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Abstract: Topographic features of territory have a significant impact on the spatial distribution
of soil properties. This research is focused on digital soil mapping (DSM) of main agrochemical
soil properties—values of soil organic carbon (SOC), nitrogen, potassium, calcium, magnesium,
sodium, phosphorus, pH, and thickness of the humus-accumulative (AB) horizon of arable lands
in the Trans-Ural steppe zone (Republic of Bashkortostan, Russia). The methods of multiple linear
regression (MLR) and support vector machine (SVM) were used for the prediction of soil nutrients
spatial distribution and variation. We used 17 topographic indices calculated using the SRTM
(Shuttle Radar Topography Mission) digital elevation model. Results showed that SVM is the best
method in predicting the spatial variation of all soil agrochemical properties with comparison to
MLR. According to the coefficient of determination R2, the best predictive models were obtained for
content of nitrogen (R2 = 0.74), SOC (R2 = 0.66), and potassium (R2 = 0.62). In our study, elevation,
slope, and MMRTF (multiresolution ridge top flatness) index are the most important variables. The
developed methodology can be used to study the spatial distribution of soil nutrients and large-scale
mapping in similar landscapes.

Keywords: agrochemical properties; digital soil mapping; SVM; MLR; topographic variables

1. Introduction

Nutrients are essential for soil fertility and stable plant growth [1]. Studying, model-
ing, and mapping the spatial distribution of soil properties is an important task for effective
farming and sustainable land management [2]. Most Russian large-scale soil maps were
created prior to the late 1980s [3], which is almost the same time as the start of economic
problems in the USSR. Thus, the elaboration of new cartographic data and updating of ex-
isting cartographic data is necessary, especially due to the active agricultural use and trans-
formation of climatic conditions. Nevertheless, field soil surveys and further large-scale
mapping (including updating old maps) are expensive and time-consuming processes.

In recent decades, digital soil mapping (DSM) methods have been actively used to
study and map soils and their properties. DSM is based on statistical, geostatistical, and
mathematical methods to identify relationships between soil properties and soil formation
factors, called environmental covariates [4]. DSM methods are more cost-effective and
allow the creation of maps with greater accuracy and higher spatial resolution [5]. These
methods are especially relevant to digital mapping of soil nutrients, as laboratory analyses
of soil nutrients are costly and time-consuming.
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Relief (as well as parent material, organisms, climate, and time) is one of the main
factors of soil formation and has a great influence on the distribution of soil properties [6–8],
especially in arid and semiarid regions [9]. Moreover, some authors conclude that topogra-
phy is the most useful factor in soil studying and predicting [4,10]. Relief attributes (such
as those presented in Table 1) provide a good opportunity to map soil properties and soil
classes [11–17].

Table 1. The list of topographic attributes used for calculations and modeling.

№ Topographic Attributes Acronym

1 Elevation El
2 Aspect As
3 Slope Sl
4 Profile curvature PrCu
5 Plan curvature PlCu
6 Flow accumulation FlAc
7 Analytical hillshading AnHil
8 Channel network base level CNBL
9 Channel network distance CND

10 Convergence index CI
11 LS-Factor LS-F
12 Topographic wetness index TWI
13 Valley depth VD
14 Closed depressions CD
15 Relative slope position RSP
16 Multiresolution ridge top flatness MRRTF
17 Multiresolution valley bottom flatness MRVBF

Information about relief as a major or additional factor was successfully applied in
different studies such as the migration of radiocesium in Japan [18], analysis of shallow
landslides after an extreme rainstorm in Italy [19], and proliferation of fungal communities
in a boreal alpine ecosystem [20]. In the studied region (Republic of Bashkortostan),
the topography data were used in mapping subtypes of Chernozems soils and heavy
metals [21], in the study of erosion processes [22], and in preparation of arable land for
irrigation reclamation [23].

Machine learning (ML) techniques are actively used for prediction and mapping of
soil properties. Various techniques including multiple linear regression (MLR) and support
vector machine (SVM) have been successfully applied to the interrelation of soil properties
and covariates [24–26]. MLR is a machine learning algorithm applied to regress a target
variable. MLR is a least-squares model in which a targeted soil property is predicted
from selected explanatory topographic variables [27]. This method establishes a linear
relationship between the predicted elements and the covariates. For a better understanding
of these relationships, MLR is presented below in Equation (1) [28]:

y = a +
n

∑
i−1

bi × xi ± εi (1)

where n is the number of predictors, y—response variables, xi—explanatory variables or pre-
dictors, a—intercept (constant term), bi—partial regression coefficients, and εi—residuals.

SVM is one of the basic supervised approaches for classification and regression analy-
sis [29,30]. SVM using binary classification defines the closest points between two classes
in feature space and draws an optimal dividing line between them [31,32]. This hyper-
plane, from the maximized margins, is used as a criterion for subsequent classification.
Several investigators have reported that the SVM approach provides lower prediction
errors compared with other methods [33–35].
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As relief is one of the main factors of soil formation, we hypothesized that the ML
techniques using topography information can predict the spatial distribution of most soil
properties with good accuracy.

The objectives of this study are the following: (i) digital mapping of soil nutrients
using relief attributes in arable land at the Trans-Ural steppe zone (Republic of Bashkor-
tostan, Russia), (ii) model performance evaluation using MLR and SVM algorithms, and
(iii) creating digital maps and determining the spatial distribution of soil nutrients. We
assume that the developed models can be used for further large-scale digital mapping of
agricultural lands in other regions of the world with similar conditions.

2. Materials and Methods

The study site is located in the Trans-Ural steppe zone, near the southern border of the
Ural Mountains (Republic of Bashkortostan, Russia) (Figure 1). The study area consists of
1400 ha and is characterized mostly by gentle (1–3◦) slopes up to 8◦ with various exposures.
The elevation of the studied field ranges from 460 m in the northwestern part of the site
to 377 m above sea level in the southeastern part. The state of soil cover at studied plot is
characterized as arable land (the plowing by a tractor with a turnover of the soil layer to a
10–15 cm depth repeated every year in spring). Wheat (Triticum aestivum) is predominantly
cultivated on the plot. The reconnaissance survey of the study area showed that in the
southern part of territory, water erosion processes (sheet and rill erosion) are occurring.
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Figure 1. Location of the study area and places of soil sampling (marked as black points on (a) and (b)): (a)—elevation map
in meters above sea level; (b)—slope map in degrees.

The climate of the study area is characterized as arid and slightly arid, or as Dfa
by the Köppen climate classification. The average annual air temperature is 1.4 ◦C. The
average annual amount of precipitation is 379 mm. The soil cover is presented by Haplic
Chernozems [36]. The parent materials are eluvial–deluvial carbonate clay, heavy loams,
and eluvium of sandy schists.

In the studied arable plot, soils were sampled from the upper horizons (0–10 cm) in
representative places. The scheme of sample points location is shown on the map (Figure 1).
We used a total of 76 topsoil samples, collected in July of 2020. Sample preparation was
carried out according to the standard procedure: samples were air-dried, then sieved
through a 1 mm sieve for further laboratory trials.
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The chemical analyses were carried out using standard laboratory methods reported
in [37–39]. The soil organic carbon (SOC) content, pH, alkaline hydrolyzable nitrogen (N),
available phosphorus P2O5 (P) and K2O (K), and exchangeable cations of Ca2+, Mg2+, and
Na+ were determined.

Topographic (or terrain) attributes were calculated using the digital elevation model
(DEM) NASA’s Shuttle Radar Topography Mission (SRTM), with a resolution of 30 m (https:
//www2.jpl.nasa.gov/srtm, accessed on 12 October 2020). Calculation of topographic
attributes was performed in the SAGA GIS. The terrain attributes obtained from DEM are
present in Table 1.

MLR and SVM techniques were used for spatial modeling of soil agrochemical prop-
erties. For choosing the final MLR model and to prevent overfitting, we used minimizing
Mallows’s Cp [40] and the stepwise backward selection method.

The SVM approach was conducted using a radial basis kernel. The tuning method
was used for choosing the best parameters in the SVM model (C and gamma). These values
were defined by the following intervals: 0.1 < C < 1.0 (step size is 0.1) and 0.2 < γ < 0.5
(step size is 0.05), according to Mattera and Haykin [41] and Cherkassky and Ma [42]. The
root-mean-square error of prediction (RMSE) and coefficient of determination (R2) values
were used for determining final accuracy prediction (Equations (2) and (3)). These values
were evaluated by the 10-fold cross-validation approach [43]. Randomly selected, 80% of
the total samples were used for model training data, and then the remaining 20% were
used for model validation and accuracy assessment. The analyzed data set was randomly
divided into ten equally sized folds. Then, nine of these folds were used to calibrate the
model and predict the values for the remaining fold. This procedure was repeated 10 times,
each time setting a different fold aside [44]. The advantage of this method is that it performs
reliably and is unbiased on smaller data sets [45].

RMSE =

√
∑n

i=0(Oi − Pi)
2

n
(2)

R2 =

 ∑n
i=0
(
Oi − Oavg

)
×
(

Pi − Pavg
)√

∑n
i=0
(
Oi − Oavg

)2 ×
(

Pi − Pavg
)2

2

(3)

where Oi and Pi are observed and predicted values of soil properties, Oavg and Pavg are the
average values, and n is the number of samples.

The model with the lowest RMSE and highest R2 values was considered to be the most
applicable [46]. The R2 was determined by the following classification [47]: models with
R2 < 0.4 show a poor or very low level of predictive ability; values of 0.5 < R2 < 0.7 indicate
models with an average level of forecasting; models with R2 > 0.7 are highly predictive.

Statistical data processing and estimates of model accuracy were performed using the
“leaps”, “e1071”, and “caret” packages in R 4.0.2 [48] and RStudio (version 1.3.1073) [49].

3. Results and Discussion

The studied soil in the 0–10 cm depth has a low and medium SOC content and a neutral
and slightly alkaline reaction. The content of NPK is sufficient and commensurate for this
region, as well as the values of exchangeable cations [50]. According to the thickness of the
humus-accumulative (AB) horizon, the soils are characterized as an eroded, uneroded, and
somewhere with sediment deposition. The general statistics parameters of soil properties—
mean, minimum, maximum, standard deviation (SD), and coefficient of variation (CV)—are
shown in Table 2.

https://www2.jpl.nasa.gov/srtm
https://www2.jpl.nasa.gov/srtm


ISPRS Int. J. Geo-Inf. 2021, 10, 243 5 of 12

Table 2. Statistics description of soil properties in the 0–10 cm depth. SOC: soil organic carbon; AB: humus-accumulative.

Parameter SOC,
%

The Thickness of
AB Horizon, (cm)

pH (H2O) N Alkaline
Hydrolyzable, mg kg−1

Exchangeable Cations Available

Ca2+ Mg2+ Na+ P2O5 K2O

cmol(+) kg−1 mg kg−1

n = 76

Mean 3.7 44.1 6.8 132.6 31.8 9.7 0.3 1.8 220.2
Min 1.8 18 6.4 65 15 5 0.04 0.4 123
Max 5.6 70 8.0 189 47 15 1.7 4.6 326
SD 0.9 9.3 0.3 26.6 6.2 2.2 0.3 0.8 52.7

CV (%) 24.3 20.9 4.4 20.1 19.5 22.7 113.3 44.4 23.9

Figure 2 shows the correlation graph between soil properties and topographic at-
tributes. According to this diagram, the SOC values correlate with N (R = 0.66), with the
thickness of the humus-accumulative horizon (R = 0.59), K (R = 0.52), and Ca (R = 0.48).
The relationship was also established between the elements N and K (R = 0.57), Mg and Ca
(R = 0.47), Ca and N (R = 0.53), and between the thickness of the humus horizon with N
(R = 0.55).
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Figure 2. The correlograms of soil nutrients at topographic variables.

Among the topographic attributes and elements of the studied site, the strongest cor-
relation was found for N. This element shows a close correlation with elevation (R = 0.72),
channel network base level (CNBL) (R = 0.68), valley depth (VD) (R = −0.67), and multires-
olution ridge top flatness (MRRTF) (R = 0.50). The SOC content has a relationship with
the following variables: MRRTF (R = 0.54), elevation (R = 0.47), CNBL (R = 0.46), and VD
(R = −0.43).

Ca is positively correlated with MRRTF values (R = 0.45), elevation and CNBL (R = 0.44).
The CNBL and elevation values also show relationships to the element K (R = 0.47 and
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R = 0.43, respectively). The thickness of the humus horizon shows some relationship only
with MRRTF (R = 0.43). Elements Mg, Na, and P and pH do not correlate with calculated
terrain attributes.

The final results of modeling using MLR and SVM methods are presented in Table 3.
According to the R2 and RMSE values, SVM showed a better performance for all predicting
properties compared to the MLR method. The SVM method has the best ability to predict N
(R2 = 0.74, RMSE = 14.23). For example, Zhou [25] also developed an SVM model for soil total
nitrogen prediction in northwestern China. The authors explained 50% of the variation using
data about land use, land cover, climate, topography, and remote-sensing-derived variables.

Table 3. Comparison of the approaches used to predict soil properties. MLR: multiple linear regression; SVM: support
vector machine.

Soil
Parametr

Number of
Variables Variables for Modeling

MLR SVM SVM Parameters

R2 RMSE R2 RMSE C Gamma

SOC 5 AnHil, As, LS-F, TWI, MRRTF 0.52 0.60 0.66 0.53 1 0.2
Na 5 Sl, AnHil, As, PlCu, MRVBF 0.35 0.21 0.49 0.20 1 0.2
Ca 4 El, CD, PrCu, MRRTF 0.31 5.84 0.43 5.33 1 0.2
N 5 El, Sl, AnHil, LS-F, PrCu 0.66 15.31 0.74 14.23 1 0.2
P 2 AnHil, TWI 0.11 1.64 0.16 0.73 0.1 0.2

Mg 2 VD, MRRTF 0.04 10.05 0.20 2.09 1 0.5
K 8 El, CNBL, Sl, As, CND, CD, LS-F, TWI 0.57 35.51 0.62 32.34 1 0.2

pH 1 TWI 0.03 6.61 0.02 0.30 0.1 0.2
Thickness

of AB 3 FlAc, As, MRRTF 0.35 47.03 0.52 6.81 1 0.2

MLR and SVM showed similar performance in predicting K (R2 = 0.57, RMSE = 35.51
vs. R2 = 0.62, RMSE = 32.34, respectively). For example, Gopp [15] obtained an MLR model
with an R2 value of 0.45 for predicted spatial variation of exchangeable potassium on the
arable plot in Russia using topography variables.

Good performance for predicting spatial distribution was obtained by SOC (R2 = 0.66,
RMSE = 0.53) using the SVM approach. This model uses seven topographic variables
(AnHil, As, LS-F, TWI, MRRTF). Silatsa [51] concluded that terrain attributes are important
variables for predicting SOC content. Similarly, Mahmoudzadeh [35] found that 58% of
SOC distribution was described by topographic and climate variables using the SVM model
in Iran.

The SVM technique showed almost similar coefficients of determination for the Na
(R2 = 0.49, RMSE = 0.20) and depth of humus horizon (R2 = 0.52, RMSE = 6.81). The SVM
method performed significantly better than the MLR in RMSE value for depth of humus
horizon (6.8 vs. 47.03, respectively).

The SVM model explained 43% of the Ca variation (R2 = 0.43, RMSE = 5.33). The above-
mentioned study [15], Gopp obtained a model with a 0.67 coefficient of determination for
exchangeable Ca.

Low coefficients of determination (R2 < 0.25) and, consequently, no predictive capa-
bilities were found for pH (R2 = 0.01), P (R2 = 0.11), and Mg (R2 = 0.04). These elements
are not predicted with satisfactory accuracy by the methods used. Previous results also
obtained poor models for predicting the spatial distribution of pH using machine learning
approaches [52,53].

The relative importance of the variables used for predicting soil elements is shown
in Figure 3. The MMRTF index is a key attribute for predicting the SOC and thickness of
the humus horizon variation (56% and 47%, respectively). MMRTF is a basic variable in
Ca modeling (38%). This topographic attribute is a multiscale flatness index that identifies
sloping and flat areas and characterizes the direction and strength of the distribution of
matter in the landscape [54]. For example, an MMRTF attribute was successfully used in
models to predict SOC, K, pH, and clay using regression kriging approaches [55].
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Terrain elevation is the most important variable for explaining the variability of N and
Ca in the study area (81% and 41%, respectively). Wang [56] reported that elevation is the
most important variable affecting the spatial distribution of N. In some other digital soil
mapping studies, elevation was also noted as the most important covariate for predicting
soil elements [51,53,57–59].

The slope is the main covariate in the model for Na in our research (41%). The most
effective variables are CNBL (21%), LS-Factor (18%), and elevation (17%). The LS-Factor
attribute is the second most important parameter in the SOC and N models (16% and
9%, respectively). The LS-Factor is a combination of slope length and slope angle. This
attribute is one of the five factors of the universal soil loss equation (USLE) and describing
the influence of topography on soil erosion risk.

Figure 4 shows the frequency of use of all 17 topographic attributes. The most
frequently used topographic attribute in modeling is aspect (slope exposition). It is used
four times in various regression equations and is involved in the prediction of almost all
elements (except Ca and Mg). The topographic attribute analytical hillshading (AnHil) is
used three times, which is closely related to aspect; AnHil raster image is a relief with a
shadow, created based on the angle of the light source and the shadow. Sahabiev [55] used
a southwest position as a separate topographic parameter in the regression analysis for the
prediction model for humus content, N, pH, and physical clay (the sum of soil fractions less
0.01 mm, %). The elevation, LS-Factor, and MRRTF variables were also used three times
each in the prediction. These variables are closely related to each other and successfully
determine areas where accumulation of soil nutrients is occurring.

Only models with a coefficient of determination R2 ≥ 0.25 were used to create the
maps. The spatial variation of studied soil properties using the SVM predicted models
is shown in Figure 5. The spatial variation of SOC, Ca, N, K, and thickness of humus
horizon correlate with elevation and are characterized by higher values in the top areas of
the western part and the central part of the studied plot. Furthermore, these properties
gradually decrease towards the southern part of the field, where runoff processes occur.
This south area sufficiently demonstrates the zones of accumulation of Ca, Na, and SOC
content due to runoff and sediment deposition from elevated areas. The studied region
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is characterized by active wind erosion processes [60]. Thus, increased values of these
nutrients are also found along roads and forest belts, designed to protect against wind
erosion. The spatial distribution of Na has a different character compared to other mapped
elements. The Na accumulation zones are concentrated in the southwestern part.
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For validation and assessment of the ML techniques accuracy in soil mapping (predic-
tion of soil elements spatial distribution), we compared the results with ordinary kriging
approach. The maps based and created using a kriging approach (Figure 6) have a similar
distribution of studied soil parameters as obtained by the SVM method. The highest values
of SOC, Ca, N, K, and thickness of humus horizon are also located in the western part
on elevated areas. Thus, the accuracies obtained for the ML techniques in this study are
promising and useful in digital soil mapping.

It should be noted that the soil properties could changing over the time. Thus, it is
necessary to continue the present study for comparing and validating the results. At the
same time, we assumed that the error in digital soil mapping with use of the ML techniques
will be absent or minor. For example, the research [61] conducted earlier in the studied
region showed that some properties of soils (namely, the thickness of humus-accumulative
horizon, SOC, P, and N) changed insignificantly (less than 5–10%) from 1975 to 2011.
Basically, those changes were associated with erosion processes and mechanical impact by
tillage operations.

4. Conclusions

The monitoring of agricultural land conditions is a necessary task, especially due to
intensive anthropogenic pressures and climate transformation. Large-scale mapping of soil
properties is necessary for rational land management and agriculture reclamation measures.
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According to the coefficient of determination (R2) and RMSE values, the SVM method
was superior to MLR in predicting all studied agrochemical soil properties. The SVM
model was obtained to explain the spatial variation of N content and showed the best
results (R2 = 0.74, RMSE = 14.23). This model is characterized by highly predictive ability.
The medium level of prediction was obtained for modeling of SOC, Na, K, and thickness of
the humus-accumulative (AB) horizon. The most important variables for predicting the
spatial distribution of soil properties were elevation, slope, and MRRTF index.

Our results showed the possibility of using topography variables with an SVM ap-
proach to predict the main soil agrochemical properties in the Trans-Ural steppe zone
(Republic of Bashkortostan, Russia). The use of such ML techniques can reduce soil sam-
pling efforts, and therefore reduce soil mapping costs and keep time/human resources. We
assumed that the accuracies obtained in this study are promising for current/future local
scale digital soil mapping efforts as well as for the other areas in the world with similar
soil/climate conditions. We propose that the elaborated SVM models should be improved
by adding other covariates, analyzing other soil formation factors, increasing the number
and period of soil sampling, and using other ML techniques to obtain the best results for
soil mapping.
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