 2-(e).

In images 3-(b–h), shown in Figure 4, the result of the cascaded net has more FN pixels
in the different parts of the image. The FP pixels are found in all results, and the fewest FP
pixels are found in our model 3-(e). According to Table 3, higher values of OAA, IOU, and
DSC are associated with the proposed models. The models with the two decoders with the
AG give more accurate results for road and centerline extractions. Table 4 compares the
evaluation metrics of our STL model [42] and our best MTL model in Figure 2D for road
extraction. We can see the importance of the MTL, and the MTL model can improve the
results of the STL model.

Table 4. Evaluation metrics of the models for road extraction performed by the authors. STL, single
task learning.

Model OAA IOU DSC

STL model [42] 0.9870 0.8465 0.9097
Proposed model in Figure 2D 0.9885 0.8492 0.9465
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5. Results and Discussion

The scheme of the proposed architecture tremendously influences neural networks.
The proposed model, with a U-Net backbone and Res-Blocks in the encoder and Conv.layer
in the decoder, was extended based on the model presented in our previous work [42],
and showed the importance of a U-Net backbone and its effects on the predicted image.
In MTL, the authors investigated the influence of the design of branches through the
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comparison between models (A) and (B) in Figure 2. For centerline extraction, the OAA
and IOU of model (B) are larger than those of model (A). Conversely, the OAA and IOU for
road extraction of model (B) are a little smaller than those of model (A). This difference is
because model (B) has a more detailed and deeper design for the centerline branch than
model (A).

The influences of AGs are investigated by comparing the results of models (B) and (C).
Model (C) was developed by adding AGs to model (B) at the main backbone of the model.
The IOU and DSC for road extraction of model (C) are larger than those of model (B).
However, the IOU and DSC for centerline extraction of model (C) are smaller than those
of model (B). Model (C) has three additional AGs at the decoder in the branch for road
extraction. On the contrary, it has only one AG at the decoder in the branch for centerline
extraction. Hence, we proposed model (D) with three additional AGs for both branches
symmetrically and identically. Model (D) achieved the best results. Lastly, the comparison
between the STL and MTL, as shown in Table 4, shows the importance of the MTL scheme
to train correlated subtasks to enhance the final segmentation results.

6. Conclusions and Future Work

This study presented multitask learning (MTL) models to extract roads and centerlines
simultaneously, and our model successfully achieved the task using a small number of
images. Our previous single task learning (STL) model for extracting only roads from
aerial images was extended in this study. We proposed four models, which were developed
based on the same backbone architecture of our STL model. According to the comparison
of the results, using attention gates helped to enhance the selection process for the true
pixels on the low-resolution feature maps developed by the encoding part of the U-Net.
The two decoders were assigned to extract either road or centerline, and this network
structure improved the predictions compared with the other previous models.

Although the proposed model shows good results for both tasks, the extracted cen-
terlines are sometimes disconnected at the intersections. This issue will be studied in
our future work. We will apply transfer learning, and the trained MTL model will be
trained again using a new dataset. In addition, the proposed model will be trained using
images with a comparatively complicated background. We will try to predict the road and
centerline in the presence of shadows cast by buildings and trees. This will be addressed
by employing postprocessing techniques to enhance the prediction of discontinued roads
and centerlines.
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