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Abstract: Public urban green spaces are important for the urban quality of life. Still, comprehensive
open data sets on urban green spaces are not available for most cities. As open and globally available
data sets, the potential of Sentinel-2 satellite imagery and OpenStreetMap (OSM) data for urban
green space mapping is high but limited due to their respective uncertainties. Sentinel-2 imagery
cannot distinguish public from private green spaces and its spatial resolution of 10 m fails to capture
fine-grained urban structures, while in OSM green spaces are not mapped consistently and with
the same level of completeness everywhere. To address these limitations, we propose to fuse these
data sets under explicit consideration of their uncertainties. The Sentinel-2 derived Normalized
Difference Vegetation Index was fused with OSM data using the Dempster–Shafer theory to enhance
the detection of small vegetated areas. The distinction between public and private green spaces was
achieved using a Bayesian hierarchical model and OSM data. The analysis was performed based on
land use parcels derived from OSM data and tested for the city of Dresden, Germany. The overall
accuracy of the final map of public urban green spaces was 95% and was mainly influenced by the
uncertainty of the public accessibility model.

Keywords: OpenStreetMap; volunteered geographic information; remote sensing; data fusion; land
use; Dempster–Shafer theory; urban areas

1. Introduction

Public urban green spaces, defined as vegetated spaces within cities that are accessible
to the general public (e.g., municipal parks, public playgrounds), are an important factor
for the urban quality of life by providing various ecosystem services [1]. For instance, they
mitigate the urban heat island effect [2] and provide the space for citizens to perform recre-
ational and cultural activities such as sports, experiencing nature or social exchange [3–5].
Recent studies even suggest that sufficient accessibility to nearby public green spaces is
beneficial to the well-being and mental health of citizens [6–9] and urban nature is seen as
resilient infrastructure in times of crisis, such as the COVID-19 pandemic [10]. Hence, it is
very important to provide citizens and city planners with the necessary information about
the location and qualities of public urban green spaces [11,12] to identify disparities and
take them into account in future planning [13].

Still, comprehensive and open data sets on public urban green spaces—as a necessary
prerequisite for such analyses—are not available in sufficient quality for most cities [14,15].
Although more and more municipalities, agencies and other stakeholders publish their
data on urban green spaces openly, the spatial and thematic coverage as well as the
completeness of these data sets vary considerably, since the data sets were produced
for different purposes, with different underlying definitions of “public green space” and
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using different data collection methods [14]. For instance, municipal data sets on green
spaces usually only contain those green spaces owned and maintained by the city, such
as municipal parks. Privately owned green spaces which are accessible to the general
public (e.g., playgrounds belonging to apartment buildings) are usually not included in
these data sets. Pan-continental or national data sets are more consistent across multiple
cities, but lack sufficient spatial resolution to represent small green spaces. Although the
pan-European CORINE Land Cover data set [16], for instance, contains a designated class
“Green Urban Areas”, it only includes green spaces larger than 25 ha. The Urban Atlas [17]
for the EU or the Trust for Public Land’s ParkServe data set [18] for the US contains land
use information at a higher resolution but only for selected cities. Due to these issues, there
is a need for data fusion methods to create comprehensive urban green space data sets that
enable analyses across multiple cities [14].

The widespread availability of high resolution multi-spectral satellite imagery such
as the Sentinel-2 mission and the emergence of collaborative mapping projects such as
OpenStreetMap (OSM) open up new possibilities for mapping urban green spaces across
multiple cities. The Sentinel-2 mission captures imagery covering the whole globe at a
spatial resolution of up to 10 m and a revisiting rate of 2–3 days [19]. OSM is a digital,
worldwide map of the natural and built environment created by volunteers and published
under the Open Data Commons Open Database License (ODbL) [20]. Both data sets are
available globally and free of charge which makes them especially interesting for mapping
urban green spaces in areas where no authoritative data are available at all.

Sentinel-2 imagery has been proven to be very suitable for vegetation mapping [21]
and has been applied to mapping and analyzing urban green spaces in previous stud-
ies [22,23]. Still, the potential of Sentinel-2 imagery is limited in this regard, because it
cannot distinguish public from private green spaces and its spatial resolution of 10 m fails
to capture fine-grained urban structures such as trees, shrubs or small buildings [15]. In ad-
dition, atmospheric distortions may cause further uncertainties in the recognition of land
use objects [24]. OSM data has been limited to the analyses of public urban green spaces,
because private areas are usually not mapped within OSM [15]. In addition, the ways in
which green spaces are mapped in OSM are not always consistent [25,26], and the level of
completeness of the OSM data varies across space [27,28].

Uncertainties like the ones described above can be considered as epistemic, i.e., they
are due to a lack of knowledge and can be reduced by gathering more knowledge or
fusing it with additional data sources [29]. To fuse different data sources in the presence of
such uncertainties the Dempster–Shafer theory was proposed by Shafer [30]. This method
has been applied in the context of land cover and land use mapping before, but to the
best of our knowledge, there is no study which has investigated the application of the
Dempster–Shafer theory to fuse Sentinel-2 and OSM data for public urban green space
mapping yet.

The aim of this study was to propose and evaluate a methodology for mapping public
urban green spaces based on Sentinel-2 imagery and OSM data using the Dempster–Shafer
theory, which specifically considers the inherent uncertainties of the data sources. More
specifically, the following research questions were addressed:

• RQ1: Can OSM data compensate for the insufficient spatial resolution of the Sentinel-2
imagery when mapping public urban green spaces?

• RQ2: Is it possible to distinguish public from private green spaces using OSM data
despite its possibly inconsistent tag usage and insufficient completeness?

• RQ3: How do the uncertainties originating from the two data sources and the analysis
influence the overall accuracy of the model to predict public urban green spaces?

In the past, the insufficient resolution of the imagery was mostly overcome partially
through super resolution or pan sharpening techniques. Methods for using OSM data for
land use mapping data have been proposed as well along with approaches to improve its
data quality [31–33]. Still, most of these approaches did not take into account the inherent
uncertainties of the data sets. The main contribution of our study is to analyze how the
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different types of uncertainty are propagated during the fusion of OSM and Sentinel-2
imagery using the Dempster–Shafer theory.

The remaining paper is structured as follows. Section 2 provides a short sum-
mary of related studies on urban green space mapping using Sentinel-2 and OSM data.
Section 3 contains a brief introduction to the Dempster–Shafer theory and Section 4 de-
scribes the methodology for mapping public urban green spaces including a description
of the study area in Dresden, Germany and the relevant data sources. The results of the
analysis are presented in Section 5 followed by a discussion and conclusion in Section 6
and Section 7.

2. Related Work

Numerous methods have been proposed for mapping urban green spaces using differ-
ent methods such as fuzzy rule-based classification [34], random forest classification [35]
or convolutional neural networks [36]. Most of them rely on remote sensing imagery,
since vegetation is very well detectable using multi-spectral optical imagery [37,38]. Very
high resolution (VHR) aerial imagery [39], LIDAR data [34,40] or imagery captured by
Unmanned Aerial Vehicles (UAV) [41] are preferred data sources in order to capture the
fine grained urban structures. More recently, methods for mapping single trees [35] or road
side greenery based on street view imagery [36] have gained importance as well.

These kinds of data sets are however not available everywhere, which is why mapping
approaches based on high to medium resolution imagery such as Sentinel-2 [22,23,42],
Landsat [43] or synthetic aperture radar (SAR) imagery [44] have been proposed. In order
to compensate for the limited spatial resolution of these sensors sub-pixel and super-pixel
based mapping approaches have been proposed [45,46]. To distinguish public from private
green spaces remote sensing data were supplemented with additional data sources such
as open, authoritative data [6,47], citizen science data [48], local field work [49,50] or POIs
from social media data [37,38,51].

The potential of OSM data for the analysis of public urban green spaces has also been
investigated. Feltynowski et al. [14] and Le Texier et al. [15] extracted urban green spaces
from OSM using a list of green space related OSM tags based on expert knowledge. These
studies concluded that the public urban green spaces in OSM resembled quite well the ones
mapped in authoritative data sets, especially in city centers where data quality is likely to
be higher [52]. Other studies such as Fonte et al. [53] and Arsanjani et al. [52] mapped OSM
tags to the nomenclatures of the Urban Atlas and CORINE Land Cover to derive urban
land use maps which included artificial non-agricultural vegetated areas and urban green
spaces. Methods which combine OSM and remote sensing data have not been proposed
specifically for urban green space mapping, but for land use mapping in general. In these
studies, OSM data were used to create training samples for image classification [31], create
street block polygons as a basis for the classification [37,38,51,54] or refine the final land
cover classification using the OSM data [31–33].

The Dempster–Shafer theory has been applied for fusing land cover information from
different remote sensing imagery [55] and for urban change detection [56], but not to urban
green space mapping in particular. In the context of volunteered geographic information,
Comber et al. [57] evaluated different methods including Dempster–Shafer theory for
fusing classifications of multiple volunteers for land cover mapping and Liu et al. [58] used
Dempster–Shafer theory to update authoritative land use data with data collected from
volunteers via in-situ and online mapping campaigns. Applications of Dempster–Shafer
theory for fusing OSM and remote sensing data did not exists at the time of this writing.

3. Theoretical Background on the Dempster–Shafer Theory

The Dempster–Shafer theory is a framework for fusing different data sources in the
presence of uncertainty proposed by Shafer [30]. The Dempster–Shafer theory can be applied
to fuse information from different data sources (e.g., different sensors), or it can be used to
fuse information regarding different attributes of the objects (e.g. color or size of an object).
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During classification, objects should be assigned to mutually exclusive classes.
Within the Dempster–Shafer theory, this set of classes is called the frame of discernment
θ = {a, b, ...}. 2θ denotes the power set of θ, i.e., the set of all subsets of θ. The amount of
evidence which speaks for an object x belonging to one of the classes in set A based on an
information source i is encoded as the probability mass mi(A). In contrast to probabilistic
methods, probability masses can be set up for sets which contain a single or multiple
classes, e.g., mi({a, b}) describes the belief that an object x may belong to the classes a or b.
By assigning a non-zero probability mass to a set of multiple classes, the uncertainty about
the true class of an object can be represented.

3.1. Basic Probability Assignment

The process of assigning probability masses to sets of classes based on different infor-
mation sources is called basic probability assignment. A basic probability assignment for a
set A containing one or several classes is valid if the following requirements are fulfilled

0 ≤ m(A) ≤ 1; m(∅) = 0; ∑
A∈2θ

m(A) = 1 (1)

Once the probability masses are defined, the respective belief and plausibility can be
calculated from it. The belief of a set A quantifies the evidence that speaks for the object
belonging to one of the classes in set A. The higher the belief, the more certain is the
information. The belief of a set A is defined as the sum of all probability masses of the sets
B which are included in the set A

Bel(A) = ∑
B⊆A

m(B) (2)

The plausibility of a set A represents the evidence which speaks against the object
belonging to one of the classes in set A. The plausibility of a set A is defined as the sum of
all probability masses of the sets B which intersect the set A

Pl(A) = ∑
B∩A 6=∅

m(B) = 1− Bel(A) (3)

The definition of the basic probability assignment is the most crucial part within
applications of the Dempster–Shafer theory. The basic probability assignment defines the
relationship between the features of an object to be classified (e.g., the NDVI of a pixel) and
the probability masses associated with the items within the frame of discernment. Setting
up a basic probability assignment can be done based on expert knowledge and/or data
analysis. This might seem quite subjective, but it allows for high flexibility in quantifying
the uncertainties of the information sources.

3.2. Dempster’s Rule of Combination

Two probability masses which are based on two different information sources can
be fused to a joint probability mass using different combination rules [59]. The most
common one is Dempster’s rule of combination, which can be applied if the two sources
are independent of each other. This rule does not consider conflicting information and
can therefore be considered as an conjunctive combination rule. Using Dempster’s rule of
combination, two probability masses m1 and m2 are fused to one joined probability mass
m12 for the set A using

m12(A) =
∑B∩C=A m1(B)m2(C)

1− K
(4)

when A 6= ∅ and m12(∅) = 0,

K = ∑
B∩C=∅

m1(B)m2(C) (5)
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K describes thereby the amount of conflict between the two probability masses m1 and m2.
B and C are sets in m1 and m2, respectively, whose intersection is A.

3.3. Classification and Uncertainty Quantification

In order to make a decision and assign a class to each object based on the beliefs
formulated using the Dempster–Shafer theory, the pignistic probability—the probability
that a rational person would assign to an option when required to make a decision—is
calculated, and the class label with the highest pignistic probability is assigned to each
object. For details on the definition of the pignistic probability please refer to Smets and
Kennes [60].

The uncertainty in regard to an object belonging to the set A can be quantified through
the difference between the respective plausibility and the belief of the set A

u(A) = pl(A)− bel(A) (6)

This uncertainty can be quantified at each step of the data fusion process and for
different sets of class labels, so the uncertainties can be propagated all the way from the
initial data sources through the analysis until the final classification product.

4. Materials and Method for Public Urban Green Space Mapping
4.1. Study Area

The proposed method was applied to a study area in the city of Dresden (Figure 1).
Dresden is the capital of the federal state of Saxony and is located in the eastern part of
Germany with a population of 563,011 (2019) and a total area of 328.8 km2. The selected
study site is located in the city center covering an area of 51.5 km2 and containing a mixture
of mostly residential but also some commercial and industrial areas. The Elbe river stretches
from southeast to northwest and shapes the landscape of the city with its floodplains of
semi-natural meadows. The inner city has extensive green spaces such as municipal parks,
green avenues as well as many small green spaces which provide habitats of partly rare
and threatened plants and animals [61]. The biggest green spaces are the Great Garden,
a large park in central Dresden containing a zoo and botanical garden, and the Dresden
Heath, a large forest in the north-east of the city center. In addition, there are many small
green spaces scattered throughout the city some of which are owned and maintained by
the city but also a high number of privately owned but publicly accessible green spaces,
such as playgrounds belonging to apartment buildings.

4.2. Data
4.2.1. OpenStreetMap

OSM is a collaborative mapping project aimed at creating an open digital map of the
world. Anyone can contribute to the project by mapping various kinds of geo-spatial objects
such as buildings, roads or Points-of-Interest (POI). The data are available to everyone and
licensed under the Open Data Commons Open Database license (OdbL). The geometric
data structures used to represent objects are nodes (points), ways and relations (both lines
and polygons). Properties of objects are described using tags consisting of a key and a
value, e.g., highway=footpath or amenity=bench. Each feature in OSM may contain one or
multiple tags with different keys. To keep the data consistent, the meaning and usage of
tags are discussed by the OSM community and documented within the OSM Wiki [62].
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Figure 1. Study area in central Dresden, Germany. Public urban green spaces shown in the map were extracted from
municipal data.

4.2.2. Sentinel-2 Imagery

The Copernicus Sentinel-2 mission operated by the European Space Agency consists
of two polar-orbiting satellites, Sentinel-2A and Sentinel-2B, launched in June 2015 and
March 2017 respectively. They acquire multi-spectral imagery with a spatial resolution
of 10 to 60 m and a revisiting time of 2–3 days covering the whole globe. The imagery
contains 13 spectral bands within the visible, near-infrared and shortwave-infrared spec-
trum. For our analysis, the L-1C product of the Sentinel-2 MultiSpectral Instrument (MSI)
was used which provides radiometrically and geometrically corrected Top-of-Atmosphere
(TOA) reflectance. We used bands 4 and 8 which capture red and near infrared radiation at
a spatial resolution of 10 m.

4.2.3. Aerial Imagery

For validation of the greenness model (see Section 4.3.2), a multi-spectral aerial image
with a spatial resolution of 40 cm captured on 19 July 2017 was used. It contains four
spectral bands (red, green, blue, infra-red). The imagery was obtained from the German
Federal Agency for Cartography and Geodesy [63].

4.3. Methodology

The conceptual framework of our methodology for mapping public urban green
spaces consists of four parts (Figure 2). First, a mesh of homogeneous land use polygons
was derived based on the OSM data (see Section 4.3.1). These polygons were the basis for
all subsequent analyses. Public green spaces were characterized by their “greenness”, i.e.,
the presence of vegetation, and their “public accessibility” i.e., the accessibility by the gen-
eral public. However, these characteristics are not equally well measurable using Sentinel-2
and OSM data, e.g., Sentinel-2 imagery is suitable to assess whether an area is vegetated,
but not whether it is publicly accessible. Therefore, these two characteristics were modeled
separately. The greenness was estimated by fusing information from Sentinel-2 imagery
and OSM data using the Dempster–Shafer theory (see Section 4.3.2), while the public
accessibility was modeled using a Bayesian logistic regression approach (see Section 4.3.3).
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In the last step, the modeled information on greenness and public accessibility were fused
using the Dempster–Shafer theory to yield a map of public green spaces (see Section 4.3.4).

Figure 2. Conceptual workflow for mapping public urban green spaces. Grey boxes represent input or intermediate data,
white boxes represent processes, dashed lines and boxes represent validation analyses.

Validation was performed for the results of the greenness and public accessibility
models as well as the final map of public urban green spaces. The aerial imagery was
used to validate the results of the OSM and Sentinel-2 based greenness model. The public
accessibility model was trained and validated using manually classified samples selected
from the land use polygons (see Section 4.3.3). These samples were also used to evaluate
the final map of public green spaces.

The whole analysis except for the generation of land use polygons was implemented
in Python 3.7 [64]. PyMC3 [65] was used for Bayesian Modeling, and pyds [66] was used
for Dempster–Shafer fusion. The generation of land use polygons was implemented using
the software FME [67]. Data extraction was performed using the ohsome API [68] for OSM
data and Google Earth Engine [69] for Sentinel-2 data. All data and Python source code
can be found at [70].

4.3.1. Land Use Polygons

This section briefly describes the procedure for creating homogeneous land use poly-
gons from OSM data, which were the basis for the subsequent mapping of urban green
spaces. The main goal of this step was the generation of semantically meaningful polygon
meshes in the context of public urban green spaces mapping. These polygons represent
areas of homogeneous land use which form an independent activity space. They were de-
lineated on the basis of assumptions about physical barriers resulting from the boundaries
of certain neighboring land use class combinations extracted from OSM. The process of
polygon generation essentially consisted of two steps: the city block generation process
based on the traffic network and the further division of the blocks into sub-blocks based on
land use information.
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In the first step, city blocks, sometimes also referred to as street blocks, were generated
using the network of roads, railway tracks and boundaries of large waterways (Figure 3a,b).
We followed a similar approach as Grippa et al. [54] except that we also considered
railways. Table 1 contains all OSM tags and geometry types, which were used to represent
the traffic network. Line features were buffered with a width between 4 (e.g., living streets)
and 10 m (e.g., railway tracks) depending on the type of the road. The waterway features
were particularly necessary to ensure that the rivers banks of larger rivers or lakes were
well represented in the city block map. All resulting features were intersected with each
other to form the city blocks. To remove sliver polygons, all polygons less than 10 m
in width were merged with the neighboring polygon using the criterion of the longest
common edge.

Figure 3. Subset of the study area showing the generated land use polygons. (a) Traffic network from OSM, (b) City blocks
created from the traffic network and (c) Sub-blocks derived from land use features and buildings mapped in OSM.

Table 1. OSM tags and geometry types which were considered for the city block generation.

Type OSM Tags Geometry Type

Roads highway=motorway, trunk, primary, secondary, tertiary, residential, unclassified, motorway_link,
trunk_link, primary_link, secondary_link, tertiary_link, living_street

Polygon, Line

Railways railway=* Line
Waterways waterway=* Polygon
Buildings building=* Polygon

In the second step, the city blocks were further divided into sub-blocks based on land
use information derived from OSM (Figure 3c). A complete list of land use tags which
were considered is given in the description of the basic probability assignment based on
OSM in Section 4.3.2 Only OSM polygon features larger than 0.25 ha were included in
this step. To dissolve polygons which contain the same land use but were mapped using
different tags (e.g., landuse=forest and natural=wood both represent forest) OSM tags were
grouped into land use classes using a rule-based approach. This aggregation was however
only done for the generation of the geometries. The original land use tag of the resulting
polygons was preserved in the attribute table. In case several land use related tags were
present within one polygon, the tag with the highest area fraction was used.

The intersection between the city blocks and the land use data followed certain rules
when multiple polygons were overlapping, e.g., a leisure=park feature located inside a
landuse=residential feature. In this case, the smaller feature contained in the larger one was
given priority to get an overlap-free sub-block geometry. However, when the two land use
polygons could be seen to form a common green space entity (e.g., a leisure=playground
polygon within a landuse=grass polygon), then the polygons were merged in an automated
way based on predefined rules. If a smaller polygon partially overlapped another one, then
the smaller polygon was split in two parts unless it contained a green space related tag
such as leisure=park. In this case, the polygon remained unchanged and was given priority
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over the other one. If an OSM feature had an additional access=* tag, it was assigned to
the respective land use polygon. As a final step, the building features from OSM were
intersected with the land use polygon mesh.

4.3.2. Greenness Model

The greenness of each land use polygon was derived from OSM data and Sentinel-
2 satellite imagery and subsequently fused using the Dempster–Shafer theory. Since
these sources can be considered as independent, Dempsters’s combination rule was used.
The frame of discernment for this data fusion task is defined as θg = {green, grey}, i.e., an
object can be vegetated or non-vegetated.

To quantify the amount of vegetation from aerial or satellite imagery, the Normalized
Difference Vegetation Index (NDVI) is frequently used [21]. It is calculated using

NDVI =
NIR− RED
NIR + RED

(7)

where NIR and RED represent the reflectance at the near-infrared and red bands.
Bands 4 and 8 of the Sentinel-2 imagery were used to calculate the NDVI with a

resolution of 10 m. To capture the annual peak in vegetation presence at each loca-
tion from the Sentinel-2 imagery, a maximum NDVI image composite was created using
Google Earth Engine. In a maximum NDVI composite, several satellite scenes are fused
into one image by selecting the highest NDVI value of each pixel to generate a homoge-
neous, cloud free image composite. All Sentinel-2 scenes captured within 2019 which had a
cloud coverage of less than 5% were selected. This yielded 40 scenes captured between 22
January 2019 and 11 October 2019, which were used to create the image mosaic.

Basic Probability Assignment Based on Sentinel-2

There is a linear relationship between the NDVI and the presence of vegetation with
high NDVI values indicating high amounts of healthy vegetation [71]. Therefore, the belief
about whether an area is vegetated (green) or non-vegetated (grey) can be quantified based
on the NDVI value. For the basic probability assignment, three functions were set up to
map NDVI values to the probability masses m({green}), m({grey}) and m({green, grey})
(Figure 4a). The last one represents the uncertainty due to mixed pixels in the imagery
which cover both vegetated and non-vegetated areas.

0.0

0.5

1.0

m
(x

)

a)

green
grey
green, grey

0.2 0.0 0.2 0.4 0.6 0.8 1.0
NDVI

0.0

0.5

1.0

m
(x

)

b)

Figure 4. Basic probability assignment for greenness based on the NDVI. Due to different spectral
characteristics, the functions were adapted separately to the Sentinel-2 (a) and aerial imagery (b) using
fuzzy C-means clustering.

Equation (8) exemplifies how the probability mass m({green}) was calculated.
NDVI values higher than hgreen and lower than hgrey indicate green or grey areas with
a high degree of certainty, i.e., m({green}) = 0.95. The maximum probability mass was set
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to 0.95 instead of 1.0, so that the Dempster–Shafer fusion does not yield counter-intuitive
results. NDVI values close to hmixed were assigned probability masses m({green}) = 0.25,
m({grey}) = 0.25 and m({green, grey}) = 0.5. This represents the belief that these pixels
must be at least partly vegetated and non-vegetated but with a high degree of uncertainty
about the exact ratio. The shift value s was chosen so that m({green, grey}) = 0.5 at hmixed.

mgreen =


0 if NDVI ≤ hmixed − s
0− 0.95 if hmixed − s < NDVI < hgreen

0.95 if NDVI ≥ hgreen

(8)

where hgreen is the NDVI value representative for vegetated area, hmixed is the NDVI value
representative for mixed land cover, and s is a shift value, which needs to be defined so
that m({green, grey}) = 0.5 at hmixed.

To find representative NDVI values for vegetated, non-vegetated and mixed land
cover areas, unsupervised clustering with three cluster centers was applied sparately
to the NDVI images derived from the aerial and satellite image. Both regular K-means
clustering [72] and fuzzy C-means clustering [73] were tested. In contrast to regular
clustering methods, fuzzy C-means clustering is based on fuzzy sets instead of crisp
categories thereby considering the inherent uncertainty in the class assignment. Fuzzy
C-means clustering yielded cluster centers which better represented the vegetated, non-
vegetated and mixed class, which is why results of this method were chosen for the basic
probability assignment (Table 2).

Table 2. NDVI values of cluster centers derived using fuzzy C-means clustering. The shift parameter
s was calculated so that m({green, grey}) = 0.5 at hmixed.

hgreen hmixed hgrey s

Sentinel-2 0.71 0.43 0.15 0.094
Aerial image 0.42 0.24 0.06 0.06

The basic probability assignment for a land use polygon was derived by applying the
functions in Figure 4 to the NDVI values of the pixels intersecting the respective polygon.
The resulting values were aggregated using the mean to yield the probability masses
mosm(green), mosm(grey) and mosm(green, grey) for each polygon. This approach yielded
good greenness estimates for polygons larger than the 10 m pixel size of the Sentinel-2
imagery because they did not contain any mixed land use pixels. However, within urban
environments, the 10 m resolution is not sufficient to accurately capture small land use
objects such as little huts or small land use patches. This was reflected in highly uncertain
greenness estimates for these objects.

Basic Probability Assignment Based on OSM

To alleviate the problem of insufficient spatial resolution of the Sentinel-2 imagery,
OSM data was used to improve the greenness estimates. Certain OSM tags are more
associated with greenness than others, e.g., an object with the tag leisure=park is more likely
to contain vegetation than an object with the tag building=*. Still, this association is not the
same everywhere due to climatic and cultural factors [74]. Instead of compiling a static
list of OSM tags which are to be considered as green based on expert knowledge, the belief
in the greenness associated with each OSM tag was derived from Sentinel-2 data. This
was done by extracting only NDVI pixels which were fully located inside objects with
the respective tag. In this way, the uncertainty due to mixed pixels on the edges of the
objects was excluded. The basic probability assignment of the Sentinel-2 data (Figure 4a)
was applied to all NDVI values belonging to an OSM tag. The resulting values were
aggregated using the mean to yield the probability masses mosm(green), mosm(grey) and
mosm(green, grey) for each OSM tag (Figure 5).
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Figure 5. Probability masses for greenness based on land use related OSM tags.

An example to demonstrate the process will be described as follows: Let us assume
there are two pixels p1 and p2 which belong to the same OSM land use class t. Their NDVI
values are 0.5 and 0.65. Applying the probability mass assignment shown in Figure 4 to
these NDVI values yields mp1(green) = 0.44, mp1(grey) = 0.06 and mp1(green, grey) = 0.5
and mp2(green) = 0.84, mp2(grey) = 0 and mp2(green, grey) = 0.16, respectively.
Calculating the mean of these probabilities yields mosm(green) = 0.64, mosm(grey) = 0.03
and mosm(green, grey) = 0.33 as probability mass for the tag t.

OSM tags describing vegetated areas such as landuse=forest or leisure=park showed high
probability mass values for m(green), while built-up areas such as buildings or parking
lots showed high probability mass values for m(grey). The basic probability assignment
for buildings did not contain much uncertainty, since mixed pixels (i.e., due to small
buildings) were not considered for the derivation of the OSM based probability masses.
The basic probability assignment for the tag landuse=allotments showed the highest value
in m(green, grey) and therefore the highest uncertainty, since the little huts located inside
these community gardens were not mapped in OSM leading to many mixed pixels in
these areas.

Validation

The accuracy of the greenness derived from Sentinel-2 only and from the combination
of Sentinel-2 and OSM was evaluated by comparing them to the greenness derived from the
higher resolution aerial image (see Section 4.2). First, the aerial image was resampled using
nearest neighbor resampling to a resolution of 1 m which was sufficient for this validation
and saved processing resources. Subsequently the NDVI was calculated and fuzzy C-
means clustering was used to adjust the functions of the basic probability assignment to
the spectral characteristics of the aerial imagery (Figure 4b, Table 2). The Root Mean Square
Error (RMSE) between the probability masses derived from the aerial imagery and the
Sentinel-2 and OSM data was calculated to evaluate the potential of OSM to compensate
for the insufficient spatial resolution of Sentinel-2. In addition, three greenness maps
containing the classes green and grey were created based on the different data sets (aerial
imagery, Sentinel-2 and Sentinel-2 + OSM) by assigning the class with the highest pignistic
probability to each land use polygon. If the pignistic probability was at 0.5, the object was
classified as uncertain.
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4.3.3. Public Accessibility Model

The aim of the public accessibility model was to distinguish public from private green
spaces. Public access means in this context that an area is freely accessible for the general
public without prior permission. It does not imply assumptions about the ownership of
the area. Apart from municipal green spaces such as parks this definition also includes
privately owned areas which are accessible for the general public e.g., playgrounds which
belong to apartment blocks. The two target classes of the model were public and private.

Indicators in OSM for Predicting Public Accessibility

Since satellite imagery does not always yield reliable information about the land
use of an area, only OSM data was used to distinguish public from private green spaces.
In contrast to private green spaces (e.g., residential gardens) public green spaces are usually
well represented in OSM and are being mapped using different tags such as leisure=park,
landuse=grass or landuse=village_green. OSM features with these tags can be assumed
to be publicly accessible unless one of the tags access=no or access=private are given as
well. Still, the mapping practice in regard to public green spaces in OSM is not always
consistent leading to spatially heterogeneous levels of completeness. Out of the four
public green spaces only three have been mapped as landuse=grass. Still, the unmapped
public green space in the middle can be recognized as such using contextual information
such as the presence of a path network or green spaces specific POIs (e.g., playground).
For the region of Dresden, paths as well as benches and playgrounds are very often
mapped within public green spaces in OSM making them good contextual indicators for
identifying unmapped public green spaces in OSM. This was explored in a previous study
by performing association rule mining on parks mapped in OSM within different cities in
the world [75]. Based on these results, the features listed in Table 3 were considered for
distinguishing public from private green spaces.

Table 3. Indicators which were considered to distinguish public from private green spaces. Land
use class and access=* tag were derived in Section 4.3.1. The others were selected based on
Ludwig et al. [75].

Feature Unit

Land use class based on OSM [-]
Presence of an access=* tag [true/false]
Presence of benches [true/false]
Presence of playgrounds [true/false]
Total length of footpaths [m]
Density of footpaths [1/m2]
Number of footpath intersections [-]
Density of footpath intersections [1/m2]

Considering the presence of benches or playgrounds as binary variables instead of
the absolute number of benches or playgrounds within the polygon leads to better model
fit and better convergence of the models. To enable better sampling during model fitting,
the path length and density as well as the number and density of intersections were
transformed to be more normally distributed using the Yeo Johnson transformation [76].

Model Structure

A Bayesian hierarchical logistic regression approach was used to model the pub-
lic accessibility, because all indicators were linearly related to public accessibility and
a hierarchical approach seemed suitable to represent the different land use categories.
During model evaluation different model configurations were compared: A pooled model
which only considered the contextual indicators, but not the information on land use and a
multi-level approach with a partially pooled intercept αj[i] which represented the land use
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categories j. All land use specific intercepts originated from a common normal distribution
with mean µα and standard deviation σ2

α . The complete multi-level model including the
contextual indicators was defined as

p(yi = 1) =
1

1 + e−(αj[i]+βXi)
(9)

with
αj[i] ∼ N(µα, σ2

α) (10)

where p(yi = 1) is the probability that the polygon i is public, αj[i] is the partially pooled
intercept for each land use class j, X is the vector of contextual indicators and β the vector
containing the coefficients for the contextual indicators.

Little prior knowledge existed about the values of the model parameters.
Therefore, the priors for the model were chosen to be weakly informative but within
reasonable parameter spaces. The sensitivity of the model towards different priors was
evaluated to ensure model convergence and reasonable model results. Since the context
variables were standardized and therefore share the same scale, the priors of all coefficients
were chosen to be weakly informative normal distributions as suggested by Lemoine [77]
with mean µ = 0 and standard deviation σ = 10. To allow for sufficient variance between
the intercepts representing the different land use tags, the prior of the multi-level intercept
µα was also set up as a weakly informative normal distribution whose mean was defined
as a normal distribution with µ = 0 and σ = 10 and whose standard deviation σα was
defined as a Half Cauchy distribution as suggested by Polson et al. [78] and Lemoine [77].
The scale parameter of the Half Cauchy distribution was set to β = 5. The model was
trained with 3 chains and 10,000 iterations.

Model Training and Validation

For the training and validation of the model, 300 land use polygons were selected
using a stratified random sampling approach based on the land use types of the polygons
(see Section 4.3.1). These were manually classified as public or private green spaces based
on aerial imagery and Google Street View [79]. Seventy percent of samples were used for
model training, the remaining 30% for testing. Model comparison was performed using the
leave-one-out cross validation (LOO) criterion [80]. Since the logarithm of LOO log(LOO)
was used, higher values indicate higher model quality.

Conversion of Posterior Probabilities to Probability Masses

In order to fuse the model results on public accessibility with the belief in greenness
(see Section 4.3.2) the posterior probabilities of the Bayesian model had to be converted to
beliefs expressed as probability masses. The frame of discernment of this basic probability
assignment was θp = {public, private}. The basic probability assignment is based on
the functions shown in Figure 6. Highest certainty in class assignment was given when
the model probability was p(yi = 1) = 0 or p(yi = 1) = 1. Probability values contain
increasingly more uncertainty as they approach a value of 0.5. At this point, uncertainty
in class assignment is highest, so m({public, private}) is at its maximum. The functions of
the basic probability mass assignment were applied to all posterior probabilities and the
resulting values were aggregated using the mean to derive scalar values for m({public}),
m({private}) and m({public, private}).
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Figure 6. Basic probability assignment to convert the posterior probabilities of the public accessibility
model to beliefs, which subsequently can be fused with the belief about greenness using the Dempster–
Shafer theory.

4.3.4. Fusion of Greenness and Public Accessibility

In the final step, the derived beliefs on greenness and public accessibility were fused
using Dempster’s rule of combination to produce a map of public urban green spaces.
The greenness and public accessibility were represented using two different frames of
discernment θg = {green, grey} and θp = {public, private}. Since the greenness and public
accessibility were modeled separately, they can be seen as independent of each other.
Therefore, the combination of these two frames of discernment was achieved by building
the Cartesian product of them which yielded the new joint frame of discernment θpg

θpg = θp × θg = {(green, public), (green, private), (grey, public), (grey, private)} (11)

For the final fusion, the probability masses of the two models were converted to the
new frame of discernment θpg using

m({(green, private), (green, public)}) = m({green}) (12)

m({(grey, private), (grey, public)}) = m({grey}) (13)

m({(green, public), (grey, public)}) = m({public}) (14)

m({(green, private), (grey, private)}) = m({private}) (15)

An example should demonstrate the principle of the conversion: the belief about
the greenness of a land use polygon does not contain any information about its public
accessibility. Therefore, the probability mass m({green}) of the frame of discernment θg is
assigned to the union of the elements (green, public) and (green, private) in the new frame of
discernment θ, because based on this belief it could be either of the two.

After the beliefs on greenness and public accessibility were fused, the pignistic proba-
bilities were calculated and the class with the highest pignistic probability was assigned
to each object e.g., (public,green), (public,grey), (private,green) or (private,grey). Selecting all
objects classified as (public,green) yielded the final map of public green spaces.

The uncertainty in regard to the probability that an object represents a public green
space was quantified by calculating the difference between the plausibility and the belief
of the set {(public,green)}

u({(public, green)}) = pl({public, green})− bel({public, green}) (16)

The uncertainty associated with the information on public accessibility or greenness
was calculated in the same way but based on the sets {(public,green), (public,grey)} and
{(public,green), (private,green)}.
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4.3.5. Validation

The public green space map was validated using 300 samples extracted from the land
use polygons (see Section 4.3.3). They were manually classified into the classes public green
space or other using aerial imagery and Google Street View [79]. Based on this validation
data, an accuracy assessment was conducted which included the measures precision, recall
and the f1 score [81].

5. Results
5.1. Land Use Polygons

Within the study area 3776 land use polygons were created out of which 83.8%
were tagged as buildings, 5.2% as landuse=residential, 2.1% as landuse=grass and 0.8%
as leisure=park. 2.7% of polygons did not contain any land use related OSM tag. The re-
maining land use categories constituted less than 0.5% each. 8.4% of the non-building
polygons contained at least one playground, 8.7% contained at least one bench and 29.3% of
polygons contained at least one footpath intersection. Restricted access, indicated through
the presence of one of the tags access=no|private|customers, was given for only 2% of
non-building polygons.

5.2. Greenness

The beliefs about greenness based on Sentinel-2 and OSM data were compared to
the belief derived from the aerial image as reference data (Figure 7). The beliefs derived
from Sentinel-2 imagery were less accurate than the ones derived from the combination of
Sentinel-2 and OSM data. The RMSE of the probability masses m({grey}) derived from
Sentinel-2 data was at 0.43 with highest deviations among polygons smaller than 500 m2

which is due to the fact that the sensor resolution is not high enough to capture their greenness
accurately (Figure 7b). These objects are mostly buildings which are mapped with a very
high completeness in OSM. Fusing the evidence from Sentinel-2 and OSM led to a strong
improvement of the greenness with the RMSE dropping to 0.05 (Figure 7f). After the fusion,
the probability mass m({grey}) of very small buildings such as huts was overestimated
compared to the reference data, which can be explained by the fact that these huts were often
covered by trees and therefore appeared vegetated in the aerial imagery (Figure 7d,f).
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Figure 7. Deviation in beliefs about greenness for land use polygons of different size compared to the ground truth derived
from aerial imagery. Deviations in bel(green) and bel(grey) from Sentinel-2 (a) + (b), from OSM (c) + (d) and from Sentinel-2
fused with OSM (e) + (f).



ISPRS Int. J. Geo-Inf. 2021, 10, 251 16 of 25

These differences could also be seen in the classifications derived from the beliefs
(Figure 8). When using Sentinel-2 imagery only, most of the small buildings could not be
reliably classified as green or grey but remained uncertain due to the high uncertainty cause
by the mixed pixels (Figure 8a). The belief derived from OSM on the greenness of objects
with the tag building=* however was very clear as m(grey) ≥ 0.8 (Figure 5b)). So fusing the
Sentinel-2 based belief with evidence from OSM increased the number of buildings being
correctly classified as grey considerably (Figure 8b).

a) 100m

green
grey
uncertain

b) c)

Figure 8. Greenness classifications for a subset of the study site derived from Sentinel-2 (a), OSM + Sentinel-2 (b), and aerial
imagery as ground truth (c). The class with the highest pignistic probability is shown. If pignistic probability = 0.5, object
was labeled as uncertain. The polygon on the far left was misclassified, since it contained a high amount of mixed pixels and
no land use related OSM tag.

Regarding the deviance in probability mass m({green}), the overall RMSE remained at
0.03 even after the fusion with the OSM data (Figure 7a,e). Some deviations occurred within
areas with dynamically changing land cover such as construction sites or agricultural areas
(e.g., farmland, grassland or meadow). These deviations were probably due to actual land
use changes which have taken place between the acquisition dates of the aerial image in
2017 and the Sentinel-2 imagery in 2019. Still, fusing evidence from OSM with Sentinel-2
imagery led to improvements in the detection of green areas. Especially small green spaces
which are often mapped in OSM using the tag landuse=grass were detected more reliably.
Among land use polygons smaller than 500 m2 (excluding buildings) the overall accuracy
increased from 0.18 using Sentinel-2 only to 0.48 using Sentinel-2 and OSM data. Of these
small polygons, 72% contained an OSM tag such as landuse=grass (28%), landuse=residential
(16%) or amenity=playground (7%).

5.3. Public Accessibility

The most basic multi-level model which only considered the land use tags (log(LOO)
= −63, overall accuracy = 0.88) performed significantly better than the best pooled model
which only considered the context indicators (log(LOO) = −117, overall accuracy = 0.74).
This indicates that the land use information in OSM was very important for the model
to distinguishing public from private green spaces. OSM tags such as leisure=park or
landuse=cemetery had positive intercepts suggesting that they were strong indicators for
public green spaces, while OSM tags such as landuse=industrial or amenity=parking were
indicating the opposite (Figure 9a). For residential areas or polygons without a land use
tag, the intercepts were slightly negative, suggesting that these areas were only classified
as public if the contextual indicators for public accessibility were strong enough.
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Figure 9. (a) Mean estimates for intercepts with 94% Bayesian credible intervals for different land
use types and (b) Model comparison between several models with different additional contextual
predictors based on the log(LOO) criterion; pathlength/m2 = density of footpaths, intersections/m2

= density of footpath intersections, playgr = playground.

To analyze the model’s potential to detect unmapped public green spaces, the influence
of different context indicators on the model performance was investigated (Figure 9b).
The multi-level model which only considered the land use related tags but no context
indicators reached an overall accuracy of 0.88. Recall for class public was only at 0.77, since
unmapped public green spaces were falsely classified as private.

Including the density of footpath intersections in the model slightly increased the
overall accuracy to 0.90. The number of omission errors decreased, since some of the un-
mapped public green spaces could be detected using the additional footpath intersections.
However, at the same time, the number of commission errors increased as a few private
residential blocks containing footpaths along streets or access paths to single family houses
were falsely classified as public. Although including the density of footpath intersections in
the model was not sufficient to reliably detect all unmapped public green spaces, the un-
certainty associated with the predictions of the samples m({public, private}) decreased by
22% on average compared to the multi-level model that did not consider the density of
footpath intersections.

Generally, using the density instead of the absolute number of intersections per
polygon led to a better model performance (Figure 9b), but using footpath intersections
instead of overall footpath length performed only marginally better. Since the computation
of the intersections is more computationally intensive, using the footpath length instead
of the footpath intersections would be acceptable for the sake of saving computational
resources if the model is to be applied to larger regions.

Adding the presence of benches and playgrounds as typical indicators for public green
spaces in Dresden to the multi-level model further increased the overall accuracy to 0.98.
The uncertainty associated with the predictions m({public, private}) decreased by 33% on
average compared to the multi-level model without any context indicators. Precision and
recall of the model were very high as well indicating that the model was able to detect
most unmapped public green spaces without falsely classifying private residential areas
(Table 4). Still, one omission error occurred for a polygon which did not contain any land
use tag or context indicator. One commission error occurred for a land use polygon tagged
as landuse=grass and access=private. This classification error could not be avoided even
after including the access=* tag in the model. The tag landuse=grass is a strong indicator for
public accessibility, but the influence of the tag access=private in the model was very low.
This indicates that the model did not accurately capture the fact that the access=private tag
implies no public accessibility with a high degree of confidence, which is likely due to the
fact that the access=* tag was only given for about 2% of the land use polygons.



ISPRS Int. J. Geo-Inf. 2021, 10, 251 18 of 25

Table 4. Precision, recall and f1-score of the multi-level model including land use tags as well as
benches, playgrounds, density of footpath intersections and the access=* tag as context indicators.
Support indicates the number of test samples of each class.

Class Precision Recall f1-Score Support

private 0.98 0.98 0.98 54
public 0.97 0.97 0.97 36

5.4. Fusion of Greenness and Public Accessibility

A map of public and private urban green spaces based on Sentinel-2 and OSM data is
presented in Figure 10. Compared to the authoritative data on public green spaces shown
in Figure 1), our prediction indicated the presence of a lot more green spaces. This is due
to the fact that the former map does not contain privately owned but publicly accessible
green spaces, since these were not included in the municipal data.

Figure 10. Public and private green spaces in the center of Dresden mapped using the proposed method. The classes (public,
grey) and (private, grey) were merged to the class grey.

Overall accuracy of the final map of public green spaces was at 95%. Public green
spaces which were mapped in OSM as leisure=park or landuse=grass were all reliably de-
tected by the model. Among them are most municipal green spaces, which were mapped
in Dresden with a high level of completeness as well as some privately owned but publicly
accessible green spaces. Public green spaces which have not been mapped in OSM explicitly
using these tags were also detected by model with slightly weaker beliefs (Figure 11b).
Within the whole study area, 180 of such presumably unmapped public green spaces were
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detected, most of them within residential areas. Green spaces which were tagged as private
using the access=* were partly misclassified by the model as public.

Figure 11. Example of a publicly accessible green space detected by the model: (a) The red rectangle marks a public green
space which has not been mapped in OSM and (b) Belief in the presence of a public green space. The unmapped public
green space shows a high level of belief, which means it was correctly detected by the model.

Figure 12 shows the relationship between the uncertainties of the predictions and
the overall model accuracy. With the level of maximum uncertainty in the subsets of
samples rising, the model accuracy was decreasing. This indicates a linear relationship
between the model accuracy and the uncertainty estimate of the samples. The same pattern
was visible for the uncertainty of the public accessibility belief indicating that the overall
uncertainty in the model predictions was mainly driven by the uncertainty of the public
accessibility model. The uncertainty in greenness on the other hand did not show such
a strong relationship with the overall model accuracy suggesting that the uncertainty in
greenness did not influence the model accuracy as much.
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Figure 12. Association between model accuracy and uncertainty of the beliefs. Overall accuracy is
shown for subsets of samples ordered by their maximum uncertainty in regard to the beliefs in the
greenness, public accessibility and the presence of a public green space. The subsets of samples grow
cumulatively along the x-axis, i.e., the sample with the lowest uncertainty is combined with samples
of increasing uncertainty along the x-axis.
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6. Discussion

The aim of this study was to develop and test a methodology to alleviate current
limitations in urban green space mapping due to the uncertainties inherent in the Sentinel-2
and OSM data. A common problem of using Sentinel-2 imagery for urban green space
mapping is its inability to capture small objects due to its insufficient spatial resolution
(RQ1). This was confirmed in this study, but it was also shown that OSM data can partly
compensate for these inabilities. Especially among small land use objects such as build-
ings or green spaces smaller than 500 m2, the detection rate was increased significantly
by considering the data source specific uncertainties during the data fusion using the
Dempster–Shafer theory.

Another limitation of satellite data in regard to urban green space mapping is the
inability to distinguish public from private green spaces (RQ2). OSM data was proven to be
suitable to compensate for this problem as well using a Bayesian logistic regression model.
To account for the inconsistent and incomplete representation of public green spaces in
OSM, land use specific OSM tags as well as contextual indicators for public accessibility
(e.g., footpaths) were considered in the model. In this way, it was possible to detect both
explicitly mapped public green spaces as well as public green spaces which are missing
in OSM. Still, the model can be improved, for example, by a more accurate recognition of
restricted accessibility indicated by the access=* tag. Although the meaning of this tag is
very clear, its influence was quite small in the model, because it occurs in only 2% of the
samples. To increase its influence, the access=* tag could be excluded from the model and
instead be treated as an independent information source and converted to a probability
mass to be fused with the model results. In this context, it would also be interesting to
analyze how conditional accessibility, e.g., areas with access fees or time dependent access
restrictions on school grounds, could be derived from OSM data.

Modeling the greenness and public accessibility separately and fusing them in the final
step using the Dempster–Shafer theory made it possible to propagate the uncertainties from
the data sources through the analysis up until the final map of public green spaces (RQ3).
The uncertainty regarding the evidence for public access had a higher influence on the
model accuracy than the evidence for greenness. This information allowed a better under-
standing of the reliability of the final map of green spaces and might help in reducing the
amount of manual validation work need to make the data set reliable enough to be used
within a recommendation system.

Since Sentinel-2 imagery and OSM data are available globally and free of charge,
the methodology is in principle also applicable to other cities or regions. The greenness
model can be applied automatically to other areas without manual interventions and due
to the high-revisiting rate of the Sentinel-2 satellites the production of cloud free image
composites is usually possible for most areas of the world.

However, it is very important to stress that the quality of final public green space
map is highly dependent on the quality of the underlying OSM data. Within our study
area, the completeness of the OSM data in regard to buildings, public green spaces and the
contextual indicators for public accessibility was very high which allowed for reliable high
quality results [75], but this should not be assumed for other geographic areas without
prior data quality analyses of the local OSM data. An analysis of completeness of relevant
OSM features based on intrinsic data quality indicators [82] could be the first step before
undertaking the next steps. The OSHDB and the ohsome API [68] might serve as entry
points for such an analysis.

Although a comprehensive analysis of the transferability of the method to other cities
was outside the scope of this paper, successfully applying the method to other cities is
likely possible if the OSM data quality is sufficient and the public accessibility model is
adapted to the local OSM data. Predicting public accessibility based on the land use tags
and the density of footpath intersections already yielded good results with an overall
accuracy of 0.9. Since the meaning of these OSM objects in regard to the presence of public
green spaces can be assumed to be fairly similar across geographical regions, this model
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should yield comparable results when trained and applied to other cities with similar
levels of completeness. Still, the inclusion of region specific context indicators which
are typical for public green spaces in the respective city is important to reliably capture
unmapped public green spaces as well. In the case of Dresden, benches and playgrounds
were important local context indicators, but in other regions different OSM tags might
have to be used, since characteristic elements of public green spaces vary depending on
the local culture and the mapping practices in OSM [74]. Therefore, it is very important
to identify suitable context indicators which are both culturally relevant in regard to local
public green spaces and are mapped with a sufficient level of completeness within OSM
when transferring the model to other areas. Data-driven feature selection techniques such
as association rule mining can be used to assist in finding suitable indicators [75].

There is potential to improve the proposed method by considering additional data.
Point or line objects in OSM such as trees or tree rows were not considered in this study, but if
considered in addition, they could presumably further improve the greenness estimates.
In the same way, including physical barriers such as walls or fences mapped in OSM could
improve the generation of land use polygons. Social media data could be used as an
additional source of evidence to improve the predicted public accessibility.

An important question for future studies is to what extent the maps of public green
spaces created using this methodology are comparable between different cities. Are all
kinds of green spaces captured or is there a bias towards capturing certain kinds of green
spaces in some cities but not in others depending on the selection of contextual indicators
for public accessibility? To what extent are these biases influenced by the OSM data quality,
the mapping practices of the local OSM community and the region specific characteristics
of urban green spaces? These potential problems should be analyzed and if necessary
addressed by developing suitable methods to guarantee the production of consistent
maps of public urban green spaces across multiple cities. This would be an important
step towards facilitating accessibility analyses on urban green spaces across different
cities [11,83] for which suitable data sets are not available yet. In addition, the urban green
spaces derived using this methodology could also be of interest for the OSM community by
raising awareness for a lack of completeness or inconsistent mapping practices in regard to
urban green spaces.

7. Conclusions

Our results showed that fusing OSM and Sentinel-2 data based on Dempster–Shafer
theory improved estimates of public urban green spaces to a remarkable degree. This offers
potential for improved assessments of urban green spaces and their attached ecosystem
services—at least in regions of sufficient OSM data quality. Furthermore, we were able
to show that OSM data can be used to estimate the accessibility of green spaces at a
reasonable level of uncertainty. The use of context indicators has thereby shown to be of
great importance to account for the inconsistency and incompleteness in the data. For the
combined model, an overall accuracy of 95% for the prediction of public green spaces could
be achieved for our case study region. Uncertainty associated with the predicted public
accessibility had a higher effect on accuracy of the combined model than the predicted
greenness. While results are promising, further studies are needed to test how far the
approach can be used for urban areas with different OSM quality and with different urban
planning and biophysical contexts.
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44. Gašparović, M.; Dobrinić, D. Comparative assessment of machine learning methods for urban vegetation mapping using
multitemporal sentinel-1 imagery. Remote Sens. 2020, 12, 1952. [CrossRef]

http://dx.doi.org/10.1201/9781420083408-20
https://www.tpl.org/parkserve
http://dx.doi.org/10.1016/j.rse.2011.11.026
https://wiki.openstreetmap.org/wiki/Open_Database_License
https://wiki.openstreetmap.org/wiki/Open_Database_License
http://dx.doi.org/10.3390/s17081855
http://dx.doi.org/10.3390/land6020025
http://dx.doi.org/10.1007/s41651-019-0030-5
http://dx.doi.org/10.1080/01431160903130895
http://dx.doi.org/10.1007/978-3-319-14280-7_3
http://dx.doi.org/10.5281/zenodo.3387701
http://dx.doi.org/10.3390/fi4010001
http://dx.doi.org/10.3390/ijgi2041066
http://dx.doi.org/10.1016/j.strusafe.2008.06.020
http://dx.doi.org/10.1016/j.jag.2017.07.014
http://dx.doi.org/10.3390/rs11010088
http://dx.doi.org/10.1109/LGRS.2017.2762466
http://dx.doi.org/10.1109/TGRS.2008.2001771
http://dx.doi.org/10.1016/j.jag.2013.07.002
http://dx.doi.org/10.1109/cvpr.2016.647
http://dx.doi.org/10.3390/rs8020151
http://dx.doi.org/10.1016/j.isprsjprs.2018.10.010
http://dx.doi.org/10.1016/j.rse.2016.10.041
http://dx.doi.org/10.1007/978-3-030-27157-2_13
http://dx.doi.org/10.1117/12.2325337
http://dx.doi.org/10.1016/j.jag.2020.102065
http://dx.doi.org/10.3390/rs12121952


ISPRS Int. J. Geo-Inf. 2021, 10, 251 24 of 25

45. Myint, S.W. Urban vegetation mapping using sub-pixel analysis and expert system rules: A critical approach. Int. J. Remote Sens.
2006, 27, 2645–2665. [CrossRef]

46. Yin, W.; Yang, J. Sub-pixel vs. super-pixel-based greenspace mapping along the urban–rural gradient using high spatial resolution
Gaofen-2 satellite imagery: A case study of Haidian District, Beijing, China. Int. J. Remote Sens. 2017, 38, 6386–6406. [CrossRef]

47. Dennis, M.; Barlow, D.; Cavan, G.; Cook, P.A.; Gilchrist, A.; Handley, J.; James, P.; Thompson, J.; Tzoulas, K.; Wheater, C.P.; et al.
Mapping urban green infrastructure: A novel landscape-based approach to incorporating land use and land cover in the mapping
of human-dominated systems. Land 2018, 7, 17. [CrossRef]

48. Baker, F.; Smith, C.L.; Cavan, G. A combined approach to classifying land surface cover of urban domestic gardens using citizen
science data and high resolution image analysis. Remote Sens. 2018, 10, 537. [CrossRef]

49. Lahoti, S.; Kefi, M.; Lahoti, A.; Saito, O. Mapping methodology of public urban green spaces using GIS: An example of Nagpur
City, India. Sustainability 2019, 11, 2166. [CrossRef]

50. Kabisch, N.; Kraemer, R. Physical activity patterns in two differently characterised urban parks under conditions of summer heat.
Environ. Sci. Policy 2020, 107, 56–65. [CrossRef]

51. Zhang, Y.; Li, Q.; Huang, H.; Wu, W.; Du, X.; Wang, H. The combined use of remote sensing and social sensing data in fine-grained
urban land use mapping: A case study in Beijing, China. Remote Sens. 2017, 9, 865. [CrossRef]

52. Arsanjani, J.J.; Zipf, A.; Mooney, P.; Helbich, M. OpenStreetMap in GIScience; Lecture Notes in Geoinformation and Cartography;
Springer: Berlin/Heidelberg, Germany, 2015. [CrossRef]

53. Fonte, C.C.; Lopes, P.; See, L.; Bechtel, B. Using OpenStreetMap (OSM) to enhance the classification of local climate zones in the
framework of WUDAPT. Urban Clim. 2019, 28, 100456. [CrossRef]

54. Grippa, T.; Georganos, S.; Zarougui, S.; Bognounou, P.; Diboulo, E.; Forget, Y.; Lennert, M.; Vanhuysse, S.; Mboga, N.; Wolff, E.
Mapping urban land use at street block level using openstreetmap, remote sensing data, and spatial metrics. ISPRS Int. J. Geo-Inf.
2018, 7, 246. [CrossRef]

55. Ran, Y.; Li, X.; Lu, L.; Li, Z. Large-scale land cover mapping with the integration of multi-source information based on the
Dempster–Shafer theory. Int. J. Geogr. Inf. Sci. 2012, 26, 169–191. [CrossRef]

56. Luo, H.; Liu, C.; Wu, C.; Guo, X. Urban change detection based on Dempster–Shafer theory for multitemporal very high-resolution
imagery. Remote Sens. 2018, 10, 980. [CrossRef]

57. Comber, A.; Law, A.; Lishman, J. A comparison of Bayes’, Dempster-Shafer and Endorsement theories for managing knowledge
uncertainty in the context of land cover monitoring. Comput. Environ. Urban Syst. 2004, 28, 311–327. [CrossRef]

58. Liu, L.; Olteanu-Raimond, A.M.; Jolivet, L.; Bris, A.l.; See, L. A data fusion-based framework to integrate multi-source VGI in an
authoritative land use database. Int. J. Digit. Earth 2020, 1–30. [CrossRef]

59. Sentz, K.; Ferson, S. Combination of Evidence in Dempster-Shafer Theory; Sandia National Laboratories Albuquerque: Albuquerque,
NM, USA, 2002; Volume 4015. [CrossRef]

60. Smets, P.; Kennes, R. The transferable belief model. Artif. Intell. 1994, 66, 191–234. [CrossRef]
61. Artmann, M.; Bastian, O.; Grunewald, K. Using the concepts of green infrastructure and ecosystem services to specify Leitbilder

for compact and green cities—The example of the landscape plan of Dresden (Germany). Sustainability 2017, 9, 198. [CrossRef]
62. OpenStreetMap Contributors. OSM Wiki. 2020. Available online: https://wiki.openstreetmap.org (accessed on 1 December 2020).
63. German Federal Agency for Cartography and Geodesy. Digital Orthophotos and Satellite Imagery. Available online: https:

//gdz.bkg.bund.de/index.php/default/digitale-geodaten/digitale-orthophotos.html?___store=default (accessed on 24 February 2021).
64. Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009.
65. Salvatier, J.; Wiecki, T.V.; Fonnesbeck, C. Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. 2016, 2, e55.

[CrossRef]
66. Reineking, T. Belief Functions: Theory and Algorithms. Ph.D. Thesis, Universität Bremen, Bremen, Germany, 2014.
67. Safe Software Inc. FME Software. 2020. Available online: https://www.safe.com/fme (accessed on 6 April 2021).
68. Raifer, M.; Troilo, R.; Kowatsch, F.; Auer, M.; Loos, L.; Marx, S.; Przybill, K.; Fendrich, S.; Mocnik, F.B.; Zipf, A. OSHDB: A

framework for spatio-temporal analysis of OpenStreetMap history data. Open Geospat. Data Softw. Stand. 2019, 4, 3. [CrossRef]
69. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial

analysis for everyone. Remote. Sens. Environ. 2017. [CrossRef]
70. Ludwig, C.; Hecht, R.; Lautenbach, S.; Schorcht, M.; Zipf, A. Mapping of Public Urban Green Spaces Based on OpenStreetMap and

Sentinel-2 Imagery Using Belief Functions: Data and Source Code; University of Heidelberg: Heidelberg, Germany, 2020. [CrossRef]
71. Myneni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote

Sens. 1995, 33, 481–486. [CrossRef]
72. Likas, A.; Vlassis, N.; Verbeek, J.J. The global k-means clustering algorithm. Pattern Recognit. 2003, 36, 451–461. [CrossRef]
73. Bezdek, J.C.; Ehrlich, R.; Full, W. FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 1984, 10, 191–203. [CrossRef]
74. Ludwig, C.; Zipf, A. Exploring regional differences in the representation of urban green spaces in OpenStreetMap. In Proceedings

of the “Geographical and Cultural Aspects of Geo-Information: Issues and Solutions” AGILE 2019 Workshop, Limassol, Cyprus,
17 June 2019.

75. Ludwig, C.; Fendrich, S.; Zipf, A. Regional variations of context-based association rules in OpenStreetMap. Trans. GIS 2020.
[CrossRef]

http://dx.doi.org/10.1080/01431160500534630
http://dx.doi.org/10.1080/01431161.2017.1354266
http://dx.doi.org/10.3390/land7010017
http://dx.doi.org/10.3390/rs10040537
http://dx.doi.org/10.3390/su11072166
http://dx.doi.org/10.1016/j.envsci.2020.02.008
http://dx.doi.org/10.3390/rs9090865
http://dx.doi.org/10.1007/978-3-319-14280-7
http://dx.doi.org/10.1016/j.uclim.2019.100456
http://dx.doi.org/10.3390/ijgi7070246
http://dx.doi.org/10.1080/13658816.2011.577745
http://dx.doi.org/10.3390/rs10070980
http://dx.doi.org/10.1016/S0198-9715(03)00013-9
http://dx.doi.org/10.1080/17538947.2020.1842524
http://dx.doi.org/10.2172/800792
http://dx.doi.org/10.1016/0004-3702(94)90026-4
http://dx.doi.org/10.3390/su9020198
https://wiki.openstreetmap.org
https://gdz.bkg.bund.de/index.php/default/digitale-geodaten/digitale-orthophotos.html?___store=default
https://gdz.bkg.bund.de/index.php/default/digitale-geodaten/digitale-orthophotos.html?___store=default
http://dx.doi.org/10.7717/peerj-cs.55
https://www.safe.com/fme
http://dx.doi.org/10.1186/s40965-019-0061-3
http://dx.doi.org/10.1016/j.rse.2017.06.031
http://dx.doi.org/10.11588/data/UYSAA5
http://dx.doi.org/10.1109/TGRS.1995.8746029
http://dx.doi.org/10.1016/S0031-3203(02)00060-2
http://dx.doi.org/10.1016/0098-3004(84)90020-7
http://dx.doi.org/10.1111/tgis.12694


ISPRS Int. J. Geo-Inf. 2021, 10, 251 25 of 25

76. Yeo, I.K.; Johnson, R.A. A new family of power transformations to improve normality or symmetry. Biometrika 2000, 87, 954–959.
[CrossRef]

77. Lemoine, N.P. Moving beyond noninformative priors: Why and how to choose weakly informative priors in Bayesian analyses.
Oikos 2019, 128, 912–928. [CrossRef]

78. Polson, N.G.; Scott, J.G. On the half-Cauchy prior for a global scale parameter. Bayesian Anal. 2012, 7, 887–902. [CrossRef]
79. Anguelov, D.; Dulong, C.; Filip, D.; Frueh, C.; Lafon, S.; Lyon, R.; Ogale, A.; Vincent, L.; Weaver, J. Google street view: Capturing

the world at street level. Computer 2010, 43, 32–38. [CrossRef]
80. Vehtari, A.; Gelman, A.; Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat.

Comput. 2017, 27, 1413–1432. [CrossRef]
81. Chinchor, N.; Sundheim, B.M. MUC-5 evaluation metrics. In Proceedings of the Fifth Message Understanding Conference

(MUC-5), Baltimore, MD, USA, 25–27 August 1993. [CrossRef]
82. Degrossi, L.C.; Porto de Albuquerque, J.; dos Santos Rocha, R.; Zipf, A. A taxonomy of quality assessment methods for

volunteered and crowdsourced geographic information. Trans. GIS 2018, 22, 542–560. [CrossRef] [PubMed]
83. Grunewald, K.; Richter, B.; Behnisch, M. Multi-Indicator Approach for Characterising Urban Green Space Provision at City and

City-District Level in Germany. Int. J. Environ. Res. Public Health 2019, 16, 2300. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/biomet/87.4.954
http://dx.doi.org/10.1111/oik.05985
http://dx.doi.org/10.1214/12-BA730
http://dx.doi.org/10.1109/MC.2010.170
http://dx.doi.org/10.1007/s11222-016-9696-4
http://dx.doi.org/10.3115/1072017.1072026
http://dx.doi.org/10.1111/tgis.12329
http://www.ncbi.nlm.nih.gov/pubmed/29937686
http://dx.doi.org/10.3390/ijerph16132300
http://www.ncbi.nlm.nih.gov/pubmed/31261781

	Introduction
	Related Work
	Theoretical Background on the Dempster–Shafer Theory
	Basic Probability Assignment
	Dempster's Rule of Combination
	Classification and Uncertainty Quantification

	Materials and Method for Public Urban Green Space Mapping
	Study Area
	Data
	OpenStreetMap
	Sentinel-2 Imagery
	Aerial Imagery

	Methodology
	Land Use Polygons
	Greenness Model
	Public Accessibility Model
	Fusion of Greenness and Public Accessibility
	Validation


	Results
	Land Use Polygons
	Greenness
	Public Accessibility
	Fusion of Greenness and Public Accessibility

	Discussion
	Conclusions
	References

