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Abstract: Information on the mixed use of buildings helps understand the status of mixed-use urban
vertical land and assists in urban planning decisions. Although a few studies have focused on
this topic, the methods they used are quite complex and require manual intervention in extracting
different function patterns of buildings, while building recognition rates remain unsatisfying. In this
paper, we propose a new method to infer the mixed use of buildings based on a tensor decomposition
algorithm, which integrates information from both high-resolution remote sensing images and social
sensing data. We selected the Tianhe District of Guangzhou, China to validate our method. The results
show that the recognition rate of buildings can reach 98.67%, with an average recognition accuracy
of 84%. Our study proves that the tensor decomposition algorithm can extract different function
patterns of buildings unsupervised, while remote sensing data can provide key information for
inferring building functions. The tensor decomposition-based method can serve as an effective and
efficient way to infer the mixed use of buildings, which can achieve better results with simpler steps.

Keywords: mixed-use building; multisource data; tensor decomposition

1. Introduction

Mixed-use buildings refer to buildings that combine multiple functions vertically [1,2].
They represent the vertical dimension of urban land mixing and intensive use [3]. With
the development of cities, mixed-use buildings have been growing rapidly for years, and
currently exist in various areas of a number of cities [4,5]. The distribution of mixed-use
buildings has an important influence on many urban aspects such as traffic, population and
the economy. Knowing the distribution of mixed-use buildings can help planners better
understand and optimize the status quo of the intensive use of lands, so as to further save
travel time and consumption of space and urban energy. Meanwhile, it can also enhance
the vitality of buildings and establish a good connection between mixed-use buildings
and their surrounding communities and environment, thereby gaining higher economic
benefits [6–8]. However, in most areas, the collection of the building function data still
relies on time-consuming and laborious manual surveys [9].

Many methods have been proposed to infer building functions, but most of them can
only infer the primary function for each building. These methods can be divided into two
types according to the data sources used, i.e., remote sensing-based data and social sensing-
based data. Research based on remote sensing data usually assumes that there is a certain
correlation between building appearances and functions. Various remote sensing images,
including high-resolution optical images, stereo optical images and light detection and
ranging (LiDAR) data, have been employed to obtain the apparent physical characteristics
(e.g., texture, spectral and structural information) of the building, which are further used
to infer building functions [9–16]. However, due to the limited correlation between the
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apparent physical characteristics of a building and its function, the appearance cannot fully
infer the functions of all building types. Meanwhile, research based on social sensing data
(such as mobile phone data, social media data, taxi trajectory data and point of interest (POI)
data) assume that buildings with the same functions have similar human activities [17].
They focus on extracting characteristics of human activities from social sensing data and
then use clustering-based methods or other machine learning methods to infer a building’s
single-use function [18–22]. Compared with the remote sensing-based methods, these
methods can obtain more detailed building functions [23,24]. However, the coverage of
social sensing data may also affect their results. For example, taxi pick-up and drop point
data are only distributed on the roads, so human activity characteristics extracted from
such data would therefore require certain ways to link to the adjacent buildings.

Few studies have focused on inferring a building’s mixed-use functions, most of which
are based on social sensing data. Niu et al. [25] first proposed a density-based method
to characterize mixed-use buildings on the basis of the assumption that buildings with
similar functions would have similar peak times in terms of taxi passenger pick-ups or
drop-offs and Tencent user activity. Liu et al. [26] improved Niu et al.’s method by inferring
a building’s mixed-use functions on the basis of the purpose of the trips obtained from the
taxi data. These research studies, however, still have limitations. First, in such research,
characteristics like the “peak time” of each type of building are extracted on the basis of
training samples, which is a supervised classification method and relies more on experience.
Due to the lack of automation, using these supervised classification methods to extract
human activity characteristics is quite complicated. Second, the “peak time” of human
activities extracted directly from mixed-use building temporal human activity curves is
unstable. The temporal human activity curve of a mixed-use buildings is the mixing and
superimposing result of temporal human activity curves that belong to different crowds
with different activity patterns. The characteristics of such a temporal human activity curve
may vary with the population groups attracted by the building’s different functions. Finally,
the building recognition rates of these studies are not satisfying. This is probably because
they used only social sensing data, which has shortages like low resolution and coverage.

To overcome the limitations of existing studies, a tensor decomposition-based method
that integrates information from both high-resolution remote sensing images and social
sensing data is proposed in this paper to infer a building’s mixed-use functions. As a
high-order generalization of the matrix singular value decomposition and principal com-
ponent analysis, tensor decomposition not only can decompose the n-dimensional array to
obtain the different characteristic patterns as well as the correlation between objects and
characteristic patterns in each dimension, but also can obtain the relationship between
characteristic patterns in different dimensions. Considering that the temporal popula-
tion distribution inside buildings has space-time dimensions, by constructing a tensor of
changes in human activities within the building over time and decomposing it, we can
obtain different human activity patterns inside buildings unsupervised and infer the mixed
use of the building through these patterns. Therefore, tensor decomposition is very suitable
for the inference of a building’s mixed-use functions. Two advantages of our study are as
follows: First, we realized the unsupervised and automatic extraction of the stable human
activity characteristics inside buildings by applying a tensor decomposition algorithm.
Second, we improved the building recognition rate by integrating high-resolution remote
sensing images and social sensing data. A case study in Tianhe District, Guangzhou, China
illustrates the advantages of our method. The rest of this paper is organized as follows. The
study area and datasets are described in Section 2. Section 3 provides a detailed description
of the tensor decomposition-based method, and Sections 4 and 5 report the experimental
results and discussion, respectively. Finally, the study is concluded in Section 6.

2. Study Area and Datasets

As shown in Figure 1, in this study, we selected Tianhe District of Guangzhou in China
as our study area. Located in the eastern part of Guangzhou, it had a population of 1,545,700
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in 2015 and a total area of 137.38 square kilometers (Bureau of Statistics of Guangzhou 2015,
http://112.94.72.17/portal/queryInfo/statisticsYearbook/index, accessed on 19 August
2020). As the new downtown area and commercial center of Guangzhou, Tianhe District
has a large number of commercial and office buildings. Meanwhile, there are also many
industrial buildings and urban villages in the Tianhe District. The variety of building
types and the highly mixed building functions make Tianhe District an ideal study area for
this study.
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Figure 1. Location of the Tianhe District and its building footprints.

Three different datasets, including Tencent user density data, Worldview2 high-
resolution images and building footprints data, were used in our research.

The Tencent user density data record the number of smartphone users accessing
Tencent’s real-time location service products per hour [26]. Thanks to the enormous user
amount, it could serve as an ideal indicator to represent real-time human activities. In this
study, we collected the Tencent user density data from the Easygo platform, which covered
the period from 15 June to 21 June 2015. After format conversion and the data cleaning
pre-process, we got the Tencent user density data in the format of sample points with a
spatial resolution of 25 m and a temporal resolution of one hour.

The building footprints data were obtained from Baidu map platform and had 23,446
building footprints in the study area. Each building footprint represents a single building
that was used as one of the basic units for the building mixed-use inference.

Worldview2 images employed in this study were recorded on November 14, 2010
(Processing Level: Ortho Ready Standard) and can be found on the website of the provider
(http://worldview2.digitalglobe.com/, accessed on 23 March 2014). The 1.8 m spatial
resolution image had four standard spectral bands, namely, the blue band (0.45–0.51 µm),
the green band (0.51–0.58 µm), the red band (0.63–0.69 µm) and the near infrared band
(0.77–0.90 µm).

Although there were differences in the acquisition time for these three datasets,
it was still acceptable given the fact that most buildings remained unchanged during
the period when the above-mentioned data were recorded. The coordinates of all three
datasets were converted to the Zone 49 UTM (Universal Transverse Mercator) projected
coordinate system.

http://112.94.72.17/portal/queryInfo/statisticsYearbook/index
http://worldview2.digitalglobe.com/
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3. Method

In this study, we developed a tensor decomposition-based method to infer buildings’
mixed-use functions. Figure 2 shows the flowchart of the proposed method, which can
be divided into three steps. First, the adjacent single buildings with similar appearance
were merged into building groups based on features extracted from Worldview2 high-
resolution images. Then, based on human activity characteristics extracted from Tencent
user density data, a building dynamic characteristic tensor was constructed and further
decomposed. Finally, buildings’ mixed-use functions were inferred according to the tensor
decomposition results. Details of each step are described below.
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3.1. Single Building Merging

The spatial resolution of the Tencent user density data was 25 m, which means that
not every single building can be covered by this data, as shown in Figure 3a. Moreover,
most small single buildings only have one sampling point of Tencent user data, which is
not stable enough to extract their temporal human activity curves. Residential buildings
located in the same residential area or working buildings in a factory often have a highly
consistent appearance and spatial adjacent. We think that single buildings with adjacent
locations and similar appearances are very likely to have the same function. Therefore,
we merged adjacent single buildings with similar appearance into building groups, and
used building groups as the objects to identify the building’s mixed-use functions based on
social sensing data. In this way, we solved the above-mentioned problems by converting
the study unit from a single building to a building group.

Worldview2 high-resolution images were used to merge single buildings. We first
used the building footprint vector data to clip Worldview2 high-resolution images to obtain
the high-resolution remote sensing image for each single building. Since the building
footprint vector data matched well with the Worldview2 image (see Figure 3a), we did not
need to register two kinds of data. Then, we assigned a unique ID number to each single
building, and used the eCognition software to extract the apparent characteristics from
the respective Worldview2 images. The eCognition software is a remote sensing image
processing software. We import the cropped Worldview2 images into this software to
generate an object layer. The Worldview2 image of each single building was regarded as
an object. For each object in this object layer, eCognition software can provide three types
of feature extraction algorithms: spectral characteristics, shape characteristics and texture
characteristics. The user only needs to select the required characteristics, and the software
can automatically calculate these characteristics of all the objects in the object layer. We
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choose to extract the spectral characteristics, such as the mean, standard deviation of each
band and the shape characteristics, such as the area, perimeter and shape index. Finally,
the apparent characteristics of single buildings were added to the attribute table of the
building footprint vector data.
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Building footprints and Worldview2 image in the same area.

The group analysis tool in ArcMap was used to merge single buildings into building
groups on the basis of the building footprint vector data, which had the attribute table of
apparent characteristics. This tool is a packaged tool in the ArcMap toolbox. It performs
a classification process to find natural clusters in the data. After specifying the number
of groups, it looks for a solution that makes all the elements in each group as similar as
possible, but as different as possible among groups. The element similarity is measured on
the basis of a set of characteristics specified for the objects to be analyzed. We only need to
enter the vector data of single buildings and specify the building apparent characteristic
attributes upon which the grouping is based and the number of groups, and the tool will
automatically generate group analysis results and assign respective group IDs to all the
single buildings. Single buildings assigned the same group ID were a building group. After
grouping all the single buildings, the building group referred to a group of single buildings
with the same appearance or a single building with appearance obviously different from
its surroundings. To make sure that the number of groups was reasonable, we divided the
entire study area into many smaller areas and performed group analysis in these different
areas. At the same time, we assigned as many groups as possible to each small area to
ensure that some single buildings with highly similar appearances and adjacent spaces
were grouped into one group. These building groups were then used to replace single
buildings in the subsequent steps of the building mixed-use inference.

3.2. Construction and Decomposition of the Building Dynamic Characteristic Tensor

An n-dimension array is defined as a tensor. Tensor decomposition is a higher-order
generalization of the matrix singular value decomposition and principal component analy-
sis, which is commonly used to eliminate the correlation among features in vector spaces
and perform feature selections of spatio-temporal data [27]. Tucker decomposition is one
of the main tensor decomposition methods. It not only can decompose the n-dimensional
array to obtain different characteristic patterns in each dimension, but also can obtain the
relationship between characteristic patterns in different dimensions [27,28]. The Tencent
user density data can reflect changes of population distribution within buildings over time,
which means it has both space and time dimensions. We can, therefore, construct a tensor
that reflects the changes of human activities inside buildings over time. By decomposing
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this tensor, we can obtain different human activity patterns inside the building from the
spatial dimension, as well as time characteristics of different human activity patterns,
which can be further used to determine the purpose of human activities in this pattern.
Since studies have found that the purpose of human activity inside a building is closely
related to the function of the building [26], it is therefore possible to further infer the mixed
use of buildings based on the above-mentioned decomposition results.

The Tencent user density data records the number of Tencent users per hour at each
sampling point with a sampling spacing of 25 m. It can reflect the human activity changes
over time. In this study, we counted the hourly average value of the Tencent user density
sample points inside the building groups to characterize their vitality. High user density
indicates great vitality. The spatio-temporal distribution of the 1-week vitality of the N
building groups in the study area, BD, can be characterized as follows.

BD =

 B1
1 · · · B168

1
...

. . .
...

B1
N · · · B168

N

 (1)

where Bt
n represents the Tencent user density value of the building group n at hour t and n

is belongs to [1, N]. N is total number of building groups.
Furthermore, the three-order tensor T responding to the building vitality can be built

based on BD. As shown in Figure 4, the three dimensions of T represent the buildings, time
and date, respectively. Each frontal slice of the tensor T represents a day, each row of the
frontal slice represents a building group and each column represents an hour of a day. The
value of a grid element represents the Tencent user density of a building group within one
hour of a day.
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Tucker decomposition decomposes a tensor into a core tensor multiplied (or trans-
formed) by a matrix along each mode [27]. Taking the third-order tensor χ∈Rˆ(I × J × K) as
an example, a Tucker decomposition of χ with the number of decomposition components of
three dimensions (set as a, b and c) yields a core matrix G∈Rˆ(a × b × c) and factor matrices
A∈Rˆ(I × a), B∈Rˆ(J × b) and C∈Rˆ(K × c) on the three dimensions. Each column of the
factor matrix is a component representing a pattern in the feature space, while each row
represents values of an object in different patterns, indicating the correlation between that
object and different patterns. A larger pattern value indicates a closer correlation between
the object and the pattern. The core tensor represents the intensity of the interactions
between patterns in different factor matrices. Based on these theories, we can decompose
the tensor T into the three factor matrices A, B and C and a core tensor G. Factor matrices A,
B and C represent the building function mode, the time mode and the date mode, respec-
tively, while the core tensor G reflects the relationship between the three factor matrices’
patterns, as shown in Figure 3 and Equation (2). In function factor matrix A (N × k), each
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row represents a building group and each column represents a building functional pattern,
while the pattern values in matrix A represent the correlation between the building groups
and building functional patterns. In time factor matrix B, each row represents an hour of
the day and each column represents a time pattern, while the pattern values in matrix B
represent the correlation between the hours of the day and time patterns. In date factor
matrix C, each row represents a day of the week and each column represents a date pattern,
while the pattern values of matrix C represent the correlation of days of the week with date
patterns. After determining the building types of k functional patterns, we can infer the
building’s mixed-use functions based on matrix A.

T ≈ Gk×4×2 × AN×k × B24×4 × C7×2 (2)

According to the existing research [29], we set the pattern number of the time factor
matrix B as 4, as shown in Figure 3, representing the morning, afternoon, evening and
night patterns, respectively; we set the pattern number of the date factor matrix C as 2,
representing the weekday pattern and weekend pattern, respectively. The k patterns of
the factor matrix A represent the different human activity patterns. Since human activities
inside certain building are closely related to the building’s function, the k patterns of the
factor matrix A can thereby be regarded as the different building functions. The value of
k was determined by minimizing the cost function in the tensor decomposition process.
After determining the building types of k functional patterns, we can infer the building’s
mixed-use functions based on matrix A.

In the process of Tucker decomposition, we adopted the sparse non-negative Tucker
decomposition (SNTUCKER) method proposed by Mørup et al. [30]. This method incorpo-
rates both sparse and non-negative constraints in the Tucker decomposition, which ensures
the non-negativity of the factor matrix and makes the results as sparse as possible to obtain
the main features, thus reducing the ambiguity of the decomposition results.

3.3. Building Mixed-Use Extrapolation
3.3.1. Pattern Inference for Factor Matrices

Since the tensor decomposition is a blind decomposition process, it is necessary to link
the building functions with the k patterns of the functional factor matrix A. The specific
steps are as follows. First, find the correlation between each time pattern in the time
factor matrix B and the 24 h in one day and infer the time patterns (morning, afternoon,
evening and night modes) corresponding to the four patterns in matrix B. Second, find
the correlation between each principal pattern in the date factor matrix C and each day
of the week, and infer the day patterns corresponding to the two patterns in matrix C
(weekday pattern and weekend pattern). Finally, find the time and date patterns that are
most relevant to the k functional patterns according to the core matrix and then infer the
building functions of the k functional patterns.

3.3.2. Building Mixed-Use Inference

After determining the building function represented by each pattern of matrix A,
we can further infer the building function of each building group. As each row of the
functional factor matrix A represents the correlation between a building group and k
functional patterns. For each building group, the functional pattern corresponding to
the largest pattern value represents its main function. Considering there were also many
mixed-use buildings, we set the degree of functional mixing (Di) to determine whether
a building is a mixed-use building, and to identify its mixed-use functions, as shown in
Equation (3).

Di = 1− M1i −M2i
M1i

(3)

where M1i represents the largest functional pattern value of the ith building group, i.e., the
largest pattern value of the ith row in the functional factor matrix A, while M2i represents
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the second largest functional pattern value of the ith building group, i.e., the second largest
pattern value of the ith row in the functional factor matrix A. In Equation (3), the difference
between M1i and M2i indicates the similarity of M2i and M1i. We believe that if the
difference between M1i and M2i is too large, the building group can only significantly
reflect a function represented by M1i. If the values of M2i and M1i are similar, the two
functions represented by M2i and M1i are both owned by the building group. Here, we
only considered the case where a building had at most two functions. To make the values of
(M1i −M2i) comparable between the different building groups, we used (M1i −M2i)/M1i
to normalize them. It can be seen that the smaller (M1i −M2i)/M1i is, the more likely that
the building group has mixed-use functions. Thus, a greater Di value indicates a higher
degree of mixed building functions. When Di exceeded a certain threshold, we defined the
building as a mixed-use building. To determine the threshold of Di, we selected samples of
each type of single-use building and mixed-use building in the study area and calculated
their mixing degree, Di, respectively. The number of samples of each category is shown
in the first column of Table 1. It can be seen that all types of single-use buildings had an
average value of Di less than 0.7, while the average Di values of the mixed-use buildings
types were greater than 0.7. Therefore, we set the threshold of Di as 0.7 in this study. That
is, when the Di of the building group was greater than or equal to 0.7, the building group
was regarded as a mixed-use building, whose functions correspond to its maximum and
second-largest functional pattern value. Otherwise, the building group was determined
to be a single-use building, with its function corresponding to the maximum functional
pattern value.

Table 1. Statistics of the Average Di Values of Each Type of Building Group Sample.

Type and Number of Samples Largest Pattern Value Second-Largest Pattern Value Average Di

Working (87) 0.0077 0.0045 0.5844

Residential (153) 0.0081 0.0034 0.4198

Shopping and recreational (19) 0.0051 0.0035 0.6667

Residential and working (31) 0.0021 0.0017 0.7941

Working and recreational (22) 0.0040 0.0030 0.7500

Residential and recreational (24) 0.0033 0.0025 0.7567

3.4. Accuracy Evaluation

Without real building mixed-use data for the study area, this research selected some
sample areas to evaluate the building mixed-use recognition results. We first used the
recognition rate to represent the proportion of buildings that can be recognized by this
method in all buildings, as shown in Equation (4). We then referred to the accuracy
evaluation method of remote sensing image classification and we constructed the confusion
matrix for each sample area and calculated the overall accuracy (OA), the Kappa coefficient,
the sensitivity and the precision to test the classification accuracy.

RT =
Numr

Numall
(4)

where RT is the recognition rate, Numr is the number of single buildings that are assigned
categories in the sample areas and Numall is the total number of single buildings in the
sample areas. The recognition rate can reflect whether our method can effectively reduce
the number of unidentified buildings compared to the existing methods.

The selection method of the sample area is as follows. We first divided the study area
into grids with resolutions of 500 m × 500 m and 1 km × 1 km, respectively, and then
randomly selected grid samples at both spatial scales to calculate the recognition rate and
accuracy rate of the building functions.
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4. Results
4.1. Results of Single Building Merging

After merging single buildings, we obtained a total of 8750 building groups. Figure 5
shows the building groups and the corresponding Worldview2 images of the three sample
areas in the Tianhe District, which reflect the different types of building groups. Figure 5b
shows the single building merging result of commercial and residential areas. By comparing
this result with its corresponding Worldview2 image in Figure 5a, it can be seen that the
two large commercial and entertainment buildings were not merged with other single
buildings because their shapes and apparent characteristics are quite different from those
of the surrounding single buildings. Instead, they were directly given an independent
ID as a separate building group. Figure 5d reflects the single building merging result
in a sample area of office buildings. Comparing it with Figure 5c, it can be seen that
office buildings with a large area and special appearance were not merged, while those
with a small area and consistent appearance were merged into a group. Figure 5f shows
the single building merging results of factory areas and urban villages. Compared with
Figure 5e, it can be seen that the urban villages have relatively special spectral and shape
characteristics. Because of the small building area and dense distribution, the urban village
area in the building footprint data was drawn as continuous irregular rectangular areas.
On the one hand, the building groups of urban village buildings were larger than other
types of building groups, thanks to their large area and strong appearance consistency.
On the other hand, many small footprints at the edge of these areas were not merged
because of their irregular shapes. To sum up, the single building merging results were quite
reasonable. For example, most of the commercial and entertainment single buildings and
larger office single buildings were not merged, and thus, can be directly used as building
groups to participate in building function inference. On the other hand, the relatively small
residential single buildings, office single buildings, urban village buildings and industrial
single buildings were usually merged because of the highly consistent appearance of the
buildings around them. This solved the defect that many single buildings with small areas
cannot be covered by Tencent user data. Meanwhile, it also ensured the independence of
buildings with large areas, such as commercial entertainment and office buildings, which
could better meet the requirements of the subsequent building mixed-use inference.
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4.2. Analysis of Tensor Decomposition Results

Before constructing the tensor T that responds to the building vitality, we determined
the pattern number k of the functional factor matrix A by minimizing the cost function.
We conducted five sets of tensor decomposition experiments, with different k values in
the range of 3–15. As shown in Figure 6, the five curves represent the five groups of
experiments, respectively. It can be seen that for all the five groups of experiments, the cost
function curves all decreased rapidly when k increased from 1 to 7, but became quite stable
after that. Therefore we set the value of k to 8 and the size of the core tensor G as 8 × 4 × 2.
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4.2.1. Time Pattern Analysis

Figure 7a,b shows the decomposition results of the time factor matrix and the date
factor matrix, respectively. The pattern values in the factor matrix were normalized by the
column for the purpose of comparison. A larger pattern value indicates a closer correlation
between the object and the pattern. Figure 7a reflects the relationship between the 24 h of a
day and the four time patterns. The pattern value of Pattern 1 began to grow at 10:00 a.m.,
reaching its maximum at 8:00 p.m., thus making Pattern 1 the night pattern. By contrast,
the pattern value of Pattern 2 increased significantly at 8:00 a.m., reaching the maximum at
11:00 a.m., making it more fit for the morning pattern. With larger pattern values during
the night period, Pattern 3 can also be classified as the night pattern. Pattern 4’s pattern
value started to increase from 10:00 a.m. and peaked at 6:00 p.m., proving that it is an
afternoon pattern. Similarly, Figure 7b shows the correlation between each of the days
from 15 June to 21 June 2015 and the two date patterns. The 20 and 21 June 2015 were
weekends, while the other dates were weekdays. It was clear that Pattern 1 had greater
values on weekdays, but smaller values on the weekends, whereas Pattern 2 showed quite
the opposite trends. This proves that Pattern 1 represents the weekday pattern, whereas
Pattern 2 represents the weekend pattern.

4.2.2. Building Functional Pattern Inference

The core tensor of T reflects the connection between different patterns of the functional
factor matrix A, the time factor matrix B and the date factor matrix C. Since building
function can be determined according to the characteristics of the internal human activities,
the building functions of eight function patterns can be inferred by analyzing the corre-
spondence between the time, date patterns and the building function patterns through the
core matrix.
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Table 2 shows the core tensor obtained from the tensor T decomposition. The values
in the table correspond to the links’ strength between the eight functional patterns, the
four time patterns and the two date patterns. Values with stronger ties are highlighted in
orange color in Table 2.

Table 2. Core Tensor of T.

Weekday Weekend

Morning Afternoon Evening Night Morning Afternoon Evening Night
Pattern 1 0.003 0.003 0 0.156 1 0.093 0.085 0.030 0.261 1

Pattern 2 0 0 0 0 0.626 1 0.007 0 0.008
Pattern 3 0 0.002 0.052 0 0 0.271 1 0.235 1 0.012
Pattern 4 0 0.259 1 0 0 0 0.022 0 0.028
Pattern 5 0.061 0.002 0.113 1 0 0 0 0.311 1 0.223 1

Pattern 6 0.552 1 0.006 0.007 0 0.074 0.003 0 0.001
Pattern 7 0.016 0.244 1 0.349 1 0 0 0.053 0.001 0.008
Pattern 8 0.005 0 0.099 0.365 0 0.004 0.004 0.052

1 The highlight in the table indicates the value that reflects the larger correlation relationship between different patterns.

Based on results in Table 2, the eight building functional patterns are summarized
as Table 3. Pattern 1 and Pattern 8 in the function factor matrix A were strong correlated
with the night pattern. Since buildings with the night pattern have peak times of human
activities at night, we can infer that Pattern 1 and Pattern 8 correspond to the living function.
Pattern 5 in function factor matrix A was correlated with three patterns, namely, the evening
pattern on weekdays, and both the evening and night patterns on weekends, which were
thus determined as the living function. Patterns 4, 6 and 7 in the function factor matrix A
were only related to the weekday pattern. Patterns 4 and 6 corresponded to the afternoon
pattern and the morning pattern, respectively, while Pattern 7 corresponded to both the
afternoon and the evening pattern. Despite the slight difference in the peak times of human
activities with these three patterns, they all reflected the characteristics of work-related
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building functions. In contrast to Patterns 4, 6 and 7, Patterns 2 and 3 both showed a closer
relation to the daytime pattern on the weekend. Pattern 2 corresponded to the morning
pattern on weekends, reflecting the characteristics of buildings in the market, while Pattern
3 was more closely related to the afternoon and evening patterns on weekends, reflecting
the typical characteristics of buildings such as shopping malls. In this study, Patterns 2 and
3 were combined as shopping and recreational functions.

Table 3. Functional Pattern and Temporal Pattern Interaction.

Weekday Weekend

Morning Pattern 6 Pattern 2

Afternoon Pattern 4,7 Pattern 3

Evening Pattern 7,5 Pattern 3,5

Night Pattern 1,8 Pattern 1,5

To further validate the inferred results, we plotted the curves of the average number
of Tencent users in all buildings corresponding to the eight types of building functions
over time, and observed the human activity patterns in buildings with different functions.
Here, we did not consider the mixed use of the building. The function of each building
group was determined according to the maximum function mode value corresponding to
the function factor matrix A. We separately counted the average weekdays and weekends
of the eight different functional buildings with temporal human activity curves, as shown
in Figure 8. The values of 1–24 on the horizontal axis represent the averaged 24 h of the
weekdays, while the values of 25–48 represent the averaged 24 h of the weekends. The
vertical axis represents the average number of Tencent users of a specific type of building
at a certain time, which reflects the population activities inside those buildings at that
time. It can be observed that all three curves reflect the distinct characteristics of residential
buildings, i.e., showing the peak times of human activity around 11:00 p.m. Pattern 1
and Pattern 5 maintained the same population on weekdays and weekends, while it was
different in Pattern 8, which showed a significantly smaller number of people on weekends
than weekdays. This indicates that there is an outflow of the population from buildings
of Pattern 8 during the weekend. Figure 8b shows the average temporal human activity
curves corresponding to the three working functional patterns. All three curves showed
clear peak times of human activity in the morning and afternoon on weekdays, becoming
smooth on the weekends. These three curves, compared with the weekdays, showed a
significant decrease in the number of people on the weekends, which are typical curves
of the working function. The difference among the three curves was that the afternoon
human activities of Pattern 4 were significantly more active than the morning human
activities on the weekdays; Pattern 7 showed similar human activities in the morning
and afternoon; and Pattern 6 demonstrated significantly more active human activities in
the morning than in the afternoon. This may be related to the different natures of the
work of people within office buildings. Figure 8c shows the average temporal human
activity curves corresponding to the two functional patterns classified as the shopping
and recreation functions. Both curves were characterized by a greater weekend pedestrian
volume than weekday pedestrian volume. The peak times of the human activities of
Pattern 2 occurred at 10:00 am, conforming to the characteristics of the densest crowd
in the trading market in the morning, while the curve of Pattern 3 displayed the peak
times of human activities at 5:00 p.m., conforming to the characteristics of shopping and
recreation buildings. In summary, the function patterns reflected in average population
density characteristic curves were fully consistent with the inferred results based on the
core tensor, thus proving the reasonableness of the inference obtained with the core tensor.
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4.2.3. Building Function Recognition Accuracy Assessment

The inference results of building mixed-use functions in the Tianhe District are shown
in Figure 9. Figure 9a shows the distribution of different types of buildings. Overall, the
number of residential buildings in the Tianhe District was significantly higher than other
types of buildings. They were evenly distributed throughout the Tianhe District, except
for the south-west part. The working buildings showed a relatively clustered distribution,
with the densest distribution located in the Southwest Tianhe District, i.e., the central
business district (CBD) of Guangzhou, known as Tianhe City and Zhujiang New Town.
Figure 9b shows the enlarged map of Zhujiang New Town. In other areas of the Tianhe
District, there were a number of relatively small clusters of working buildings, most of
which can be associated with industrial parks. Shopping and recreational buildings were
fewer in number and spatially discrete, most of which were located in the southern part of
the Tianhe District. Similarly, the density of the shopping and recreational buildings in the
CBD area was also higher than other areas.
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Figure 9d shows the distribution of mixed-use buildings in the Tianhe District. It can
be seen that the mixed-use buildings in the Tianhe District were mainly distributed along
the roads. Again, the number of mixed-use buildings in the southwest part of the Tianhe
District was significantly higher than in other areas.

Based on our results, we further calculated the proportion of each building type in the
study area (Table 4). The values of the “Number” column were obtained by counting the
numbers of each type of single building, while the values of the “Percentage” column were
calculated by dividing the number of each type of single building with the total number
of single buildings in the Tianhe District. From Table 5, it can be seen that the number of
mixed-use buildings in the Tianhe District accounted for 18.92% of all buildings, which
is consistent with the results of existing studies [26]. Among the mixed-use buildings,
working and residential buildings accounted for the largest proportion, i.e., 11.10% of the
total number of buildings. The residential and recreational buildings group was the second
largest, accounting for 4.55% of the total number of buildings. The work and recreation
buildings group only accounted for 3.27%. The buildings’ recognition rate in our method
reached 98.67%, which is a significant improvement compared to the existing studies on
building function inference [20,25].

Table 4. Number and Percentage of All Types of Single Buildings in the Tianhe District.

Type Number Percentage (%)

Single-use building 18,219 79.75

Mixed-use building 4322 18.92

Working building 2380 10.42

Residential building 14,715 64.41

Shopping and recreational building 1124 4.92

Residential and working building 2536 11.10

Working and recreational building 747 3.27

Residential and recreational building 1039 4.55

Unclassified building 304 1.33

To verify the accuracy of the building function recognition, we randomly selected six
500 m × 500 m and 1000 m × 1000 m grids in the Tianhe District as the sample areas. The
actual function types of the single buildings in the sample areas were marked on the basis
of both a field survey and the Baidu street view map, which were then used to validate the
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recognition results in our study. Table 5 shows the OA, Kappa coefficient and recognition
rate of the mixed use of the single buildings in two spatial scales. The results show that the
proposed method achieved a high accuracy of building mixed-use recognition results with
an average OA of 0.84 and an average Kappa of 0.75, which prove that our method can
effectively infer the mixed-use functions of buildings. To further explore the difference in
the recognition accuracy of different types of buildings, we constructed a confusion matrix
with a total of 716 buildings in 6 sample areas and calculated the sensitivity and precision
of each building type, as shown in Table 6. As can be derived from Table 6, the recognition
accuracy of single-use buildings was higher than that of mixed-use buildings. Among the
types of single-use building, working buildings had the highest recognition accuracy, with
a sensitivity of 95% and a precision of 96%, followed by residential buildings, and finally,
shopping and recreational buildings. As for the mixed-use buildings, the identification of
working and shopping building was the most accurate, with a sensitivity of 74% and a
precision of 95%, and the identification of residential and shopping building was the least
accurate. This is mainly because the low-level shops in these residential and shopping
buildings cannot attract enough people, so their commercial characteristic curves are not
recognized in the recognition process. Therefore, these mixed-use buildings are mistakenly
classified as residential buildings.

Table 5. Accuracy Assessment in Different Spatial Scale.

Spatial Scale Samples
Number
of Single
Buildings

Number of
Correctly Inferred
Single Buildings

Recognition
Rate (RT) OA Kappa

500 m × 500 m
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5. Discussion
5.1. Error Analysis of Building Function Inference

The accuracy of building function inference results based on the tensor decomposition
was different among the different building types. In addition to the mixed-use buildings
analyzed in Table 5, where only one building function was identified and mistakenly
classified as a single-use building, there were also cases where one type of single-use
building was clearly mistaken as another type of single-function building. We selected the
typical misclassified buildings in Zhujiang New Town and Tianhe City, which have the
highest complexity of building types in Tianhe District, and analyzed the main reasons for
the classification errors.

Table 7 shows the major misclassification conditions of each type of building. Build-
ings which were misclassified as residential buildings were mainly sports venues and
schools, while some of the high-end residential areas were mistakenly classified as work-
ing buildings. The obvious misclassification of shopping and recreational buildings only
existed in some of the uncompleted or completed villa areas.

Table 7. Typical Misclassified Buildings in Zhujiang New Town and Tianhe City.

Misclassified Building Function Examples

Residential building
Guangzhou Tianhe Stadium, Guangzhou Tianhe Sports
Center, Haixinsha Asian Games Stand, Tianhe Huayang

Primary School (Huacheng Campus)

Working building Poly 108 Mansion, Bihai Bay Residence, Jiayu Junyue
Residence

Shopping and recreational building Hesheng DiJing Villa, Longfor Mansion villa

We concluded the three main reasons that led to the incorrect inference of building
functions from Table 6. Firstly, inference of building functions mainly depends on the
activity patterns of the people inside buildings. If the characteristics of human activities
in buildings cannot be accurately reflected, the building function inference results will
be biased. For example, the reason for misclassified sports venues is that their temporal
human activity curves have similar characteristics to the temporal human activity curves
of residential buildings, because people tend to go to sports venues for exercise in the
evening. Secondly, the representativeness and density of social sensing data affects the
inference results. The human activities represented by Tencent user density data more
often reflect the activities of groups of adults who frequently use mobile devices, thus
affecting the accuracy of the results that are mainly associated with the elderly and student
groups. The classic incorrect inference caused by this reason relates to school buildings.
Finally, when we merged the functional patterns obtained from the tensor decomposition
into three functional patterns, we did not further explore the intra-class differences among
the three functional patterns, which may have omitted certain information and affected
the accuracy of the inference of building functions. Given that these intra-class differences
can reflect the building’s functions to a certain extent, it is necessary to further explore
the decomposition results in conjunction with other auxiliary data in order to obtain more
detailed and accurate building function inference results.

5.2. Advantages of Integrating Remote Sensing Data to Infer Building Mixed-Use

In this study, we introduced high-resolution remote sensing data to merge buildings
with similar appearance into building groups. There were two main reasons for doing so.
First, the 25 m resolution of the Tencent user density data was not sufficient enough to
cover all the buildings. Creating buffers for single buildings was not viable either, because
the human activity characteristics of the adjacent buildings would influence each other,
especially in areas with a high complexity of building types. Second, the human activity
characteristics of some buildings could not be fully represented due to the limited number
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of Tencent user density data sampling points. Since building groups are larger than single
buildings in size, the coverage of Tencent user density data could be greatly increased,
which can effectively improve the recognition rate of building functions. The percentage
of unidentified buildings was only 1.33% when using the building groups, in contrast
to 32.39% when using the single buildings directly. This demonstrates the necessity of
merging single buildings on the basis of high-resolution images. Moreover, the human
activity characteristics extracted on the basis of the building groups were more stable
than those extracted based on single buildings, thus allowing us to obtain more accurate
building mixed-use inference results.

6. Conclusions

This study proposed a new method to infer buildings’ mixed-use function, which was
based on the integrative use of high-resolution remote sensing images and social sensing
data, as well as the tensor decomposition algorithm. We first extracted building apparent
physical characteristics from the high-resolution remote sensing data and merged single
buildings with similar appearance into building groups. Then, we used the Tencent user
density data to construct building dynamic characteristic tensors for the building groups.
Finally, we inferred the buildings’ mixed-use functions based on the tensor decomposition
results. The application of the proposed method in the Tianhe District of Guangzhou,
China yielded a building recognition rate of 98.67%, with an average recognition accuracy
of 84%. The following conclusions can be made based on the results of this study. First,
the integration of high-resolution remote sensing images and social sensing data helped
to increase the building function recognition rate from 67.61% to 98.67%, compared to the
case of using social sensing data only. This indicates that combining these two types of
data can effectively improve the building recognition rate. Second, the building function
inference method based on tensor decomposition had an average accuracy of 84%, which
proves that the tensor decomposition algorithm can accurately identify different function
patterns of buildings. However, the proposed method can only extract three relatively
rough functional categories, namely residence, work and business entertainment. Future
studies may consider adding other data, such as POI, to obtain betterbuilding function
inference results.
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