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Abstract: Evapotranspiration is the major component of the water cycle, so a correct estimate of this 

variable is fundamental. The purpose of the present research is to assess the monthly scale accuracy 

of six meteorological data-based models in the prediction of evapotranspiration (ET) losses by 

comparing the modelled fluxes with the observed ones from eight sites equipped with eddy 

covariance stations which differ in terms of vegetation and climate type. Three potential ET methods 

(Penman-Monteith, Priestley-Taylor, and Blaney-Criddle models) and three actual ET models (the 

Advection-Aridity, the Granger and Gray, and the Antecedent Precipitation Index method) have 

been proposed. The findings show that the models performances differ from site to site and they 

depend on the vegetation and climate characteristics. Indeed, they show a wide range of error values 

ranging from 0.18 to 2.78. It has been not possible to identify a single model able to outperform the 

others in each biome, but in general, the Advection-Aridity approach seems to be the most accurate, 

especially when the model calibration in not carried out. It returns very low error values close to 

0.38. When the calibration procedure is performed, the most accurate model is the Granger and 

Gray approach with minimum error of 0.13 but, at the same time, it is the most impacted by this 

process, and therefore, in a context of data scarcity, it results the less recommended for ET 

prediction. The performances of the investigated ET approaches have been furthermore tested in 

case of lack of measured data of soil heat fluxes and net radiation considering using empirical 

relationships based on meteorological data to derive these variables. Results show that, the use of 

empirical formulas to derive ET estimates increases the errors up to 200% with the consequent loss 

of model accuracy. 

Keywords: evapotranspiration; eddy covariance station; calibration process; indirect estimates;  

net radiation 

 

1. Introduction 

Evapotranspiration (ET) is the major component of the water cycle [1]. It is 

fundamental in many different applied hydrology studies [2,3], hence its incorrect 

assessments impact the hydrological soil–water balance [4]. Eddy covariance (EC) stations 

are considered among the most reliable systems for determining the ET losses but there 

are limitations in their use. The limitations come from the high costs of installation and 

maintenance, in addition, long-term ET measurements are complex to obtain and even if 

observational data exist, algorithms for data pre-processing are time-consuming [5]. 

Furthermore, flux towers coverage at the global scale is evidently quite inhomogeneous 

and quite scarce in some areas of the world. For all these reasons, in time, many scholars 

have proposed different models for the prediction of actual (AET) and potential (PET) ET. 

Among a large number of models, the conventional meteorological data-based 

approaches, though could appear old fashioned, are still nowadays preferred. The reason 
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is the simplicity of computation and in the large availability of meteorological data 

required for the simulation [6,7]. This aspect is essential especially in rural water basin 

contexts where the lack of data represents the major challenge in evapotranspiration water 

losses assessment [8,9]. 

Among the meteorological data-based approaches for PET prediction, radiation-

based, temperature-based, and combination-based models can be listed [10,11]. Priestley 

and Taylor [12], Turc [13] and Abtew [14] models are among the most commonly used 

radiation-based methods. The category of the temperature-based models includes 

methods like Hargreaves, Thornthwaite, Blaney- Criddle, and Linacre approaches [15–

18]. Penman-Monteith model [19] is one of the most popular [20] approach within the 

class of combination-based models. With respect to AET, one of the most relevant method 

among the meteorological data-based models is the Antecedent Precipitation Index (API) 

approach [21–24]. Complementary approaches are another class of data-based methods 

used for the prediction of AET. They gained widespread application under different 

climate conditions and land cover surfaces [8,25]. A number of different techniques based 

on the complementary relationship (CR) have been developed, among which the 

Advection-Aridity (AA) model [26–28], the Granger and Gray (GG) model [29,30], the 

CRAE model [31], and the modified Advection-Aridity (MAA) model [32]. Given the 

existence of alternative methods, it appears fundamental to select the most appropriate 

approach for the modeling process of ET fluxes so, in time, many scholars have carried 

out researches with the aim of comparing predictions from PET and AET routines with 

values of evapotranspiration losses measured from EC stations and from lysimeters [33–

37]. The findings of these comparative researches did not allow identifying a single model 

that outperforms the others for a particular biome. In particular, [38] compared several 

PET models only for a single climate condition which refers to Poland and lies between a 

snowy climate and a warm temperate one, in addition, no mention has been done to the 

land cover of the selected stations. [39] tested six PET approaches for a single land cover 

dominated by forest and only for the warm humid climate which characterizes the south-

eastern United States finding out that Priestley-Taylor performs better than the other PET 

formulas. Similarly, [40] tested the performances of six ET models only for the humid 

climatic condition in the western region of Fukuoka City and for a crop area and 

Thornthwaite model resulted the most accurate approach.  

Only few authors tested ET models in different climates and land covers. [37] 

considered different climatic regimes across the world and several vegetation types 

including grassland, cropland, savannas, and forest but this study mainly focused on PET 

models like PM and PP approaches with a limited attention for AET models. 

The same reasoning applies to [41] which analyzed the performances of a bio-

meteorological method derived from PT approach over 16 test-sites ranging from tropical 

to boreal climates and representing a wide range of land covers among which grassland, 

crop, deciduous broadleaf, evergreen broadleaf, and evergreen needleleaf forests. 

Additionally, the literature only reports very few studies where the ET estimates 

from the complementary methods have been extensively predicted and evaluated using 

data from EC sites under contrasting environments and where cross-comparison of those 

approaches is investigated [8].  

For this reason, additional studies in this field are encouraged. Within this 

framework, in the present study, a comparison among six approaches through eight 

experimental sites has been performed. Among the PET models, Priestley–Taylor (PT), 

Penman-Monteith (PM), and Blaney–Criddle (BC) approaches have been considered 

while among the AET models, the Advection-Aridity (AA) model, the Granger and Gray 

(GG) approach, and the Antecedent Precipitation Index (API) model have been selected. 

The eight experimental sites used for the comparison belong to the TERENO, AmeriFlux 

and FLUXNET networks. They are featured by different climate conditions including 

Mediterranean and temperate Oceanic climates, and different vegetation types which are 

grasslands (GRA), croplands (CRO), forests (FOR), and wetlands (WET). The 
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performances of the six models for the eight experimental sites have been tested and 

compared with the aim of providing recommendations about the method which can be 

more effectively used with or without a calibration process and furthermore the impact 

and the importance of the calibration itself can be identified. Indeed, the calibration of the 

models to local conditions appears to be fundamental in order to reduce the errors 

resulting from the application of the approaches to regions different from those in which 

they were originally developed [38,42]. 

An additional work has consisted in the assessment of prediction errors of the 

proposed approaches when measured input parameters required for running the models, 

are not available and in their place estimated values from empirical relationships are used 

[41]. While meteorological data like precipitation and temperature are commonly 

measured by weather stations, other input parameters like net radiation or soil heat flux 

are less systematically covered by continuous measurement since more expensive 

measuring devices are required for this purpose (i.e., pyranometers, heat flux plates) [6].  

The lack of these parameters makes challenging the use of several ET models 

narrowing the field of application only to temperature-based approaches [15–18]. Such 

restriction can be overcome by using empirical formulations to derive the missing 

parameters [41]. This is the case of several studies where meteorological data required for 

the implementation of ET models were not available and so indirect formulas were used. 

In detail, [38] due to the problem of meteorological variables availability in Poland, 

procedures and default coefficients suggested by [41] were used to derive ET with four 

radiation-based methods. Another example is [43], which due to the weather data 

limitation in Mediterranean areas, used standard empirical methods to calculate ET. 

When empirically derived meteorological variables are used, the accuracy of the ET 

predictions could vary considerably. In light of this, in the present paper, a comparison 

between the models performances using observed and modelled input variables has been 

performed. 

2. Materials and Methods 

2.1. The Experimental Sites 

Observed ET data from eight eddy covariance (EC) towers have been used to 

compare the accuracy of the six selected models in predicting the evapotranspiration 

fluxes. The EC stations belong to three global networks namely Fluxnet 

(http://fluxnet.fluxdata.org/, accessed on 20 January 2021), TERENO 

(http://teodoor.icg.kfa-juelich.de/overview-en, accessed on 20 January 2021), and 

AmeriFlux (http://ameriflux.lbl.gov/, accessed on 20 January 2021) platforms. They are 

featured by different biomes which combine four different vegetation types (grassland, 

cropland, forest and wetland) and two climate conditions (Mediterranean, Oceanic). 

For what concern the selection of the vegetation type, grasslands and forests have 

been considered since they are among the largest ecosystems in the world covering 

respectively about the 40% and 30% of the earth’s land area excluding Greenland and 

Antarctica [44,45]. Cropland has expanded rapidly in order to feed the world’s growing 

population [46] while wetland, although represents a small portion of the landscape, is 

found throughout the world [47]. Grassland ecosystems (GRA) are areas covered by grass-

dominated vegetation with little or no trees and a variable intensity of meadows, steppes, 

and grasslands grazed. Cropland (CRO) is farmland with agricultural and/or horticultural 

products. The forest cover (FOR) includes terrestrial habitats dominated by trees and 

other woody plants. The wetland (WET) consists of permanent mosaic of water and 

herbaceous or woody vegetation. With respect to the climate, sites located in 

Mediterranean and Oceanic areas have been considered since they present very different 

temperature and precipitation annual patterns, with a marked seasonality in the case of 

the Mediterranean climate over the temperate Oceanic. Indeed, according to the Koppen 

classification, the Mediterranean climate (Cs) has mild, wet winters and warm-to-hot, dry 
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summers with the precipitation mainly occurring during winter and autumn. The 

subtypes “Csa” and “Csb” represent a Mediterranean climate with average temperature 

respectively above and below 22° during the warmest month. The oceanic climate (Cf) is 

characterized by cool winters and warm summers, and the rainfall events are evenly 

dispersed during the year. Cf has the two subtypes “Cfa” and “Cfb” too. Eight areas with 

the considered biomes have been selected for the present study including “us-twt” 

(FLUXNET2015 DOI:10.18140/FLX/1440106) located on Twitchell island, Sacramento 

Country, California (USA) [48,49], “us-tw1” located on Twitchell island, Sacramento 

Country, California (USA) (FLUXNET2015 DOI:10.18140/FLX/1440108) [50–52], “us-arm” 

located near Billings, in northwest Noble County, Oklahoma (USA) (FLUXNET2015 

DOI:10.18140/FLX/1440066) [53,54], “us-fwf” located near Flagstaff, Coconino County in 

Arizona (USA) (AMERIFLUX DOI:10.17190/AMF/1246052) [55,56], “de-rur” located in 

Simmerath, north Rhine-Westphalia (Germany) (https://deims.org/356417de-5a3c-429d-

82c1-08a4e924ab3b) [57,58], “de-hai” located within the Hainich National Park in central 

Germany close to the city of Eisenach, western Thuringia (FLUXNET2015 

DOI:10.18140/FLX/1440148) [59–61], “de-sfn” is located near Seeshaupt, Weilheim-

Schongau district, in Bavaria, Germany (FLUXNET2015 DOI:10.18140/FLX/1440219) 

[62,63], “us-me3” located near Sisters, a city in Deschutes County, Oregon, United State 

(FLUXNET2015 DOI:10.18140/FLX/1440080) [64–66]. 

In Figure 1, the selected sites, the corresponding identification numbers (ID), 

location, and networks have been shown. 

 

Figure 1. Location, Platform and identification number of the eddy covariance (EC) stations under investigation in (a) 

U.S.A. and (b) Europe. 

These sites have been preferred among all available locations with the required 

characteristics of climate and vegetation since they offer a better data quality standard, 

with longer periods of observation and low frequency in the occurrence of missing data 

that means a limited lack of measurements of latent heat flux (LE) (Table 1).  

In details, the EC measurements inevitably include gaps within the time series of data 

recorded every 30 min. According to [67,68], the days with rates of missing data higher 

than 80% have been excluded by the analysis. The days with a percentage of gaps lower 

than the above-mentioned threshold, have been subjected to a standard gap-filling 

procedure, suggested by [69]. This approach replaces the missing values with the average 

value under similar meteorological conditions within a time-window of ±7 days. A 

summary of the percentages of missing data for the whole periods of observation and each 

site are provided in the Table 1 and in Table S1. 
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Table 1. Percentage of missing latent heat flux (LE) values for each site. 

ID Name Record period 
Number of 

days  

Number of 30 min 

Intervals  

Missing LE 

(%) 

1 us-twt 2009 to 2014 2098 100704 32.4 

2 us-arm 2003 to 2012 3653 175344 11.8 

3 us-fwf 2006 to 2010 1735 83280 11.5 

4 de-rur 2012 to2017 2101 100848 4.6 

5 us-me3 2004 to 2009 2100 100800 26.8 

6 de-hai 2000 to 2007 2922 140256 25.7 

7 us-tw1 2012 to2014 902 43296 0.0 

8 de-sfn 2012 to2014 910 43680 0.0 

2.1.1. Climate Characterization of the Sites 

Figure 2 illustrates the climate characterization for each of the selected sites, with the 

temporal patterns of the monthly average precipitation and air temperature computed 

over the periods of observation using data from the EC towers. 

Figure 2 shows that us-twt station is characterized by minimum temperature of 6 °C 

occurring during December and maximum temperature of about 21 °C during July. The 

wettest month is December with 81 mm of rain fall while the driest month is July with no 

rain. The site has a typical Mediterranean climate (Csa) characterized by annual mean air 

temperature of 14.6 °C and mean annual precipitation of 344 mm. 

The site “us-arm” is located in a humid subtropical (Cfa) area with mean annual 

temperature of 15.3 °C and mean annual precipitation of 646 mm. The mean monthly 

temperature and the precipitation range respectively from 2 °C (January) to 29 °C (July) 

and from 18 mm (January) to 105 mm (June). 

The site “us-fwf” has a cool-summer Mediterranean climate (Csb) with an annual 

rainfall amount of 539 mm and a mean annual temperature of 8.4 °C. The monthly 

temperature reaches peaks of 19 °C during July and a minimum value of −2 °C in 

December while the monthly precipitation moves from 13 mm in March to 135 mm in 

July.  

The test site of “de-rur” is located in an area with Oceanic (cfb) climate where the 

annual mean precipitation and air temperature are of approximately 895 mm and 8.4 °C. 

The monthly temperature varies from about 2 °C in February to 17 °C in July while the 

monthly precipitation from 48 mm to 110 mm during the same months.  

The climate for us-me3 is temperate Mediterranean with a mean annual air 

temperature and precipitation of 8.2 °C and 384 mm respectively. The monthly 

temperature and precipitation reach minimum values of −1 °C (November) and 3 mm 

(July) and maximum values of 20 °C (July) and 82 mm (November).  

The “de-hai” tower is located in a maritime temperate climate (Cfb) area with total 

annual depth of precipitation of about 806 mm and mean annual air temperature of about 

8.3 °C. The lowest monthly temperature is of −0.5 °C and it is reached during January 

while the highest is 17 °C in August. The monthly precipitation ranges between 46 mm in 

October and 89 mm in May. 

“Us-tw1” is featured by a Mediterranean climate (Csa) with mean annual 

temperature of 15 °C and a total annual precipitation volume of 399 mm. During July no 

rain falls while December is the wettest month with 140 mm of precipitation. The 

temperature reaches maximum and minimum monthly values respectively of 8 °C 

(January) and 21 °C (June). The “de-sfn” station is located in an area with temperate 

climate (Cfb). The mean annual air temperature and precipitation are 8.3 °C and 914 mm 

respectively. The hottest month is July with average temperature of 18 °C while the coldest 

is February with 0.1 °C. The rain falls most during August (140 mm) while it reaches its 

lowest value during February (34 mm). 
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Figure 2. Temporal patterns of the monthly average precipitation and air temperature for the eight selected sites: (a) us-

twt, (b) us-arm, (c) us-fwf, (d) de-rur, (e) us-me3, (f) de-hai, (g) us-tw1, (h) de-sfn. 
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The moisture index (IM) proposed by Thornthwaite [16] has been calculated for each 

investigated site so as to provide a more detailed climate characterization. It can be 

estimated as: 

��  =  
� − ���

���
∙ 100 (1)

where: 

P and PET respectively represent the average annual precipitation and potential 

evapotranspiration which is given by the sum of monthly PETi values computed as: 

����  =  1.6 ∙ �
10 ∙ ��

�
�

�

 

 
(2)

where Ti is the average air temperature during the i-th month of the year (in degree 

Celsius) while I is the annual heat index got from the summation of monthly heat indices 

i: 

��  =  (0.2 ∙ ��)�.��� (3)

The coefficient a is evaluated as: 

� =  6.75 ∙ 10�� ∙ �� − 7.771 ∙ 10�� ∙ ��  +  0.01792 ∙ � +  0.49239 (4)

In Table 2 for each climate type, the corresponding range of IM values has been 

defined. 

Table 2. Climatic types and the corresponding ranges of IM. 

Climatic type IM  

A) Perhumid  IM > 100 

B4) Very humid  80 < IM ≤ 100 

B3) Highly humid  60 < IM ≤ 80 

B2) Moderate humid   40 < IM ≤ 60 

B1) Low humid  20 < IM ≤ 40 

C2) Moist subhumid   0 < IM ≤ 20 

C1) Dry subhumid   −20 < IM ≤ 0 

D) Semiarid   −40 < IM ≤ −20 

E) Arid  IM ≤ −40  

2.1.2. The Land Cover Type of the Sites 

The site us-twt is located on a cultivated crop consisting of rice planted at a density 

of 14–17 g m−2. The tower “us-arm” lies on a land primarily covered by winter wheat and 

grass-land/pasture. The EC station us-fwf is above an area covered by forest converted to 

grassland by intense burning in 1996 so currently, the trees density is of 0 trees ha−1. The 

vegetation after the fire, consisted of sparse grasses, forbs, and shrubs. De-rur is a 

grassland site. The composition of higher plant species at the site is typical for traditionally 

managed grasslands and consists of Ranunculus repens–Alopecurus pratensis plant 

community, where a majority of species are identified as meadow foxtail, perennial rye 

grass, rough meadow grass, and common sorrel. The land biome of us-me3 is almost 

exclusively composed of young ponderosa pine trees with a density lower than normally 

found in similar ecosystem. De-hai is a forest area which is primarily composed by beech 

with smaller percentage of ash, maple, and other deciduous and coniferous species. The 

forest has a tree density of about 330 trees ha−1. Us-tw1 eddy covariance station is located 

in an area with vegetation including hydrophytic plants with emergent marsh species like 

Schoenoplectus acutus and Typha species. A relatively greater proportion of vegetation 

consists of S. acutus stems 1–3 m tall. The site of de-sfn is a natural bog-pine forest where 
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the vegetation is quite heterogeneous and includes peat mosses (Sphagnum spp.) in 

addition to heather (Calluna vulgaris L.), bog bilberry scrubs (Vaccinium uliginosum 

L.s.l.) and several species of the sedge-family (Cyperaceae, mainly Eriophorum 

vaginatum L., hare’s-tail cottongrass). 

2.1.3. Instrumentation and Dataset 

Meteorological daily data used to run the selected ET prediction models are net solar 

radiation, air temperature, relative humidity, wind speed, latent heat flux, precipitation, 

and soil heat-flux density. Actual evapotranspiration has been calculated from the latent 

heat flux using the procedure suggested by FAO [41]: 

ET��  =  
LE

�
 (5)

where ETEC represents the actual evapotranspiration flux (mm−1), LE is the latent heat flux 

(Mj m–2d–1), λ is the latent heat of vaporization (MJ kg–1). 

The above-said measurements have been collected by the monitoring systems at the 

different sites at hourly and sub-hourly timescale and then aggregated at daily scale which 

is the scale of analysis used in the present analysis. 

The instrumentation of each site is briefly described in the following. In the site us-

twt, the fluxes of carbon dioxide, methane, latent heat, and sensible heat have been 

measured using the EC method while a sonic anemometer allows to measure wind speed 

and temperature at the measurement height of 3.05 m. The station us-arm is equipped 

with a sonic anemometer (Gill-Solent WindMaster Pro), an open-path infrared gas 

analyzer (IRGA LiCorLI-7500), and a set of meteorological and soil sensors which allow 

to monitor radiation, wind speed and direction, air temperature and humidity, 

precipitation, soil heat flux. The measurement height is 4 m. In the site us-fwf, the 

measurements have been performed using a 3D sonic anemometer (CSAT3, Campbell 

Scientific, Logan, UT, USA), a closed path CO2/H2O analyzer (Li-7000,Li-Cor, Lincoln, 

NE, USA) at the height of 60 m.a.s.l. Additionally air and soil meteorological 

measurements have been recorded. The test-site de-rur includes a 2.6 m-high eddy 

covariance tower, installed since 2011 with a sonic anemometer and an infrared gas 

analyzer. Eddy-covariance measurements at us-me3 station have been collected using a 

three-dimensional sonic anemometer and an open-path infrared gas analyzer with 

additional measurements including atmospheric temperature, relative humidity, and 

precipitation. The eddy-covariance data were collected at the height of 12 m. At de-hai 

site, using the eddy covariance technique, water vapor, heat. and momentum fluxes have 

been continuously measured at a height of about 43 m.a.s.l. The equipment consisted of a 

triaxial sonic anemometer (Gill Solent R3, Gill Instruments, Lymington, UK) and a CO2 

and water infrared gas analyzer (LiCor 6262–3, LiCor Inc., Lincoln, NE, USA). In addition, 

the tower measured wind direction and velocity, air humidity and air temperature, 

radiation and precipitation. The tower of us-tw1 is equipped to analyze energy, H2O, CO2, 

and CH4 fluxes. Fluxes are measured in detail using an open-path infrared gas analyzer 

(LI-7500 or LI-7500 A for CO2 and H2O, LI-7700 for CH4, LiCOR Inc., Lin-coln, NE, USA). 

In addition, the air temperature and three-dimensional wind speeds are measured with a 

sonic anemometer (WindMaster Pro 1352 or 1590, Gill Instruments Ltd., Lymington, 

Hampshire, England). The eddy-covariance data at de-sfn test site are collected at the 

height of 6 m. The flux measurements are collected using an open-path infrared gas 

analyzer (IRGA, LI7500, Li-Cor, Inc., Lincoln, Nebraska, USA) in addition, a 3-D sonic 

anemometer (CSAT-3, Campbell Scientific, Inc., Logan, Utah, USA), a heated tipping 

bucket rain gauge 52202 (Campbell Scientific), and a heated and ventilated CNR4 (Kipp 

and Zonen, Delft, the Netherlands) are currently in use.  

The monitoring period differs from site to site (Table 3), the shortest one refers to 

sites us-tw1 and de-sfn where two years of measurements (from 2012 to 2014) are available 
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while the longest period of observation ranging from 2003 to 2012, is related to the site us-

arm. In the following table a summary of the characteristics of the test-sites can be found. 

Table 3. Detail for the selected sites. 

ID Name Lat./Long. 
Vegetation 

Type 

Elevation 

(m) 

Record 

Period 
Climate 

Mean Annual 

Temperature 

(°C) 

Mean Annual 

Precipitation 

(mm) 

1 us-twt 38.1087/−121.6530 CRO 0 
2009 to 

2014 
Csa 14.6 344 

2 us-arm 36.61/−97.49 CRO 314 
2003 to 

2012 
Cfa 15.3 646 

3 us-fwf 35.4454/−111.7718 GRA 2270 
2006 to 

2010 
Csb 8.4 536 

4 de-rur 50.6219/6.3041 GRA 514.7 2012 to2017 Cfb 8.4 895 

5 us-me3 44.3154/−121.6078  FOR 1005 
2004 to 

2009 
Csb 8.2 384 

6 de-hai 51.0792/10.4530 FOR 430 
2000 to 

2007 
Cfb 8.3 806 

7 us-tw1 38.1074/−121.6469 WET −5 
2012 to 

2014 
Csa 15.9 399 

8 de-sfn 47.80639/11.3275 WET 590 
2012 to 

2014 
Cfb 8.3 914 

2.2. Description of the Selected AET and PET Models and their Evaluation 

ET predictions from six models have been compared with the measured data. Three 

PET models and three AET methods have been selected. The description of these models 

is available in the following.  

2.2.1. PET Approaches 

The combination-type model suggested by Penman–Monteith (PM), the radiation-

based approach of Priestley–Taylor (PT), and the temperature-based formula proposed 

by Blaney–Criddle (BC) have been used in the present study to model PET. PM is probably 

the most commonly used method in the scientific literature to derive potential 

evapotranspiration [70]. The PM method assumes that all the energy for evaporation can 

be used by the plants and that water first has to pass through stomata openings, total leaf 

area, and soil surface against surface resistance and then it diffuses into the atmosphere 

against the aerodynamic resistance [71]. Since PM approach takes into account the heat 

and water vapor mass transfer mechanisms, it is considered a combination equation. The 

PM equation is: 

�����  =  
�

�
�

∆

∆ +  �
(�� − �����)�  +  �

�

� + ∆
��� (6)

where Δ is the slope of the saturation vapor pressure–temperature curve (kPa °C−1) 

expressed as: 

∆ =  
4098 �0.6108exp �

17,27 ∙ T����

T���� � ���.�
��

(237.3 +  T����)�
 (7)

Tmean represents the average temperature between maximum and minimum values 

during the day (°C), λ is the latent heat of vaporization (MJ kg−1),  is the psychrometric 

constant (kPa °C−1), and EA is the drying power of the air given by the following formula: 

E�  =  2.6(1 +  0.54�)(e� − e�) (8)
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where u is the wind speed (ms−1), 2.6(1 + 0.54·u) represents a function of the wind f(u), es 

and ea are respectively the saturation vapor pressure (kPa) and the vapor pressure (kPa), 

Rn is the net radiation (MJ m−2 d−1) and Gsoil is the soil heat-flux density at the soil surface 

(MJ m−2 d−1) which can be considered to be negligible at daily time scale [41] as in the case 

of the sites ID5 and ID7 where measured values are not available. 

Priestley–Taylor (PT) model was developed for the prediction of potential 

evaporation fluxes from a wet vegetated surface under conditions of minimum advection 

[72–74]. It simplifies the PM equation removing the aerodynamic component, when the 

surrounding environment is wet or humid conditions prevail. Priestley–Taylor [12] 

equation is given by: 

�����  =  
�

�
⋅ � �

∆

∆ +  �
(�� − �����)� 

 
(9)

where α is the advection correction coefficient and it is set at the value of 1.26. 

The Blaney–Criddle (BC) model is a simpler alternative to the PM and PT equations 

since it requires only mean temperature for monthly ET assessment. The usual form of the 

BC equation is: 

�����  =  � ∙ (0.46 ∙ �����  +  8) (10)

where p is the mean percentage of total daytime hours (at daily or monthly scale 

depending on the considered period) and it is unitless. 

2.2.2. AET Models 

In the present study, AET fluxes have been estimated using three meteorological 

data-based approaches including the Advection Aridity (AA) model, the Granger and 

Gray (GG) model, and the Antecedent Precipitation Index (API) model. The AA approach 

[26] and the GG method [29] belong to the category of complementary relationship (CR) 

models and are among the most used within this class. The AA formulation can be written 

as: 

�����  =  (2a − 1)
1

�
�

∆

∆ +  �
(�� − �����)� − �

�

� +  ∆
���  (11)

The present equation combines an aerodynamic term with an energy component 

based on net incoming radiation.  

According to Granger and Gray [29], AET can be calculated using the following 

equation: 

�����  =  �
∆ ∙ �

∆ +  �
�

�� − �����

�
��  + �

� ∙ �

� + ∆ ∙ �
��� (12)

It describes ET from non-saturated surfaces. In order to account for the departure 

from saturated conditions, Equation (12) applies the concept of relative evaporation 

introduced by the use of G, the relative evaporation parameter expressed as: 

� =  
1

0.793 +  0.20��.����
 +  0.006� (13)

where D is the relative drying power: 

� =  
��

��  + ��
 (14)

AET has been also estimated using the API model. Mawdsley and Ali [21] modified 

the Priestley–Taylor model for the estimation of non-potential evapotranspiration. They 

found that the parameter  was affected by water shortages, which can be described as a 

function of soil moisture [75]. Because surface soil moisture is not routinely available, they 

used the API index [76] to mimic soil moisture conditions: 
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��� =  � �����

��

� � ��

 (15)

where i is the considered number of days which precede the day t, k is an empirical decay 

factor, and ��  is the rainfall for the day t. 

The non-potential evapotranspiration fluxes can be calculated using the following 

formulation: 

������  =  
1

�
⋅ ���� �

∆

∆  +  �
(�� − �����)� (16)

In the previous equation, API is a dimensionless coefficient and it is a function of API. 

In particular, when API is lower than or equal to 20 mm [21], API can be expressed as: 

α���  =  0.123(���) − 0.0029(���)� − 0.0000056(���)� (17)

When API is higher than 20 mm: 

 ����  =  1.26 (18)

assuming that for an over-saturated system (i.e., API > 20 mm), AET rates are no longer 

dependent on the soil water content, but they are a constant percentage of PET.  

2.2.3. Calibration of the Models for the Prediction of AET 

The need for a calibration procedure of the AET approaches which involves the 

models parameters and which is able to increase the accuracy of the ET predictions, has 

been confirmed in time by several scholars [77,78]. In general, the calibration procedure 

of the AA model involves the wind function f(u) and the α-coefficient, for GG method the 

calibration parameter is the relative evaporation G, while for API method, α-coefficient is 

subjected to the calibration process. The scientific literature suggests a moderate range of 

variability for these parameters. With regard to the α-coefficient, it has been found to vary 

between 1.05 and 2.20 [79,80]. Concerning the wind function, many researches proposed 

different values of aw and bw such as aw = 0.37 and bw = 0.22 [81], aw = 1.313 and bw = 

1.381 [6], or aw = 0.1954 and bw = 0.4703 [82]. With respect to the parameter G, several 

authors indirectly derived it in time [83,84]. 

In the present research, a one-step calibration procedure has been performed for API 

and the GG models, where the best fitting between monthly observed ET (ETEC) and 

modelled ET has been reached by minimizing the model errors. The calibration procedure 

concerning the AA approach is a two-step process [82,85] because the formulation of the 

model has a two-term structure. 

The term linked to the drying power of advected air has been calibrated discarding 

the data of the dry days identifiable as those with a soil water content lower than the fixed 

threshold of 20% [86]. The wind function has been iteratively calibrated until reaching the 

best fitting between the observed and modelled ET during the well-watered days. 

Subsequently, the α-coefficient has been calibrated considering both the wet and dry days 

and so, the whole period of observation. 

2.2.4. The indirect estimates of Net radiation and Soil heat-flux 

According to Allen et al. [41], the variables Rn and Gsoil, if not available from in situ 

measurements, can be derived by the following empirical relationships: 

�� =  ��� − ��� (19)

where Rns is net shortwave radiation and Rnl is the outgoing net longwave radiation and 

can be respectively expressed as: 

�

��� =  (1 − �)��

��� =  ��� �
������ � �

����� � 

2
� �0.34 − 0.14���� �1.35

��

���
− 0.35�

 (20)
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where Rs is the incoming solar radiation, β is the canopy reflection coefficient, σSB is the 

Stefan–Boltzmann constant, Tmax,K and Tmin,K are respectively the maximum and minimum 

absolute temperature during the 24 h period, Rso is the clear-sky solar radiation. Rs and 

Rso can be calculated as follows: 

⎩
⎪
⎨

⎪
⎧ �� =  ���  + ��

�

�
� ��

�� =  
12(60)

�
�����[(�� − ��) sin � sin �  + cos � cos � (sin �� − sin ��)]

��� =  (0.75 +  2 ∙ 10���)��

 (21)

In the previous equations, as and bs are regression constants, expressing the fraction 

of extraterrestrial radiation reaching the earth on overcast days, n represents the actual 

duration of sunshine, N is the symbol for the maximum possible duration of sunshine or 

daylight hours, Ra is the extraterrestrial radiation in the hour, Gsc indicates the solar 

constant, dr expresses the inverse relative distance Earth–Sun, ω1 and ω2 respectively are 

the solar time angle at beginning and at end of period, φ is the latitude, δ solar declination, 

z is the station elevation above sea level. 

The equation of soil heat-flux density at the soil surface is: 

�����  =  ��

�� − ����

∆�
∆� (22)

where cs indicates the soil heat capacity, Ti and Ti−1 respectively are the air 

temperature at time i and i−1, Δt is the selected time interval, Δy is the effective soil depth. 

2.2.5. Models Evaluation 

The evapotranspiration losses computed at monthly scale using the selected models 

have been compared to the observed values of ET from the eddy-covariance towers so as 

to estimate the accuracy of each approach. The comparison allows to test the performances 

of the models in simulating the actual ET fluxes. The goodness-of-fit indices used for the 

comparison are the normalized root mean square error (RMSEd) which measures the error 

intensity, the index of agreement (d) which measures the patterns agreement, the 

correlation coefficient (r) which estimates the correlation between measured and 

simulated variables. The corresponding equations are: 

���� (��)  =  �
1

�
�������,� − ����,��

�
�

� � �

�

�
�

 (23)

����� (−)  =  
���� (��)

������
��

 (24)

�(−)  =  1 −
∑ ������,� − ����,���

� � �

∑ �������,� − ������
��,��  +  ������,� − ������

��,����
� � �

 (25)

�(−)  =  
���(�����, ����)

� (�����)� (���� )
 (26)

where n is the length of the monthly sample, ETmod,i is the monthly modelled ET value 

while ETEC,i is the observed one from EC measurements, and  the ET standard deviation. 

3. Results 

3.1. Results of the Climate Investigation 

The values of the moisture index (IM) (Table 4) calculated for each test site, suggest 

that four sites can be classified as arid or semi-arid including us-twt, us-arm, us-me3, us-

tw1 while us-fwf, de-rur, de-hai, and de-sfn can be listed among the humid and sub-

humid climatic types. In details, the most arid site is us-twt with a value of IM of −65 while 

the most humid is de-rur with IM of 68.  
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From Figure 2, it can be deduced that the site with the highest annual rainfall is de-

sfn with 914 mm followed by de-rur with 895 mm. The area with the lowest annual 

precipitation is us-twt with 344 mm of rain fallen but similar values have been reached by 

us-me3 and us-tw1 respectively with 384 and 399 mm of cumulative rainfall.  

The site with the highest mean annual temperature is us-arm with 15.3 °C while the 

lowest temperature (8.2 °C) occurs in the test site of us-me3.  

In addition, from Figure 2 it emerges clearly that the Mediterranean areas present a 

seasonal variation of rainfall patterns indeed, most of the precipitation occurs in winter 

months followed by a dry period during summer. On the other side, the Oceanic areas 

show precipitation with an even distribution throughout the year. In both climates, the 

temperature reaches peak during the summer months from July to August while the 

coldest months are November, December, January, and February.  

Table 4. Value of the moisture index for each site. 

ID Name IM (-) Climatic type 

1 us-twt −65 Arid 

2 us-arm −40  Arid 

3 us-fwf −7 Dry sub-humid 

4 de-rur 68  Highly humid 

5 us-me3 −30 Semi-arid 

6 de-hai 47 Moderate Humid 

7 us-tw1 −62 Arid 

8 de-sfn 64 Highly humid 

3.2. Results of the Montlhy Predictions Using the Selected ET Models 

The evapotranspiration fluxes estimated by the six models and using the measured 

input parameters show similar temporal patterns (Figure 3) even if the observed ET values 

are significantly overestimated. This occurs for all sites except for the de-rur.  
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Figure 3. Temporal patterns of ET modelled using Antecedent Precipitation Index (API), Advection-Aridity (AA), Granger 

and Gray (GG), Penman-Monteith (PM), Priestley-Taylor (PT), Blaney–Criddle (BC) approaches and comparison with the 

measured fluxes for each of the selected site: (a) us-twt, (b) us-arm, (c) us-fwf, (d) de-rur, (e) us-me3, (f) de-hai, (g) us-tw1, 

(h) de-sfn. 

The values of the goodness-of-fit indices used for the quantitative assessment of 

models accuracy in the prediction of ET fluxes at monthly scale are shown in Table 5, both 

in case of measured/observed and empirically-derived Rn and Gsoil. In addition, in Table 

5, the most accurate model is indicated for each site. In general, the AET models are better 

able to reproduce the ET measurements than PET approaches with maximum values of 

RMSEd at most of 1.97 against 3.34 of PET models. In particular, in almost all sites, the 

best performing approach appears to be the AA model with average values of RMSEd, d, 

and r respectively of 0.8, 0.6, and 0.9. A reduction of the prediction accuracy can be 



ISPRS Int. J. Geo-Inf. 2021, 10, 192 15 of 31 
 

 

observed when the indirect evaluation of Rn and Gsoil has been performed. In this case, 

the best performing methods exhibit values of RMSEd close to 2 and agreements lower 

than 0.5 although with high values of r. 

Table 5. Goodness of fit indices computed for each approach and site. In bold the most accurate model for each site. 

    Measured Rn and Gsoil Modelled Rn and Gsoil 

Site Models RMSE d (-) d (-) r (-) RMSE d (-) d (-) r (-) 

u
s-

tw
t 

 
  

(C
R

O
- 

C
sa

) 
ID

1 

API 0.42 0.73 0.83 0.50 0.68 0.71 

AA 0.43 0.69 0.80 0.52 0.62 0.85 

GG 0.29 0.81 0.91 0.43 0.72 0.84 

PM 0.67 0.63 0.87 0.87 0.52 0.82 

PT 0.26 0.82 0.93 0.40 0.76 0.86 

Blaney-Criddle  0.54 0.57 0.91 0.54 0.57 0.91 

u
s-

a
rm

 (
C

R
O

- 
C

fa
) 

ID
2

 

API 1.24 0.47 0.69 2.26 0.23 0.63 

AA 0.67 0.57 0.70 1.39 0.45 0.66 

GG 1.12 0.49 0.71 2.09 0.21 0.66 

PM 2.54 0.18 0.58 3.40 0.14 0.55 

PT 1.24 0.47 0.69 2.27 0.23 0.63 

Blaney-Criddle  2.21 0.19 0.61 2.21 0.19 0.61 

u
s-

fw
f 

(G
R

A
- 

C
sb

) 

ID
3

 

API 0.95 0.55 0.82 3.01 0.17 0.82 

AA 0.63 0.54 0.85 1.86 0.37 0.85 

GG 1.21 0.48 0.77 3.06 0.16 0.80 

PM 2.68 0.19 0.70 4.37 0.12 0.74 

PT 0.97 0.53 0.81 3.04 0.17 0.82 

Blaney-Criddle  2.05 0.22 0.83 2.05 0.22 0.83 

d
e-

ru
r 

(G
R

A
-C

fb
) 

ID
4

 

API 0.18 0.89 0.99 0.55 0.72 0.98 

AA 0.29 0.80 0.97 0.45 0.77 0.96 

GG 0.21 0.87 0.99 0.51 0.72 0.98 

PM 0.41 0.74 0.99 0.75 0.58 0.99 

PT 0.20 0.88 0.99 0.55 0.72 0.98 

Blaney-Criddle  1.23 0.33 0.98 1.23 0.33 0.98 

u
s-

m
e3

 (
F

O
R

- 

C
sb

) 
ID

5 

API 1.94 0.37 0.75 2.32 0.29 0.82 

AA 1.28 0.49 0.79 1.74 0.41 0.85 

GG 1.97 0.35 0.72 2.31 0.27 0.80 

PM 2.78 0.24 0.66 3.09 0.20 0.73 

PT 1.99 0.36 0.72 2.37 0.28 0.80 

Blaney-Criddle  2.67 0.19 0.73 2.67 0.19 0.73 

d
e-

h
ai

 (
F

O
R

- 
C

fb
) 

ID
6

 

API 1.34 0.59 0.96 2.00 0.41 0.96 

AA 0.81 0.75 0.94 1.49 0.56 0.95 

GG 1.41 0.56 0.95 1.97 0.39 0.96 

PM 2.05 0.38 0.95 2.61 0.28 0.95 

PT 1.34 0.59 0.96 2.00 0.41 0.96 

Blaney-Criddle  3.43 0.20 0.96 3.43 0.20 0.96 

u
s-

tw
1 

(W
E

T
- 

C
sa

) 
ID

7 

API 0.82 0.54 0.41 0.82 0.53 0.40 

AA 0.38 0.74 0.86 0.36 0.75 0.87 

GG 0.50 0.73 0.83 0.52 0.71 0.84 

PM 0.83 0.55 0.82 0.86 0.53 0.83 

PT 0.49 0.74 0.84 0.51 0.72 0.85 

Blaney-Criddle  0.60 0.53 0.88 0.60 0.53 0.88 
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d
e-

sf
n

 (
W

E
T

- 
C

fb
) 

ID
8

 
API 1.10 0.55 0.95 2.42 0.30 0.95 

AA 0.99 0.62 0.96 2.58 0.32 0.95 

GG 1.01 0.57 0.95 2.08 0.33 0.95 

PM 1.27 0.48 0.94 2.30 0.29 0.95 

PT 1.11 0.55 0.95 2.44 0.30 0.95 

Blaney-Criddle  1.92 0.28 0.71 1.92 0.28 0.71 

A summary of the goodness of fit indices referring to the non-calibrated best 

performing approach for each site and with reference to the specific land cover type and 

climate condition has been reported in Figure 4. The highest prediction errors are reached 

for forest ecosystems and arid/semiarid conditions where the values of RMSEd are close 

to 1.2 while the grassland environments and the humid/sub-humid climates present the 

better accuracy with RMSEd around 0.2.  

 

Figure 4. Goodness-of-fit indices for the most accurate model and for all the sites in case of non-calibrated approaches. 

Reference is made to (a) land cover (CRO, GRA, FOR, WET that respectively stand for cropland, grassland, forest, and 

wetland) and to (b) the moisture index IM (arid/semi-arid versus sub-humid/humid, ID numbers are sorted for increasing 

IM). 

In case of lack of measurements of Rn and Gsoil, these variables are estimated using 

empirical formulas. The errors between observed and modelled Rn and Gsoil are shown 

in Table 6. The error ranges from a minimum value of 0.07 to a maximum value of 1.31 for 

the net radiation while it moves between −46.87 and 3.68 for the soil heat-flux density. So, 

the error made in estimating Gsoil is persistently higher than the one related to Rn. 

Table 6. The RMSEd for the modelled Rn and Gsoil variables. 

Site RMSEd_Rn (-) RMSEd_Gsoil (-) 

ID1 0.36 21.94 

ID2 0.70 −1.72 

ID3 1.31 3.68 

ID4 0.46 −10.77 

ID5 0.52 - 

ID6 0.45 −23.66 

ID7 0.07 - 

ID8 0.75 −46.87 

Besides the quantitative aspect, the temporal patterns of monthly observed Rn and 

Gsoil plotted against the modelled ones are shown in Figure 5. The figure reveals, at first 

sight, that they differ both in terms of temporal dynamics and magnitude.  
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Figure 5. Monthly patterns of observed and modelled Rn and Gsoil for each of the selected site: (a) us-twt, (b) us-arm, (c) 

us-fwf, (d) de-rur, (e) us-me3, (f) de-hai, (g) us-tw1, (h) de-sfn. 

3.3. Results of the Calibration Procedure 

A site-specific calibration procedure has been performed in order to reduce the 

prediction errors of the selected models. The model calibration has involved a scenario 

where Rn and Gsoil were directly measured and not provided by the use of empirical 

formulas in order to avoid even larger models distortion. Since the AET models have 

returned better performances than PET approaches, the calibration procedure has been 

performed only for AA, API, and GG models (AAcal, APIcal, and GGcal). The values of α-

coefficient and the formulations of the wind function and of the relative evaporation 
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parameter for each site after the calibration procedure (respectively αCAL, f(u)CAL and GCAL) 

are shown in Table 7. For the sites ID1 and ID4, the values of αCAL resulting from the 

calibration of API approach are close to 1.26 where for the other sites, they are significantly 

different from this standard coefficient. With regard to the values of αCAL resulting from 

the calibration of AA approach, they are more likely similar to 1.26. For the experimental 

sites ID4 and ID6, the formulations of G, after the calibration process, approach the 

original one while this does not happen for the other sites. Concerning the parameter bw 

of the wind function, the calibration procedure returns for all sites, a value ten times lower 

than the original one of 0.54. 

Table 7. Goodness of fit indices for the eight experimental sites. The most accurate models in case 

of calibrated and non-calibrated approach are compared (Table 5). 

Site Models 
RMSEd 

 (-) 
d (-) r (-) Calibrated parameters 

us-twt (CRO-Csa) 

ID1 

APIcal 0.25 0.84 0.93 αcal = 1.33 

AAcal 0.32 0.81 0.92 αcal = 1.46; f(u)cal = 3.2(1 + 0.029u) 

GGcal 0.27 0.84 0.92 
Gcal =  1/(1.5 + 3∙10^(−6) 

e^27.3D) + 0.044∙D 

PT 0.26 0.82 0.93 - 

us-arm (CRO-Cfa) 

ID2 

APIcal 0.48 0.61 0.69 αcal = 0.57 

AAcal 0.64 0.50 0.73 αcal = 1.22; f(u)cal = 4.3(1 + 0.02u) 

GGcal 0.43 0.68 0.77 
Gcal = 1/(0.55 + 0.035 e^13.02D) + 

0.061∙D 

AA 0.67 0.57 0.70 - 

us-fwf (GRA-Csb) 

ID3 

APIcal 0.38 0.73 0.82 αcal = 0.77 

AAcal 0.47 0.71 0.80 αcal = 1.30; f(u)cal = 4.2(1 + 0.012u) 

GGcal 0.39 0.72 0.80 
Gcal = 1/(0.77 + 1.68e^3.15D) + 

0.0881∙D 

AA 0.63 0.54 0.85 - 

de-rur (GRA-Cfb) 

ID4 

APIcal 0.15 0.90 0.99 αcal = 1.22 

AAcal 0.21 0.87 0.98 
αcal = 1.25; f(u)cal = 2.53(1 + 

0.054u) 

GGcal 0.13 0.91 0.99 
Gcal = 1/(1.2 + 0.2e^4.3D) + 

0.012∙D 

API 0.18 0.89 0.99 - 

us-me3 (FOR-Csb) 

ID5 

APIcal 0.59 0.65 0.73 αcal = 0.57 

AAcal 0.65 0.64 0.78 
αcal = 0.92; f(u)cal = 1.88(1 + 

0.0035u) 

GGcal 0.47 0.72 0.80 
Gcal = 1/(3.63 + 0.005e^22.62D) + 

0.07∙D 

AA 1.28 0.49 0.79 - 

de-hai (FOR-Cfb) 

ID6 

APIcal 0.30 0.87 0.96 αcal = 0.56  

AAcal 0.42 0.84 0.95 
αcal = 1.03; f(u)cal = 3.10(1 + 

0.0005u) 

GGcal 0.24 0.89 0.96 
Gcal = 1/(3.93 + 0.395e^4.09D) + 

0.0069∙D  

AA 0.81 0.75 0.94 - 

us-tw1 (WET-Csa) 

ID7 

APIcal 0.38 0.73 0.84 αcal = 0.96 

AAcal 0.37 0.74 0.84 
αcal = 1.19; f(u)cal = 1.544(1 + 

0.003u) 
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GGcal 0.38 0.73 0.84 
Gcal = 1/(4.45 + 4*10^(−6)e^32D) + 

0.4413∙D  

AA 0.38 0.74 0.86 - 

de-sfn (WET-Cfb) 

ID8 

APIcal 0.29 0.85 0.95 αcal = 0.59 

AAcal 0.75 0.55 0.96 
αcal = 0.74; f(u)cal = 1.2722(1 + 

0.003u) 

GGcal 0.26 0.84 0.95 
Gcal = 1/(2.19 + 1.18e^7.5D) + 

0.6628∙D  

AA 0.99 0.62 0.96 - 

The predictions of AET fluxes resulting from the calibrated models (APICAL, AACAL, 

GGCAL) and from the most accurate non-calibrated models have been compared using the 

selected goodness of fit indices (Table 7). 

In general, the calibrated models present lower error than the most accurate models 

in case of non-calibrated approach. In Figure 6, the monthly patterns of the ET losses 

modelled using the calibrated approaches are illustrated along with the observed ET 

values and the ones from the most accurate non-calibrated method for each site and, at a 

fist visual inspection, it is possible to discern an improvement in ET estimates related to 

the calibration procedure. 
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Figure 6. Monthly patterns of measured evapotranspiration fluxes and of modelled ones obtained by the calibrated models 

and by the most accurate non-calibrated approach for each of the selected Scheme 3. (f) de-hai, (g) us-tw1, (h) de-sfn. 

The relative difference in RMSE, r, and d before and after the calibration procedure 

as shown in Figure 7, allows to observe that the error decreases due to this process indeed, 

when the difference in RMSE is positive, the model performances improve and vice versa 

for d and r. 
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Figure 7. Relative difference in (a) RMSE, (b) d, and (c) r before and after the calibration process.  
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In Figure 8, it is possible to observe in which kind of climatic condition and land 

cover, the calibrated models exhibit the worst performances in terms of RMSE, d, and r. 

The forest systems and the arid/semi-arid climates are confirmed to have the lowest 

performances also in case of calibrated approach. 

 

Figure 8. Goodness-of-fit indices for the most accurate model and for all the sites in case of calibrated approaches. 

Reference is made to (a) land cover (CRO, GRA, FOR, WET that respectively stand for cropland, grassland, forest, and 

wetland) and to (b) the moisture index IM (arid/semi-arid versus sub-humid/humid, ID numbers are sorted for increasing 

IM). 

4. Discussion 

The findings illustrated in the previous chapter highlight various aspects which can 

be summarized as follows.  

PET approaches are less accurate than AET models since the ET estimates computed 

using these methods significantly overestimate the observed ET with high RMSE even if 

r is quite high too. Actually, among PET models, Priestley–Taylor method exhibits the 

best performances, so it represents an exception to the rule. It shows an accuracy 

comparable to the API model used for the prediction of AET and in addition, for the site 

us-twt (ID1), PT model is the most accurate.  

Among the AET models, the AA approach presents the highest performances for 

most of the studied sites (ID 2,3,5,6,7,8) and comparable in the others (ID 1,4) while API 

model is the most accurate for the prediction of monthly ET for the site of de-rur (ID4). 

Anyway, it should be noted that, for de-rur, all the AET models present similar 

performances (Table 4).  

With regard to the land cover type, the highest values of RMSE and the lowest values 

of r and d occur for the forest cover type systems (ID5 and ID6) (Figure 4 left panel).  

This result has been confirmed by previous investigations which documented a 

lower accuracy of the ET models in predicting the evapotranspiration fluxes for forest sites 

[37,87]. The reason could lie in the fact that the proposed models do not have correction 

terms which take into account the roughness sub-layer (RSL) effects typical of tall canopy-

like forest ecosystems. The roughness sub-layer (RSL) is the lowest atmospheric layer 

immediately adjoining an area covered with roughness elements like trees. It extends from 

the forest vegetation height up to about twice that height. The EC towers allows 

measurements inside this layer but for these measurements, the classical method of the 

flux gradient relationship based on the surface-layer theory, fails and modifications to the 

methods are required in order to consider the RSL effect [88,89]. 

Another reason could be linked to the strong heterogeneity of the forest 

environments where the reference source area for the input data could be different [37]. 

On the other side, for what concerns the climate conditions, the humid and sub-

humid sites ID3, ID4, ID6, and ID8 present the lowest prediction errors (lowest RMSE and 

largest r and d) as illustrated in Figure 4 right panel. 
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The reason of these results could be found in the models’ structure which not 

specifically consider the soil moisture with the exception of API model which however is 

only based on the use of Antecedent Precipitation Index designed to provide a proxy of 

surface volumetric water content [21–24]. Indeed, as suggested by other studies [90,91], 

the ET models have better performances in humid regions where the climate variables are 

a controlling factor for ET and lower accuracy in arid regions where the moisture 

availability is the dominating factor. Another reason is the background conditions in 

which the models were originally proposed that mainly refer to humid environments. AA 

method was proposed based on experimental data of Hupsel Creek in the eastern part of 

The Netherland in Oceanic climate [26]. The BC equation was based on experimental data 

from several locations in America including Montrose, Colorado in continental climate, 

Salt river valley, Arizona in arid climate, High valley areas, Colorado in continental 

climates, Altus, Oklahoma and Kearney, Nebraska in humid climates. GG was validated 

using field data monitored at two stations in western Canada in the province of 

Saskatchewan with a continental climate [17] while for PT, data from Aspendale, Victoria 

(Australia) in tropical climate, Madison, Wisconsin (America), in continental condition, 

Gurley in northern New South Wales (Australia) in humid climate and Hay in southern 

New South Wales with semi-arid climate have been used [12]. The data used for the 

formulation of API come from Trumpington, Cambridge, U.K. in humid climate, 

Cardington, Bedford, U.K. in oceanic climate [21–24]. The original PM equation was 

developed at the Rothamsted Experimental Station, Harpenden, UK with oceanic climate 

[19].  

When the lack of data requires the indirect estimates of meteorological input 

variables to run the ET models, it is possible to come to interesting results. Models 

estimates using Rn and Gsoil from empirical formulas return higher average errors than 

the corresponding estimates obtained by using observed flux variables (Table 5). Indeed, 

in some cases the errors are more than twice as large as the ones derived from measured 

Rn and Gsoil (ID2, ID3, ID4, ID8). In particular, the error increases more than 200% for the 

site ID4, while it is less extreme for ID7 where only a variation of 7% occurs. Results from 

previous studies confirm that, in general, the prediction performances of the ET models 

decrease with decreasing data availability. For instance, [38] showed that the highest 

accuracy occurred when radiation data are available. Indeed, the radiation methods 

returned very high determination coefficient, index of agreement, and slope of regression 

which are close to 1. 

In the same way, [40] came to the conclusion that when input data collection is 

difficult, the ET estimates are less accurate, and the application of temperature-based 

models are most desirable for the predictions of ET fluxes. The same reasoning applies to 

[43] which claimed that when limited weather data are available, a strong overestimation 

of the ET fluxes can occur. 

The use of modelled fluxes also impacts on the choice of the most performing 

method. For the site ID4 the most effective approach changes from API model to AA 

model with the use of empirically derived variables while for the site ID8, the AA model 

gives way to GG model (Table 5). The empirical formula used in case of lack of measured 

data to compute the net radiation overestimates the observed Rn values reaching RMSE 

at most of 1.31 (ID3) while the equation used for the computation of Gsoil strongly 

underestimates the measurements with values of RMSE even lower than −45 as it can be 

deduced from Table 6. 

In confirmation of what stated above, Figure 5 reveals that even if the measured and 

simulated values of net radiation have similar temporal dynamics, they differ in terms of 

magnitude. On the other side, the predicted soil heat-flux density values strongly differ 

from the observed ones both in term of size and temporal development. Indeed, the 

observed Gsoil follows a seasonal pattern with growing phases from March to October 

and peak values approximately on July, the decreasing phases occur during Autumn and 

Winter with lowest values during October and November. The modelled soil heat flux 
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follows a temporal pattern where there is no chance to identify a seasonality not even 

identifiable peaks but the curve appears almost flattened. 

Since all models considerably overestimate the observed ET, a calibration procedure 

appears essential to reduce the prediction errors. 

[38] came to the same conclusion, indeed, it considered the calibration an essential 

procedure to adapt the application of ET models to the regional conditions. 

In the same way, [42] found large biases when ET models are applied in 

inappropriate regimes in which the considered approach has been not developed. 

In the present study, when the monthly patterns of ET losses modelled using the 

calibrated approaches are compared with the ET resulting from the best performing 

models before the calibration process, the former results more consistent with the ET 

fluxes provided by the eddy-covariance towers (Figure 6) 

This is confirmed by the values of the errors (Table 7) which also highlight that the 

site-specific calibration allows to increase the accuracy in ET predictions of the API, AA, 

and GG approaches. In details, GGcal model seems to be the most accurate model in case 

of calibration, while AAcal is the worst performing approach probably due to the complex 

calibration process in two-step. 

In Figure 7, the improvement related to the calibration procedure can be detected 

with greater clarity indeed, the variations in the values of RMSE, d, and r before and after 

the calibration process are shown. The relative difference in RMSE before and after the 

calibration process is overall positive which implies that the error decreases due to this 

procedure and consequently, the model performance increases for each site and approach. 

In the same way, the variations of r and d are overall negative, so the calibration process 

allows to improve these indices which results in an increasing model performance for each 

site and approach. The relative differences in the values of RMSE and d are considerably 

higher than the differences in r, with peaks for FOR vegetation type. Among the 

considered models, the GG approach resulting the best performing calibrated method, is 

the most impacted by the calibration procedure, indeed, it returns variation of RMSE up 

to 83% and reduction of d up to 106%. 

For what concerns the performances of the calibrated models with regard to the 

climate conditions and the vegetation type, it can be said that the sites with sub-

humid/humid climates (Cfb) as in the case of non-calibrated approaches, present the best 

fitting (Figure 8 right panel) while the systems with forest land cover are associated with 

the largest prediction errors (Figure 8 left panel). 

5. Conclusions 

The performances of six meteorological data-based models in the prediction of ET 

have been investigated using high-quality datasets from eight eddy covariance towers 

belonging to TERENO, FLUXNET, and AMERIFLUX networks. The eight sites are 

characterized by different climates and vegetation types. In each of the considered sites, 

the AET losses have been predicted at monthly scale, using the GG, the AA, and the API 

approaches while the PET fluxes have been modelled using BC, PT, and PM methods 

belonging respectively to the categories of temperature-based, radiation-based, and 

combination-based approaches. It is difficult to detect a general accuracy of the 

approaches which depends on the characteristics of the site, and to identify a single model 

able to outperform the others for a considered biome but some general tendencies appear.  

The AET models are better able to predict the ET fluxes than the PET approaches. 

Before the calibration process, the AA method is the best performing in almost each 

system. The sites characterized by arid/semi-arid climates and forest vegetation type 

present the largest average model errors with values around 64% for RMSE, 68% for d, 

and 87% for r. The poor performances of the selected approaches in arid region could be 

related to the evapotranspiration controlling factor that is the soil moisture rather than the 

climate variables and to the predominantly humid background conditions in which the 

models were developed. The low accuracy linked to the forest systems is presumably due 
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to the roughness sub-layer effect which could influence eddy covariance measurements 

and to the heterogeneous land surfaces which could produce errors in the input data. 

The low predictive power of the ET models in some biomes confirms the need for a 

site-specific calibration procedure which allows to obtain better model accuracy. For the 

AA model, the parameters involved in the calibration process are the wind function f(u) 

and the -coefficient, the parameters subject to calibration are the relative evaporation G 

and the -coefficient respectively for GG model and API method. The calibration process 

of AA model consists of two phases, so it is particularly complex and the parameters 

resulting from this procedure significantly differ from their original values.  

The calibration process allows to improve the models accuracy resulting in average 

values of RMSE, d, and r respectively close to 32%, 80%, and 88%. Even after the 

calibration, the sites with arid/semi-arid climates and forest vegetation type are associated 

to the lowest model accuracy. The most accurate model becomes GG method after the 

calibration procedure, at the same time, it results the most affected by this process while 

the least impacted is the AA models. In addition, the model errors in case of use of 

empirical formulas to derive Rn and Gsoil have been calculated. Indeed, if the measured 

data of these variables are not available at the experimental site, they can be indirectly 

estimated from climate data. The results suggest that the errors values increase with a 

consequent reduction of the model accuracy. Despite the worsening of the performances, 

in some cases of lack of measurements, the use of empirical formulas and so of an 

approach fully based on meteorological data is the only way forward. The model 

calibration has been only performed assuming that the variables Rn and Gsoil were 

available from in situ measurements. Indeed, the use of empirical formulas to derive net 

radiation and soil heat-flux would have caused a larger models distortion during the 

calibration phase and consequently higher estimation errors. 

When, in an experimental site, the only measured variables are precipitation and 

temperature as it happens in most of the local weather stations, the best choice to model 

ET fluxes is the use of API model. Indeed, this approach requires as input parameters only 

precipitation, Rn and Gsoil which can be indirectly derived from the temperature. The 

other models proposed in the present work also require for their implementation, the 

wind speed and air humidity which, contrary to Rn and Gsoil, cannot be empirically 

estimated from temperature. Finally, the results of the present comparative study in 

contrasting environment have provided suggestions and recommendations for the 

selection of the best suited methodology to be used for ET predictions both in case of 

calibration/ non-calibrated procedures and in case of lack of measured data. 

List of Acronyms: 

ET Evapotranspiration 

EC Eddy covariance 

AET actual evapotranspiration  

PET potential evapotranspiration 

API Antecedent Precipitation Index 

CR complementary relationship  

AA Advection-Aridity  

GG Granger and Gray 

PT Priestley–Taylor  

PM Penman–Monteith  

BC Blaney–Criddle 

GRA grasslands  
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CRO croplands  

FOR forests  

WET wetlands  

us-twt United States-Twitchell  

us-tw1 United States-Twitchell wetland  

us-arm United States- atmospheric radiation measurement 

us-fwf United States-Flagstaff wildfire 

de-rur Deutschland- Rollesbroich 

de-hai Deutschland-Hainich  

de-sfn Deutschland-Schechenfilz Nord 

us-me3 United States-Metolius 

LE latent heat flux 

ID identification number 

IM moisture index  

P precipitation 

T temperature  

I annual heat index  

I monthly heat indices  

λ latent heat of vaporization 

Δ slope of the saturation vapor pressure–temperature curve 

Tmean average temperature  

psychrometric constant  

EA is the drying power of the air 

u wind speed  

f(u) wind function 

es saturation vapor pressure  

ea vapor pressure  

Rn net radiation  

Gsoil soil heat-flux density 

α advection correction coefficient 

p mean percentage of total daytime hours 

G relative evaporation parameter 

D relative drying power 

k empirical decay factor, 

Rns net shortwave radiation  

Rnl outgoing net longwave radiation 

Rs incoming solar radiation 

β canopy reflection coefficient 
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σSB Stefan-Boltzmann constant 

Tmax maximum temperature  

Tmin minimum temperature  

Rso clear-sky solar radiation 

n actual duration of sunshine  

N maximum possible duration of sunshine or daylight hours 

Ra extraterrestrial radiation  

Gsc solar constant 

dr inverse relative distance Earth-Sun 

ω1 solar time angle at beginning of period,  

ω2 solar time angle at end of period, 

φ latitude 

δ solar declination 

z station elevation above sea level. 

cs soil heat capacity 

Δy is the effective soil depth. 

RMSEd root mean square error 

d index of agreement  

r correlation coefficient 

n length of the sample 

ETmod modelled ET  

ETEC,i observed ET from EC measurements  

standard deviation 

AAcal calibrated AA 

APIcal calibrated API 

GGcal calibrated GG 

αCAL calibrated α 

f(u)CAL calibrated f(u) 

GCAL calibrated G 

Author Contributions: Conceptualization, Antonia Longobardi; Methodology, Mirka Mobilia, 

Antonia Longobardi; Formal Analysis, Mirka Mobilia; Investigation, Mirka Mobilia, Antonia 

Longobardi; Resources, Mirka Mobilia, Antonia Longobardi; Data Curation, Mirka Mobilia; 

Writing-Original Draft Preparation, Mirka Mobilia; Writing-Review & Editing, Antonia, 

Longobardi; Supervision, Antonia Longobardi; Project Administration, Antonia Longobardi. All 

authors have read and agreed to the published version of the manuscript. 

Funding: This research was supported by the Office of Biological and Environmental Research of 

the US Department of Energy under contract No. DE-AC02-05CH11231 as part of the Atmospheric 

Radiation Measurement Program. Funding for AmeriFlux data resources was provided by the U.S. 

Department of Energy’s Office of Science. The Metolius AmeriFlux research was supported by the 

Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-06ER64318). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 



ISPRS Int. J. Geo-Inf. 2021, 10, 192 28 of 31 
 

 

Data Availability Statement: The data presented in this study are openly available in Fluxnet, 

Ameriflux and Tereno platforms at DOI:10.18140/FLX/1440106, DOI:10.18140/FLX/1440066, 

DOI:10.17190/AMF/1246052, DOI:10.18140/FLX/1440080, DOI:10.18140/FLX/1440148, 

DOI:10.18140/FLX/1440108, DOI:10.18140/FLX/1440219. 

Acknowledgments: This work used eddy covariance data acquired and shared by the FLUXNET 

community, including these networks: AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, 

CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada, GreenGrass, ICOS, KoFlux, 

LBA, NECC, OzFlux-TERN, TCOS-Siberia, and USCCC. The ERA-Interim reanalysis data are 

provided by ECMWF and processed by LSCE. The FLUXNET eddy covariance data processing and 

harmonization was carried out by the European Fluxes Database Cluster, AmeriFlux Management 

Project, and Fluxdata project of FLUXNET, with the support of CDIAC and ICOS Ecosystem 

Thematic Center, and the OzFlux, ChinaFlux and AsiaFlux offices. The authors also gratefully 

acknowledge the support of TERENO, funded by the Helmholtz Association, and the SFB-TR32 

“Pattern in Soil–Vegetation–Atmosphere Systems: Monitoring, Modeling and Data Assimilation”, 

funded by the Deutsche Forschungsgemeinschaft (DFG). The authors would like to thank California 

Department of Water Resources (USDA/AFRI), Forschungszentrum Jülich and Marius Schmidt, 

Biometereology Lab., University of California, Berkeley; P.I: Dennis Baldocchi. 

Conflicts of Interest: The authors declare no conflict of interest 

References 

1. Trajkovic, S. Temperature-based approaches for estimating reference evapotranspiration. J. Irrig. Drain. Eng. 2005, 131, 316–323. 

2. Sartor, J.; Mobilia, M.; Longobardi, A. Results and findings from 15 years of sustainable urban storm water management. Int. J. 

Saf. Sec. Eng. 2018, 8, 505–514. 

3. Mobilia, M.; Longobardi, A. Model details, parametrization, and accuracy in daily scale green roof hydrological conceptual 

simulation. Atmosphere 2020, 11, 575. 

4. Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløved, B. A continental-scale hydrology and water 

quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–

752. 

5. Fortuniak, K.; Pawlak, W.; Bednorz, L.; Grygoruk, M.; Siedlecki, M.; Zieliński, M. Methane and carbon dioxide fluxes of a 

temperate mire in Central Europe. Agric. For. Meteorol. 2017, 23, 306–318. 

6. McMahon, T.A.; Peel, M.C.; Lowe, L.; Srikanthan, R.; McVicar, T.R. Estimating actual, potential, reference crop and pan 

evaporation using standard meteorological data: A pragmatic synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 1331–1363. 

7. Remesan, R.; Mathew, J. Data-based evapotranspiration modeling. In: Hydrological Data Driven Modelling. Earth Systems Data 

and Models; Remesan, R., Mathew, J., Eds.; Springer: Cham, Switzerland, 2015; Volume 1, pp. 183–230. 

8. Anayah, F.M.; Kaluarachchi, J.J. Improving the complementary methods to estimate evapotranspiration under diverse climatic 

and physical conditions. Hydrol. Earth Syst. Sci. 2014, 18, 2049. 

9. Martinez, C.J.; Thepadia, M. Estimating reference evapotranspiration with minimum data in Florida. J. Irrig. Drain. Eng. 2009, 

136, 494–501. 

10. Valipour, M. Temperature analysis of reference evapotranspiration models. Meteorol. Appl. 2015, 22, 385–394. 

11. Xu, C.Y.; Singh, V.P. Cross comparison of empirical equations for calculating potential evapotranspiration with data from 

Switzerland. Water Resour. Manag. 2002, 16,197–219. 

12. Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather 

Rev. 1972, 100, 81–92. 

13. Turc, L. Estimation of irrigation water requirements, potential evapotranspiration: A simple climatic formula evolved up to 

date. Ann. Agron. 1961, 12, 13–49. 

14. Abtew, W. Evapotranspiration measurements and modeling for three wetland systems in south Florida. J. Am. Water Resour. 

As. 1996, 32, 465–473. 

15. Hargreaves, G. Preciseness of estimated reference crop evapotranspiration. J. Irrig. Drain. Eng. 1989, 115, 1000–1007. 

16. Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. 

17. Blaney, H.F.; Criddle, W.D. Determining water requirements in irrigated areas from climatological and irrigation data. Soil 

Conserv. Serv. 1950, 96, 32–33. 

18. Linacre, E.T. A simple formula for estimating evaporation rates in various climates, using temperature data alone. Agric. 

Meteorol. 1977, 18, 409–424. 

19. Monteith, J.L. Evaporation and Environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. 

20. Fisher, J.B.; Whittaker, R.J.; Malhi, Y. ET come home: Potential evapotranspiration in geographical ecology. Global Ecol. Biogeogr. 

2011, 20, 1–18. 

21. Mawdsley, J.A.; Ali, M.F. Estimating nonpotential evapotranspiration by means of the equilibrium evaporation concept. Water 

Resour. Res. 1985, 21, 383–391. 



ISPRS Int. J. Geo-Inf. 2021, 10, 192 29 of 31 
 

 

22. Brutsaert, W. Hydrology: An Introduction; Cambridge University Press: Cambridge, UK, 2005. 

23. Marasco, D.E.; Culligan, P.J.; McGillis, W.R. Evaluation of common evapotranspiration models based on measurements from 

two extensive green roofs in New York City. Ecol. Eng. 2015, 84, 451–462. 

24. Mobilia, M.; Schmidt, M.; Longobardi, A. Modelling actual evapotranspiration seasonal variability by meteorological data-

based models. Hydrology 2020, 7, 50. 

25. Han, S.; Hu, H.; Yang, D. A complementary relationship evaporation model referring to the Granger model and the advection 

aridity model. Hydrol. Process. 2011, 25, 2094–2101. 

26. Brutsaert, W.; Stricker, H. An advection aridity approach to estimate actual regional evapotranspiration. Water Resour. Res. 1979, 

15, 443–450. 

27. Yang, Y.; Su, H.; Zhang; R.; Xia, J. Revised advection-aridity evaporation model. J. Hydrol. Eng. 2012, 18, 655–664. 

28. Mobilia, M.; Longobardi, A.; Sartor, J.F. Including a-priori assessment of actual evapotranspiration for green roof daily scale 

hydrological modelling. Water 2017, 9, 72. 

29. Granger, R.J.; Gray, D.M. Evaporation from natural nonsaturated surfaces. J. Hydrol. 1989, 111, 21–29. 

30. Armstrong, R.N.; Pomeroy, J.W.; Martz, L.W. Estimating evaporation in a prairie landscape under drought conditions. Can. 

Water Resour. J. 2010, 35, 173–186. 

31. Xu, Z.X.; Li, J.Y. Estimating basin evapotranspiration using distributed hydrologic model. J. Hydrol. Eng. 2003, 8, 74–80. 

32. Szilagyi, J.; Hobbins, M.T.; Jozsa, J. Modified advection-aridity model of evapotranspiration. J. Hydrol. Eng. 2009, 14, 569–574. 

33. Temesgen, B.; Eching, S.; Davidoff, B.; Frame, K. Comparison of some reference evapotranspiration equations for California. J. 

Irrig. Drain. Eng. 2005, 131, 73–84. 

34. Ha, W.; Kolb, T.E.; Springer, A.E.; Dore, S.; O’Donnell, F.C.; Martinez Morales, R.; Lopez, S.M.; Koch, G.W. Evapotranspiration 

comparisons between eddy covariance measurements and meteorological and remote-sensing-based models in disturbed 

ponderosa pine forests. Ecohydrology 2015, 8, 1335–1350. 

35. Liu, G.; Liu, Y.; Hafeez, M.; Xu, D.; Vote, C. Comparison of two methods to derive time series of actual evapotranspiration using 

eddy covariance measurements in the southeastern Australia. J. Hydrol. 2012, 454, 1–6. 

36. Mobilia, M.; Longobardi, A. Evaluation of meteorological data-based models for potential and actual evapotranspiration losses 

using flux measurements. In Computational Science and Its Applications; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., 

Taniar, D., Apduhan, B. O., Rocha, A. M. A. C., Tarantino, E., Torre, C. M., Karaca, Y. Eds.; Springer: Cham, Switzerland, 2020; 

Volume 12253. 

37. Ershadi, A.; McCabe, M.F.; Evans, J.P.; Chaney, N.W.; Wood, E.F. Multi-site evaluation of terrestrial evaporation models using 

FLUXNET data. Agric. For. Meteorol. 2014, 187, 46–61. 

38. Bogawski, P.; Bednorz, E. Comparison and validation of selected evapotranspiration models for conditions in Poland (Central 

Europe). Water Resour. Manag. 2014, 28, 5021–5038. 

39. Lu, J.; Sun, G.; McNulty, S.G.; Amatya, D.M. A comparison of six potential evapotranspiration methods for regional use in the 

southeastern United States. J. Am. Water Resour. Assoc. 2005, 41, 621–633. 

40. Alkaeed, O.; Flores, C.; Jinno, K.; Tsutsumi, A. Comparison of several reference evapotranspiration methods for Itoshima 

Peninsula area, Fukuoka, Japan. Mem. Fac. Eng. 2006, 66, 1–14. 

41. Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global estimates of the land-atmosphere waterflux based on monthly AVHRR and ISLSCP-

II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919. 

42. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO 

Irrig. Drain. 1999, 56, 1-50. 

43. Xystrakis, F.; Matzarakis, A. Evaluation of 13 empirical reference potential evapotranspiration equations on the island of Crete 

in southern Greece. J. Irrig. Drain. 2011, 137, 211–222. 

44. Todorovic, M.; Karic, B.; Pereira, L.S. Reference evapotranspiration estimate with limited weather data across a range of 

Mediterranean climates. J. Hydrol. 2013, 481, 166–176. 

45. Suttie, J.M.; Reynolds, S.G.; Batello, C. Grasslands of the World; Food & Agriculture Org.: Rome, Italy, 2005; Volume 34. 

46. NASA Earth Observatory. Available online: https://earthobservatory.nasa.gov/features/ForestCarbon (accessed on 23 March 

2021). 

47. Wu, W.; Yu, Q.; You, L.; Chen, K.; Tang, H.; Liu, J. Global cropping intensity gaps: Increasing food production without cropland 

expansion. Land Use Policy 2018, 76, 515–525. 

48. Mitsch, W.J.; Gosselink, J.G.; Zhang, L.; Anderson, C.J. Wetland Ecosystems; John Wiley & Sons: Hoboken, NJ, USA, 2009. 

49. Knox, S.H.; Matthes, J.H.; Sturtevant, C.; Oikawa, P.Y.; Verfaillie, J.; Baldocchi, D. Biophysical controls on interannual variability 

in ecosystem-scale CO2 and CH4 exchange in a California rice paddy. J. Geophys. Res. Biogeosci. 2016, 121, 978–1001. 

50. Knox, S.; Matthes, J.H.; Verfaillie, J.; Baldocchi, D. FLUXNET2015 US-Twt Twitchell Island, Dataset; Fluxnet: Berkeley, CL, USA 

,2009–2014; doi:10.18140/FLX/1440106. 

51. Sturtevant, C.; Ruddell, B.L.; Knox, S.H.; Verfaillie, J.; Matthes, J.H.; Oikawa, P.Y.; Baldocchi, D. Identifying scale-emergent, 

nonlinear, asynchronous processes of wetland methane exchange. J. Geophys. Res. Biogeosci. 2016, 121, 188–204. 

52. Valach, A.; Szutu, D.; Eichelmann, E.; Knox, S.; Verfaillie, J.; Baldocchi, D. FLUXNET-CH4 US-Tw1 Twitchell Wetland West Pond, 

Dataset; Fluxnet: Berkeley, CL, USA ,2011–2018; doi:10.18140/FLX/1669696. 



ISPRS Int. J. Geo-Inf. 2021, 10, 192 30 of 31 
 

 

53. Hemes, K.S.; Chamberlain, S.D.; Eichelmann, E.; Anthony, T.; Valach, A.; Kasak, K.; Szutu, D.; Verfaillie, J.; Silver, W.L.; Baldoc-

chi, D.D. Assessing the carbon and climate benefit of restoring degraded agricultural peat soils to managed wetlands. Agric. 

For. Meteorol. 2019, 268, 202–214. 

54. Lokupitiya, E.; Denning, S.; Paustian, K.; Baker, I.; Schaefer, K.; Verma, S.; Meyers, T.; Bernacchi, C.J.; Suyker, A.; Fischer, M. 

Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from 

croplands. Biogeoscience 2009, 6, 969–986. 

55. Biraud, S.; Fischer, M.; Chan, S.; Torn, M. FLUXNET2015 US-ARM ARM Southern Great Plains Site—Lamont, Dataset; Fluxnet: 

Berkeley, California ,2003–2012; doi:10.18140/FLX/1440066. 

56. Dore, S.; Montes-Helu, M.; Hart, S.C.; Hungate, B.A.; Koch, G.W.; Moon, J.B.; Finkral, A.J.; Kolb, T.E. Recovery of ponderosa 

pine ecosystem carbon and water fluxes from thinning and stand-replacing fire. Glob. Chang. Biol. 2012, 18, 3171–3185. 

57. Dore, S.; Kolb, T. AmeriFlux US-Fwf Flagstaff—Wildfire, Dataset; Fluxnet: Berkeley, California ,2006–2010; 

doi:10.17190/AMF/1246052. 

58. Gebler, S.; Hendricks Franssen, H.J.; Putz, T.; Post, H.; Schmidt, M.; Vereecken, H. Actual evapotranspiration and precipitation 

measured by lysimeters: A comparison with eddy covariance and tipping bucket. Hydrol. Earth Syst. Sci. 2015, 19, 2145–2161. 

59. Post, H.; Hendricks Franssen; H.J.; Graf, A.; Schmidt, M.; Vereecken, H. Uncertainty analysis of eddy covariance CO2 flux meas-

urements for different EC tower distances using an extended two-tower approach. Biogeoscience 2015, 12, 1205–1221. 

60. Knohl, A.; Schulze, E.-D.; Kolle, O.; Buchmann, N. Large carbon uptake by an unmanaged 250-year-old deciduous forest in 

Central Germany. Agric. For. Meteorol. 2003, 118, 151–167. 

61. Knohl, A.; Tiedemann, F.; Kolle, O.; Schulze, E.D.; Kutsch, W.; Herbst, M.; Siebicke, L. FLUXNET2015 DE-Hai Hainich, Dataset; 

Fluxnet: Berkeley, California ,2000–2012; doi:10.18140/FLX/1440148. 

62. Kutsch, W.L.; Persson, T.; Schrumpf, M.; Moyano, F.E.; Mund, M.; Andersson, S.; Schulze, E.D. Heterotrophic soil respiration 

and soil carbon dynamics in the deciduous Hainich forest obtained by three approaches. Biogeochemistry 2010, 100, 167–183. 

63. Hommeltenberg, J.; Schmid, H.P.; Drösler, M.; Werle, P. Can a bog drained for forestry be a stronger carbon sink than a natural 

bog forest? Biogeoscience 2014, 11(13), 3477–3493 . 

64. Klatt, J.; Schmid, H.P.; Mauder, M.; Steinbrecher, R. FLUXNET2015 DE-SfN Schechenfilz Nord, Dataset; Fluxnet: Berkeley, CL, 

USA ,2012–2014; doi:10.18140/FLX/1440219. 

65. Law, B. FLUXNET2015 US-Me3 Metolius-Second Young Aged Pine, Dataset; Fluxnet: Berkeley, CL, USA ,2004–2009; 

doi:10.18140/FLX/1440080. 

66. Vickers, D.; Thomas, C.; Pettijohn, C.; Martin, J.G.; Law, B. Five years of carbon fluxes and inherent water-use efficiency at two 

semi-arid pine forests with different disturbance histories. Chem. Phys. Meteorol. 2012, 64, 17159. 

67. Kwon, H.; Law, B.E.; Thomas, C.K.; Johnson, B.G. The influence of hydrological variability on inherent water use efficiency in 

forests of contrasting composition, age, and precipitation regimes in the Pacific Northwest. Agric. For. Meteorol. 2018, 249, 488–

500. 

68. Zitouna-Chebbi, R.; Prévot, L.; Chakhar, A.; Marniche-Ben Abdallah, M.; Jacob, F. Observing actual evapotranspiration from 

flux tower eddy covariance measurements within a hilly watershed: Case study of the Kamech site, Cap Bon Peninsula, Tunisia. 

Atmosphere 2018, 9, 68. 

69. Papale, D.; Reichstein, M.; Aubinet, M.; Canfora, E.; Bernhofer, C.; Kutsch, W.; Longdoz, B.; Rambal, S.; Valentini, R.; Vesala, T. 

et al. Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and 

uncertainty estimation. Biogeoscience 2006, 3, 571–583. 

70. Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Gra-

nier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved 

algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. 

71. Jensen, M.E.; Allen, R.G. Evaporation, Evapotranspiration, and Irrigation Water Requirements, 2nd ed.; ASCE: Reston, VA, USA, 

2016. 

72. Margonis, A.; Papaioannou, G.; Kerkides, P.; Bourazanis, G. Parameterization of ”canopy resistance” and estimation of hourly 

latent heat flux over a crop. Eur. Water 2017, 59, 277–283. 

73. Pereira, A.R.; Nova, N.A.V. Analysis of the Priestley-Taylor parameter. Agric. For. Meteorol. 1992, 61, 1–9. 

74. Eichinger, W.E.; Parlange, M.B.; Stricker, H. On the concept of equilibrium evaporation and the value of the Priestley-Taylor 

coefficient. Water Resour. Res. 1996, 32, 161–164. 

75. Sumner, D.M.; Jacobs, J.M. Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation 

methods to estimate pasture evapotranspiration. J. Hydrol. 2005, 308, 81–104. 

76. Longobardi, A.; Khaertdinova, E. Relating soil moisture and air temperature to evapotranspiration fluxes during inter-storm 

periods at a Mediterranean experimental site. J. Arid Land 2015, 7, 27–36. 

77. Koehler, M.A.; Linsley, R.K. Predicting the Runoff from Storm Rainfall; Weather Bureau, Department of Commerce: Washington, 

DC, USA, 1951; Volume 34. 

78. Tabari, H.; Grismer, M.E.; Trajkovic, S. Comparative analysis of 31 reference evapotranspiration methods under humid condi-

tions. Irrig. Sci. 2013, 31, 107–117. 

79. Malek, E. Calibration of the Penman wind function using the Bowen ratio energy balance method. J. Hydrol. 1994, 163, 289–298. 

80. McNaughton, K.G.; Black, T.A. A study of evapotranspiration from a Douglas fir forest using the energy balance approach. 

Water Resour. Res. 1973, 9, 1579–1590. 



ISPRS Int. J. Geo-Inf. 2021, 10, 192 31 of 31 
 

 

81. Cristea, N.C.; Kampf, S.K.; Burges, S.J. Revised coefficients for Priestley-Taylor and Makkink-Hansen equations for estimating 

daily reference evapotranspiration. J. Hydrol. Eng. 2013, 18, 1289–1300. 

82. Kohler, M.A.; Nordenson, T.J.; Fox, W.E. Evaporation from pans and lakes. Weather Bur. Res. 1955, 38, 1-20. 

83. Hobbins, M.T.; Ramirez, J.A.; Brown, T.C. The complementary relationship in estimation of regional evapotranspiration: An 

enhanced advection-aridity model. Water Resour. Res. 2001, 37, 1389–1403. 

84. Kim, H.; Kaluarachchi, J.J. Estimating evapotranspiration using the complementary relationship and the Budyko framework. J. 

Water Clim. Chang. 2017, 8, 771–790. 

85. Long, D.; Singh, V.P. Integration of the GG model with SEBAL to produce time series of evapotranspiration of high spatial 

resolution at watershed scales. J. Geophys. Res. Atmos. 2001, 115, 1-22. 

86. Crago, R.D.; Qualls, R.J.; Feller, M. A calibrated advection-aridity evaporation model requiring no humidity data. Water Resour. 

Res. 2010, 46, 1-8. 

87. Crago, R.; Brutsaert, W. A comparison of several evaporation equations. Water Resour. Res. 1992, 28, 951–954. 

88. Crago, R.; Crowley, R. Complementary relationships for near-instantaneous evaporation. J. Hydrol. 2005, 300, 199–211. 

89. Weligepolage, K.; Gieske, A.S.M.; van der Tol, C.; Timmermans, J.; Su, Z. Effect of sub-layer corrections on the roughness pa-

rameterization of a Douglas fir forest. Agric. For. Meteorol. 2012, 162, 115–126. 

90. Harman, I.N. The role of roughness sublayer dynamics within surface exchange schemes. Bound. Layer Meteorol. 2012, 142, 1–

20. 

91. Xu, C.Y.; Singh, V.P. Evaluation of three complementary relationship evapotranspiration models by water balance approach to 

estimate actual regional evapotranspiration in different climatic regions. J. Hydrol. 2005, 308, 105–121. 


