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Abstract: The early identification of potential landslide hazards is of great practical significance
for disaster early warning and prevention. The study used different machine learning methods to
identify potential active landslides along a 15 km buffer zone on both sides of Jinsha River (Panzhihua-
Huize section), China. The morphology and texture features of landslides were characterized with
InSAR deformation monitoring data and high-resolution optical remote sensing data, combined with
17 landslide influencing factors. In the study area, 83 deformation accumulation areas of potential
landslide hazards and 54 deformation accumulation areas of non-potential landslide hazards were
identified through spatial overlay analysis with 64 potential active landslides, which have been
confirmed by field verification. The Naive Bayes (NB), Decision Tree (DT), Support Vector Machine
(SVM) and Random Forest (RF) algorithms were trained and tested through attribute selection
and parameter optimization. Among the 17 landslide influencing factors, Drainage Density, NDVI,
Slope and Weathering Degree play an indispensable role in the machine learning and recognition of
landslide hazards in our study area, while other influencing factors play a certain role in different
algorithms. A multi-index (Precision, Recall, F1) comparison shows that the SVM (0.867, 0.829, 0.816)
has better recognition precision skill for small-scale unbalanced landslide deformation datasets,
followed by RF (0.765, 0.756, 0.741), DT (0.755, 0.756, 0.748) and NB (0.659, 0.659, 0.659). Different
from the previous study on landslide susceptibility and hazard mapping based on machine learning,
this study focuses on how to find out the potential active landslide points more accurately, rather
than evaluating the landslide susceptibility of specific areas to tell us which areas are more sensitive
to landslides. This study verified the feasibility of early identification of landslide hazards by using
different machine learning methods combined with deformation information and multi-source
landslide influencing factors rather than by relying on human–computer interaction. This study
shows that the efficiency of potential hazard identification can be increased while reducing the
subjective bias caused by relying only on human experts.

Keywords: multi-source data; landslide; potential geological hazards; machine learning

1. Introduction

Landslides are a type of geological disaster that can cause serious casualties and
huge property losses [1,2]. The special topographical and geomorphological features
of southwest China, such as high elevations, numerous mountains, steep slopes, deep
valleys, broken rock and soil, have created numerous slopes and cutting surfaces with
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sufficient sliding potential. These slopes form the basic conditions for landslides which
occur frequently [1]. Among them, the Baige landslide in October and November 2018
in the Jinsha River Valley caused huge losses in the middle and lower reaches of the
Jinsha River [2].

In the research field of landslides, the early identification of potential landslide haz-
ards is a hot but difficult topic [3,4]. In general, landslides have obvious spatio-temporal
characteristics. Spatially, the study of landslides can be considered at regional and point
scales. Temporally, the study of landslides can either focus on the time they have occurred
or on potential landslide hazards [4–6]. Regional-scale studies mainly focus on three
aspects: landslide detection, historical landslide cataloging, and regional landslide risk
assessment. These regional-scale studies rely on spectral features, spatial features, mor-
phological attributes, and contextual information of landslides derived from multi-source
remote sensing images. These studies often use Object-Oriented methods, SVM, RF and
other machine learning methods to identify the occurrence of landslides and cataloging
them; the regional landslide risk assessment is then realized by different machine and
ensemble learning models by modeling and analyzing the importance of influencing factors
of landslide cataloging, and obtain landslide susceptibility maps [7–12]. Point-scale studies
focus on retrospective analyses of the spatio-temporal evolution of a specific landslide
disaster and provide data for monitoring an emergency and analyze a landslide disaster.
These studies are more often based on optical or radar remote sensing and are useful for
monitoring and early warning of landslide disaster risks, disaster evolution, pre-disaster
creep characteristics and post-disaster secondary hazards [6,13,14]. In recent years, due
to the great advances in InSAR technology in the field of surface deformation monitoring,
studies started to use time series of radar interferometry of repeated orbit observations for
studying regional active landslide hazards and obtaining potential landslide hazards data
through human–computer interaction interpretation [15,16]. However, Previous studies
often did not take advantage of data mining analysis of InSAR deformation results and
of all the factors influencing potential active landslide hazards and did not establish a
relationship between the extent of surface deformation and the causal factors, because
the active landslide identification based on deformation results has been more completed
through human–computer interaction interpretation. Machine learning may provide a
better solution to distinguish which deformation accumulation areas are landslide hazards
and non-landslide hazards, which is a more complex problem. Compared with traditional
methods, machine learning methods can fit complex multiple interactions or nonlinear
relationships, which brings a higher prediction accuracy. Machine learning methods are
often a good supplement to the traditional statistical methods, and even a good substitute
in many cases. Besides, studies show that compared with statistical regression or machine
learning models, ensemble learning can improve the accuracy of landslide sensitivity map-
ping to a certain extent, which needs more complex model optimization and adjustment.
At the same time, different methods have great differences in data samples, influencing
factors selection, parameter adjustment, model robustness and generalization [17–29]. An
urgent problem in the field of landslide monitoring and risk assessment is to define how to
analyze and mine landslide risk factors applying machine learning to multi-source remote
sensing, basic geography, and geological data, and how to establish or choose recognition
models for early warning of potential landslide hazards based on deformation data.

Surface deformation results at different scales can be used to analyze landslides in
various active stages. The results obtained with InSAR data play an important role in early
warning of active landslides. The coherence and imaging geometry required by InSAR
make it suitable for active landslide identification in the middle and lower reaches of Jinsha
River with typical dry-hot valley characteristics [2]. Therefore, the study selected a 15 km
buffer zone on both sides of the Jinsha River valley to identify potential landslide hazards.
Based on the field investigation results of landslide hazards, InSAR surface deformation
data, terrain, landform, geological environment, vegetation indices and other related multi-
source factors of landslides, through spatial analysis and regional mean statistics, the multi-
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source features-fusion-dataset including landslide and non-landslide was constructed. And
then, the study used four different machine learning methods to detect active potential
landslide hazards after feature selection and parameter optimization. The classification
accuracy was compared and analyzed to identify the optimal classification method for the
early identification of active landslide hazards based on deformation accumulation data.

2. Materials and Methods
2.1. Study Area

The study area was located in the middle and lower reaches (Panzhihua-Huize section)
of Jinsha River, China. This section lies flows through the Hengduan Mountains and has
complex geological conditions. The strata are mainly composed of presinian metamorphic
rocks, Mesozoic coal measures strata, red beds and Permian strata. Faults and folds are
well developed in the study area, mainly in the North-South (NS), North-East (NE), and
North-North-East (NNE) directions. The geomorphological types are mainly middle-high
mountain valleys, then middle mountain and rift basins. The altitude of the mountains
ranges between 2000 and 3500 m, and the valley bottom is between 500 and 900 m.

The study area is a typical dry hot valley in China, which is controlled by tropical
continental monsoon climate. Intense solar radiation leads to rapid evaporation in this
area. The average daily temperature is 18~20 ◦C, the annual accumulated temperature
is generally 6000~7500 ◦C, which refers to the sum of the daily average temperature in
a period of time ≥10 ◦C. The annual precipitation is about 800 mm, which is one-third
of the annual evaporation, the water-heat matching is seriously unbalanced. The unique
landform with steep terrain and deep valley leads to a hot and arid climate in Jinsha River,
with relatively low vegetation development on both sides of the banks. In addition, due
to mineral development and steep slope reclamation, the surface vegetation is sparse and
the soil layer is exposed; the geological conditions are extremely unstable in the study
area, where is at high-risk of geological disasters. The unique characteristics of the study
area are suitable for the differential phase timing analysis method of InSAR based on
coherent targets.

Figure 1 show the remote sensing image of GaoFen-1 (GF-1) Satellite.
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2.2. Data

The data sources of this study included radar remote sensing data, optical remote
sensing data, landform data, basic geographic information data, basic geological data and
land cover data. The details of the data source are shown in Table 1.

Table 1. Data Sources.

NO. Product Name Spatial Resolution Date Source

1 Sentinel-1 SAR
deformation monitoring data 30 m March 2017–September 2019 ESA

2 GF-1 optical remote
sensing image 2 m Vegetation Season in 2019 China Resource Satellite

Application Center
3 Landsat 8 30 m Vegetation Season in 2019 USGS
4 Basic geology 1:200,000 2013 China Geological Survey
5 DEM 30 m October 2011 ASTER GDEM

6 DLG 1:250,000 2017 National Basic Geographic
Information Center, China

7 GlobeLand30 30 m 2020
National Basic Geographic
Information Center, China

(DOI:10.11769)

Figures 2 and 3 show the PS-InSAR results of the ascending and descending deforma-
tion from Sentinel-1 in the study area. As the introduction of Section 2.1 study area, the
PS-InSAR method is suitable for the surface deformation monitoring work in the study
area, and the calculated results are verified in the field, which are in good agreement with
the local actual situation. Other data will be introduced in Section 2.3.2 influencing factors
of landslide section.
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Figure 2. Deformation Results of the Ascending Orbit.

Based on the multi period Sentinel-1 data and Gaofen-1 optical image in the data
list of Table 1, the temporal InSAR processing method and human–computer interactive
interpretation method based on expert experience were used respectively to obtain the
spatial distribution of deformation accumulation area and suspected active landslide
hazards in the study area. In order to ensure the identification accuracy of active landslide
hazards in the study area, the study introduced overlapping area inspection and external
observation calibration in the process of time series InSAR data processing, and carried out
field verification on the identification results of 23 suspected active landslide hazards, of
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which 16 were identified as active landslide hazards, and the overall identification accuracy
of active landslide hazards in the study area was 69.57%, which shows that the potential
active landslide hidden danger data obtained has reached a high accuracy, because what
the study focused on is not occurred landslides, but the discrimination and prediction
of the potential landslide hidden danger that has not yet occurred. Then, based on the
new understanding of disaster conditions and optical remote sensing characteristics of
landslides obtained from field verification, the identification results of suspected active
landslide hazards were revised, and 64 typical active landslide hazards in the study area
were finally determined. At the same time, with the help of spatial overlay analysis, the
deformation accumulation areas indicating landslide hazards and non-landslide hazards
were distinguished, which provides an important data basis for the construction of the
dataset. Furthermore, based on the Landsat-8, Geology, DEM, DLG and Globeland30 data
in the data list of Table 1, this study calculated 17 kinds of landslide hazard characteristic
data results. In order to construct a spatial scale consistent feature dataset of active
landslide hazard identification for model training and validation, the spatial grid size of
multi-source data were assimilated to 30 m ∗ 30 m. The process of an active landslide
hazard identification feature dataset will be introduced in Section 2.3. Figure 4 is the
example of field verification results of suspected active landslide hazards.
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2.3. Methods

With the help of InSAR deformation data, high-resolution optical remote sensing data,
geological background and other multi-source data combined with ground survey data,
this study carried out a comprehensive investigation of the active landslide hazards in the
study area following the discrimination principle of deformation, shape and threat. Based
on the potential landslide hazards and the typical deformation accumulation area filtered
by an isoline threshold, 137 data records of potential and non-potential landslide hazards
were recorded, including 83 records of deformation accumulation area and 54 records of
non-landslide deformation accumulation area. The multi-source attribute characteristics of
137 deformation accumulation areas were extracted by calculating and extracting landslide
influencing factors such as landform, basic geology, hydrological conditions, and NDVI.
Training sets (n = 96, 70%) and validation sets (n = 41, 30%) were randomly established.
Four machine-learning methods, namely NB, DT, SVM and RF, were trained to identify
potential landslide hazards after attribute selection and parameter optimization. Finally,
the optimal model of potential landslide hazard identification in the study area, which is
indicated by the deformation accumulation area, was obtained through the verification
and comparison evaluation. The overall study methodology flow is shown in Figure 5.ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 7 of 23 

 

 

  

Figure 5. Overall research methodology. 

2.3.1. Catalogue of Potential Landslide Hazards 

Identifying landslide risk is the basis of recognizing potential landslide hazards by 

machine learning. The deformation accumulation area is the key factor determining the 

potential landslide hazard. Based on surface deformation data, a total of 137 deformation 

areas were identified by delineating and filtering the deformation concentration areas. A 

total of 64 potential landslide hazards were identified by using high-resolution optical 

remote sensing images to analyze the morphological features and hazards surrounding 

the deformable areas. These steps were carried out through human–computer interactive 

interpretation and field investigation combined with expert knowledge. The specific loca-

tion and spatial distribution of deformation accumulation areas and potential landslide 

hazards in the study area are shown in Figure 6. 

Figure 5. Overall research methodology.



ISPRS Int. J. Geo-Inf. 2021, 10, 253 7 of 22

2.3.1. Catalogue of Potential Landslide Hazards

Identifying landslide risk is the basis of recognizing potential landslide hazards by
machine learning. The deformation accumulation area is the key factor determining the
potential landslide hazard. Based on surface deformation data, a total of 137 deformation
areas were identified by delineating and filtering the deformation concentration areas. A
total of 64 potential landslide hazards were identified by using high-resolution optical
remote sensing images to analyze the morphological features and hazards surrounding
the deformable areas. These steps were carried out through human–computer interactive
interpretation and field investigation combined with expert knowledge. The specific
location and spatial distribution of deformation accumulation areas and potential landslide
hazards in the study area are shown in Figure 6.
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2.3.2. Influencing Factors of Landslide

The occurrence of landslides is often related to geological factors, hydrological con-
ditions, topography, land cover, human activities, and so on. The published literature on
landslide sensitivity at global or regional scale identifies a number of factors related to the
occurrence of landslides. These factors include elevation, slope, aspect, curvature, geology,
structure, land cover, distance from rivers and roads, among others [1,26].

In addition to the optical remote sensing image data and InSAR deformation moni-
toring data, this study identified 17 influencing factors, including topography, geological
background, hydrological conditions, remote sensing data, and human activities as input
variables to the machine learning algorithms to perform a “data driven” landslide hazard
identification rather than an “expert experience-driven” landslide evaluation and analysis,
as shown in Figure 7 and Table 2. Table 2 also showed the numerical statistics (Mean,
Minimum, Maxi-mum) of landslide area in the study area. The processing of the 17 factors
in the dataset was implemented in ArcGIS 10.5.
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Table 2. List of potential active landslide influence factors.

NO. Data Type Impact Factors
Statistical Characteristics

Mean Minimum Maximum

1

Topographic

DEM 1671.5 894.546 3368.08
2 Slope 24.792 6.516 49.118
3 Aspect 178 24 324
4 Curvature 0.006 −1.222 1.261
5 Plane curvature 0.014 −0.469 0.418
6 Profile curvature 0.008 −1.06 1.199
7 Surface roughness 1.141 1.008 1.561
8 Terrain relief 39 10 87

9 Geological Background Lithology 2 1 3
10 Distance from Fault 1815.104 26.171 10335.9

11

Hydrologic Condition

Distance from river 779.536 55.572 2396.14
12 Drainage density 1.083 0.597 1.715
13 Topographic index 5.89 0 9.36
14 Slope length factor 8.827 1.669 20.42

15 Remote sensing index NDVI 0.102 −0.365 0.459

16 Impact of human activities Land use types 20 10 40
17 Distance from road 500.376 0 2167.4

Then, based on Sections 2.3.1 and 2.3.2, the study calculated the attribute fusion
dataset of surface deformation area by a zonal mean statistics method, which can transform
the polygon-based surface deformation area into samples.

Generally, in terms of topography and geomorphology, a moderately gentle land-form
with a steep top is prone to landslide development. In terms of geological back-ground,
landslide development is mainly affected by the angle of the strata and by the geological
structure. Different strata present different hardness, compactness and susceptibility to
weathering, and contribution of material to a landslide. Slope discontinuities caused by a
fault in the structural plane create the conditions for landslide occurrence. Hydrological
conditions are the main determinants for the development of landslides. The difference
between active landslides and rainfall-induced landslides lies in the softening of rocks and
soil caused by the long-term action of surface water and groundwater, which reduces the
strength of rocks and soil, produces hydrodynamic pressure and pore water pressure, in-
creases the bulk density of rock and soil mass, and produces buoyancy forces on permeable
strata, especially on the sliding surface (zone), which reduces the strength of the composite.
Changes in land cover and the influence of human activities also promote the formation
of landslides, especially the destruction of vegetation, excavation at the base of a slope,
slope accumulation and other risky human engineering activities are among the important
factors affecting the occurrence of landslides.

2.3.3. Machine Learning Algorithms

The following is a brief introduction to the four machine learning methods used in
this study.

1. Naive Bayes

Naive Bayes is a statistical analysis machine learning algorithm based on Bayes crite-
rion. It uses the “attribute conditional independence assumption” to construct a classifier
from a probability model and determine the maximum posterior probability (MAP) deci-
sion criterion, so as to realize the optimal decision classification for uncertain factors.

Assume an item to be classified as X = f 1, f 2, · · · , fn, where each f is a characteristic
attribute of X, and the category set is C1, C2, · · · , Cm, calculate conditional probability
separately P(fn|Cm). If P(Ck|X) = MAX(P(C1|X),P(C2|X), . . . ,P(Cm|X)), then X∈Ck,
the one with the largest probability is the Bayesian classification result. Naive Bayes
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assumes that each feature is independent, according to Bayes’ theorem, it can be derived:
P(Ci|X) = P(X|Ci)P(Ci)/P(X) [30]. Finally, the classifier formula corresponding to the
Naive Bayes algorithm is defined as follows:

classi f y( f 1, . . . , f n) = argmax p(C = c)∏n
i p(Fi = f i

∣∣∣C = c) (1)

Among them, fn is the characteristic attribute of X, p(C) is the prior probability, and
p(F|C) is the posterior probability.

2. Decision Tree

Decision Tree uses one of the characteristic attributes of the sample data as the classi-
fication condition, divides the sample into two subsets, and then continuously loops the
classification until each subset belongs to the same label. The tree structure can effectively
handle the classification problem. The key to building a Decision Tree is feature-selected.
Common feature selection algorithms for a Decision Tree include ID3, C4.5 and CART.
Among them, the core of the ID3 algorithm is to apply information gain criteria on each
node of the decision tree to select features, and recursively build the decision tree; the C4.5
algorithm is similar to the ID3 algorithm decision tree generation process, and it improves
the ID3 algorithm, the maximum information gain rate (ratio) is used to select features; the
CART algorithm will be introduced in the random forest section [31].

This research uses the C4.5 Decision Tree algorithm. The split information defined by
the algorithm is as follows, which is a definition of entropy:

split_infoA(D) = −
v

∑
j=1

∣∣Dj
∣∣

|D| log2

∣∣Dj
∣∣

|D| (2)

According to the above formula, the information gain rate formula defined by the
C4.5 algorithm is as follows:

gain_ratio(A) =
gain(A)

split_in f o(A)
(3)

3. Support Vector Machine

Support Vector Machine aims to obtain a separation hyperplane that correctly divides
the dataset and has the largest geometric interval through nonlinear transformation. The
largest separation boundary is the support vector. The classification results of SVM depend
on the selection of different kernel functions, such as polynomial functions, sigmoid
functions, and radial basis functions [32]. The kernel function used in this study was a
radial basis function.

The basic idea of SVM is to calculate the separating hyperplane: w × x + b = 0, where
w is the normal vector and b is the intercept. For a linearly separable dataset, there are
infinitely many such hyperplanes which are perceptrons, but the separating hyperplane
with the largest geometric interval is unique. For nonlinear classification problems, it
can be transformed into a linear classification problem in a certain dimensional feature
space by nonlinear transformation, and linear support vector machines can be learned
in the high-dimensional feature space. Because of the dual problem of linear SVM, the
objective function and the classification decision function only involve the inner product
between the instance and the instance, so there is no need to explicitly specify the nonlinear
transformation, but the inner product is replaced by the kernel function [32–34]. Specifically,
K(x,z) is a function, which means that there is a mapping Φ(x) from the input space to the
feature space. For x, z in any input space,

K(x, z) = ∅(x) ∗∅(z) (4)
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In the dual problem of linear SVM learning, replacing the inner product with the
kernel function K(x,z), the result is nonlinear SVM:

f (x) = sign

(
N

∑
i=1

α∗i yiK(x, xi) + b∗
)

(5)

4. Random Forest

Random Forest is considered to be one of the most effective non-parametric ensemble
learning methods in the field of machine learning. It is based on the Bagging strategy,
introduces random attributes in the training process, and uses training datasets to generate
multiple deep decision trees. Each decision tree that constitutes a random forest will predict
an output result, which is determined by the weighted calculation of the number of votes.
The majority vote of an output result and the degree of convergence of the fitting determine
the final classification result [35]. Random forests can prevent most overfitting problems
by creating random feature subsets and using these subsets to build smaller decision trees,
and then forming subtrees.

Specifically, Random Forest is modified on the basis of Bagging. First, use the Bootstrap
method to sample n samples from the dataset, then randomly select k attributes from all
attributes to build a CART tree, and finally repeat the above steps m times to build m CART
trees. These m CART trees form a random forest, and the result of voting determines which
category the data belongs to. CART is basically similar to decision tree methods such as
ID3.5 and C4.5. The difference is that CART uses Gini coefficient as the criterion for feature
selection. The Gini coefficient is essentially an approximation of the information gain. The
larger the Gini coefficient of an attribute, the stronger the attribute’s ability to reduce the
entropy of the sample. This attribute makes the data stronger, from uncertainty to certainty.
The formula is as follows:

Gini(p) =
K

∑
k=1

pk(1− pk) = 1−
K

∑
k=1

p2
k = 1−

K

∑
k=1

(
|Ck|
|D|

)2
(6)

Before model training, attribute selection and parameter optimization should be car-
ried out first, in order to ensure that different algorithms perform classification tasks under
the optimal attribute (subset) set and parameters. A feature evaluation strategy can be
divided into Wrapper and Filter; the former focuses on the evaluation of the feature subset,
the latter focuses on the evaluation of single attributes. Different evaluation strategies
for Wrapper and Filter have different searching methods and attribute selection strategies
should be selected according to different algorithms [36–40]. For a specific algorithm,
there are three main methods for parameter optimization: CV Parameter Selection, Grid-
Search, and Multi Search. The selection principles of parameter optimization methods vary
according to the number of parameters to be optimized:

(1) If there are no more than two parameters to be optimized, Grid-search is selected
and the boundary is automatically expanded;

(2) If more than two parameters need to be optimized, Multi Search is selected;
(3) If the direct parameters of the classifier are optimized and the number of parameters

is no more than two, the CV Parameter Selection can also be considered.

Different parameter optimization methods are chosen according to different algo-
rithms [38]. The attribute selection strategy and the parameter optimization method are
shown in Table 3.

The Feature Evaluation Function the study used were WrapperSubsetEval and Cor-
relationAttributeEval, WrapperSubsetEval evaluates attribute sets by using a learning
scheme. Cross validation is used to estimate the accuracy of the learning scheme for a set of
attributes [38]; CorrelationAttributeEval evaluates the worth of an attribute by measuring
its correlation (Pearson’s) with the class [39].
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Table 3. Attribute selection strategy and the parameter optimization method used in this paper.

Algorithm
Attribute Selection Parameter

Optimization
Method/ParameterEvaluation

Strategy
Characteristic

Evaluation Function Search Strategy Select Mode

NB Filter CorrelationAttributeEval Ranker
Pearson

Correlation
Coefficient

CVParameterSelection/—
—

DT (C4.5) Wrapper WrapperSubsetEval GreedyStepwise
10-fold cross-

validation
(stratified)

CVParameterSelection/
Confidence factor = 0.1

SVM Wrapper WrapperSubsetEval BestFirst
10-fold cross-

validation
(stratified)

GridSearch/Cost = 8.0 &
Gamma = 16.0

RF Wrapper WrapperSubsetEval BestFirst
10-fold cross-

validation
(stratified)

——

The Search Strategy the study used were Ranker, BestFirst and GreedyStepwise.
Ranker uses an attribute/subset evaluator to rank all attributes. If a subset evaluator is
specified, then a forward selection search is used to generate a ranked list. From the ranked
list of attributes, subsets of increasing size are evaluated, i.e., the best attribute, the best
attribute plus the next best attribute, etc. The best attribute set is reported. RankSearch is
linear in the number of attributes if a simple attribute evaluator is used such as GainRatioAt-
tributeEval; BestFirst Searches the space of attribute subsets by greedy Hill_Climbing aug-
mented with a backtracking facility. [40] Setting the number of consecutive non-improving
nodes allowed to control the level of backtracking done. Best first may start with the
empty set of attributes and search forward, or start with the full set of attributes and
search backward, or start at any point and search in both directions (by considering all
possible single attribute additions and deletions at a given point); GreedyStepwise per-
forms a greedy forward or backward search through the space of attribute subsets and
ay start with no/all attributes or from an arbitrary point in the space. It stops when the
addition/deletion of any remaining attributes results in a decrease in evaluation. It can
also produce a ranked list of attributes by traversing the space from one side to the other
and recording the order that attributes are selected. The Parameter Optimization Methods
were CVParameterSelection and GridSearch. CVParameterSelection uses cross validation
method, any number of parameters can be optimized; GridSearch is used instead of all the
parameter combinations in the experiment to select the parameters, and two parameters
can be optimized at most.

2.3.4. Accuracy Assessment

A number of test accuracy indexes of different algorithms were obtained, including
Correctly Classified, true positive (TP) rate, false positive (FP) rate, false negative (FN)
rate precision, recall, F1, and the AUC (Area Under the ROC curve). Correctly Classified
represents the percentage of correct classification, which reflects the correct classification
ratio of TP and true negative. TP Rate reflected the proportion of positive samples with
correct classification.

Precision is the Precision rate, which is used to measure the ability of the classification
algorithm to reject irrelevant information, precision is calculated as:

Precision = TP/(TP + FP) (7)

Recall is the Recall ratio, which is used to measure the ability of classification algorithm
to detect relevant information and is calculated as:

Recall = TP/(TP + FN) (8)
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F-Measure (F1) is the harmonic mean of precision and recall, and is calculated as:

F-Measure = (2 × Recall × Precision)/(recall + precision) = (2 × TP)/(2 × TP + FP + FN) (9)

AUC is generally greater than 0.5. The closer this value is to 1, the better the classifica-
tion effect of the model is.

3. Results

Based on the processes illustrated in Figure 6. The study got the attribute selec-
tion, classification results and accuracy index of different algorithms with the help of
WEKA 3.8.4.

3.1. Attribute Selection Reference Index Results

As can be seen from Table 3, different algorithms adopt different attribute selection
strategies. Table 4 shows the reference Pearson product-moment correlation coefficient for
the selection of attributes in the NB, and Table 5 shows the cross validation results for DT,
SVM, and RF attribute selection. The attribute selection was carried out according to the
reference index results of different attribute selection strategies adopted by the algorithm in
Tables 4 and 5. The attributes with a high correlation coefficient were excluded by the NB,
and the attributes with “number of folds (%) = 0” were excluded by the DT, SVM and RF.
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Table 4. Pearson correlation coefficient between attributes referenced by NB.

Weathering Land
Cover

Profile
Curv

Plan
Curv Curv SlopeLength

Factor Aspect Slope Drainage
Density

River
Distance

Fault
Distance

Topographic
index Relief Roughness Road

Distance NDVI Altitude

Weathering 1
Land
Cover −0.099 1

ProfileCurv 0.062 0.083 1
PlanCurv 0.092 0.004 −0.434 1

Curv 0.003 −0.055 −0.897 0.787 1
SlopeLength

Factor 0.128 −0.320 −0.216 −0.017 0.140 1

Aspect 0.020 −0.155 0.040 −0.066 −0.060 0.007 1
Slope −0.097 0.394 0.123 0.006 −0.085 −0.787 −0.0785 1

Drainage
Density −0.166 −0.081 0.031 −0.094 −0.067 0.036 0.040 −0.124 1

River
Distance −0.277 0.117 −0.030 −0.067 −0.013 −0.111 −0.101 0.126 −0.080 1

Fault
Distance −0.086 0.092 −0.104 0.049 0.095 0.124 0.108 −0.151 −0.007 0.108 1

Topographic
index −0.023 −0.264 0.139 −0.427 −0.305 0.234 0.150 −0.507 0.126 −0.071 0.006 1

Relief −0.094 0.397 0.127 0.009 −0.082 −0.753 −0.060 0.987 −0.120 0.138 −0.145 −0.501 1
Roughness −0.0936 0.393 0.125 0.015 −0.078 −0.780 −0.041 0.954 −0.087 0.139 −0.100 −0.450 0.973 1

Road
Distance −0.026 0.131 0.012 −0.103 −0.059 0.025 −0.080 0.048 −0.059 0.087 0.258 0.107 0.062 0.058 1

NDVI 0.013 −0.339 −0.234 0.173 0.246 0.108 −0.094 −0.086 −0.037 0.144 0.054 −0.110 −0.112 −0.125 −0.084 1
Altitude −0.083 −0.069 −0.052 0.008 0.040 0.027 0.043 −0.050 −0.50 0.340 −0.069 −0.053 −0.021 −0.025 −0.008 0.159 1
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Table 5. Attribute selection 10-fold cross-validation (stratified) of DT, SVM and RF.

Attribute
Number of Folds (%)

DT SVM RF

WeatheringDegree 3 (30%). 1 (10%). 4 (40%).
Land Cover 0 (0%). 0 (0%). 1 (10%).
ProfileCurv 1 (10%). 0 (0%). 7 (70%).
PlanCurv 0 (0%). 0 (0%). 2 (20%).

Curv 0 (0%). 0 (0%). 0 (0%).
SlopeLengthFactor 0 (0%). 0 (0%). 0 (0%).

Aspect 2 (20%). 0 (0%). 3 (30%).
Slope 1 (10%). 9 (90%). 1 (10%).

DrainageDensity 3 (30%). 7 (70%). 10 (100%).
RiverDistance 0 (0%). 0 (0%). 5 (50%).
FaultDistance 4 (40%). 0 (0%). 7 (70%).

Topographic index 0 (0%). 2 (20%). 4 (40%).
Relief 2 (20%). 8 (80%). 10 (100%).

Roughness 7 (70%). 0 (0%). 4 (40%).
RoadDistance 0 (0%). 0 (0%). 0 (0%).

NDVI 2 (20%). 1 (10%). 7 (70%).
Altitude 2 (20%). 0 (0%). 5 (50%).

3.2. Results and Accuracy of Potential Landslide Hazards Identification

The algorithms were trained by using 70% of the data in the deformable cluster
attribute fusion dataset and tested on the remaining 30% of the dataset. This paper got the
confusion matrix of classification results on test sets, as shown in Table 6 and the prediction
results of different methods can be seen in Figure 8.

Table 6. Confusion matrix of classification results on test sets.

Landslide Non-Landslide

NB
18 7 Landslide
7 9 Non-Landslide

DT
22 3 Landslide
7 9 Non-Landslide

SVM
25 0 Landslide
7 9 Non-Landslide

RF
23 2 Landslide
8 8 Non-Landslide

Based on Table 6, the study got the correctly classified index, as shown in Figure 9,
which shows a comparison of the overall correctly classified indexes. The overall correctly
classified indexes, from high to low, are SVM > RF = DT > NB. This result indicates that the
SVM algorithm performs best in the classification accuracy of the datasets, followed by RF
and DT, and the worst performance is with NB.
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At the same time, the overall performance, positive sample (Landslide) performance
and negative sample (Non-Landslide) performance of different algorithms according to
different evaluation indexes of the test set were compared. A number of test accuracy
indexes of different algorithms were calculated, including true positive (TP) rate, false
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positive (FP) rate, false negative (FN) rate precision, recall, and F1 of the algorithms. Table 7
shows the accuracy index results.

Table 7. Accuracy index results of different algorithms.

NB DT SVM RF

TP Rate
Non-Landslide 0.563 0.563 0.563 0.5

Landslide 0.72 0.88 1 0.92
Weighted Avg. 0.659 0.756 0.829 0.756

FP Rate
Non-Landslide 0.28 0.12 0 0.08

Landslide 0.438 0.438 0.438 0.5
Weighted Avg. 0.376 0.314 0.267 0.336

Precision
Non-Landslide 0.563 0.75 1 0.8

Landslide 0.72 0.759 0.781 0.742
Weighted Avg. 0.659 0.755 0.867 0.765

Recall
Non-Landslide 0.563 0.563 0.563 0.5

Landslide 0.72 0.88 1 0.92
Weighted Avg. 0.659 0.756 0.829 0.756

F1
Non-Landslide 0.563 0.643 0.72 0.615

Landslide 0.72 0.815 0.877 0.821
Weighted Avg. 0.659 0.748 0.816 0.741

As can be seen from Figure 10, SVM had the highest true positive rate in positive
and negative samples, the lowest false positive rate in positive and negative samples, the
highest Precision rate, the highest recall rate, followed by RF, DT and NB, based on the TP
Rate, FP Rate, Precision, Recall and F1.
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Algorithms have low accuracy when AUC is 0.5–0.7, and it is more reliable when
it is greater than 0.7. Therefore, the study calculated the ROC curve and AUC of the
4 algorithms, and the results are shown in Table 8 and Figure 11. The results show that the



ISPRS Int. J. Geo-Inf. 2021, 10, 253 18 of 22

RF algorithm has the largest AUC, closely followed by SVM. These were followed by the
DT and NB. Thus, it can be seen that, RF, SVM and DT were more reliable.

Table 8. Result of AUC.

Test Result
Variable

Area Standard
Errora

Asymptotic
Significanceb

Asymptotic 95% Confidence Interval
Inferior Limit Superior Limit

NB 0.670 0.100 0.069 0.474 0.866

DT 0.751 0.080 0.007 0.594 0.909

SVM 0.781 0.083 0.003 0.618 0.944

RF 0.790 0.072 0.002 0.649 0.931
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4. Discussion

In this study, different machine-learning models were applied to multi-source datasets
to calculate and predict potential landslide hazards. The extensive use of remote sensing
techniques has made data and information from surface deformation and landslide influ-
encing factors (e.g., topography and geology), and their recent situations, available for
our perusal. Sentinel-1 SAR data and optical remote sensing data-derived deformation
information in the region helped us prepare the inventory map, which was the basis for
training and validating the machine-learning algorithms used in this study.

Using available datasets from the study area, 17 influencing factors were calculated.
Prior to model training, Pearson correlation factor or 10-fold cross-validation analyses
were applied for attribute feature selection of different models. The attribute selection
analyses step concluded that different models had different dependence on 17 landslide
influencing factors. Next, the training samples of deformation concentration areas with
influencing factors were fed into the four machine learning models. Finally, the deformation
concentration area were categorized into Landslide/Non-Landslide classes.

The selection of attribute features influences the classification accuracy of the machine-
learning algorithm. The same algorithm can have different classification results on different
attribute feature subsets, and different algorithms can have different classification results
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on the same dataset or the same attribute feature subset. This is consistent with several
previous studies, i.e., [10–12,19]. What is different is that the landslide influencing factors
selected by the four methods in this study are different from previous studies [16–29]. This
is because the landslide control factors are different in different areas, which leads to the
difference in variable selection. According to the results in Section 3, the four algorithms
selected different attribute feature subsets in the training stage of the training model. As
can be seen from Table 9, four attribute features were selected by all algorithms: Drainage
Density, NDVI, Slope and Weathering Degree. Six attribute features were selected by
three algorithms: Altitude, Aspect, Fault Distance, ProfileCurv, Topographic Index and
Topographic Relief. Two algorithms selected four attribute features: Land Cover, PlanCurv,
River Distance and Topographic Roughness. Only one algorithm selected road distance as
the attribute feature. Two attributes, Curv and SlopeLength Factor, were not selected by
any algorithms, which may be due to the correlations between other attributes.

Table 9. Results of attribute feature selection for different algorithms.

NB DT SVM RF

Altitude
√ √

#
√

Aspect
√ √

#
√

Curv # # # #
Drainage Density

√ √ √ √

Fault Distance
√ √

#
√

Land Cover
√

# #
√

NDVI
√ √ √ √

PlanCurv
√

# #
√

ProfileCurv
√ √

#
√

River Distance
√

# #
√

Road Distance
√

# # #
Slope

√ √ √ √

SlopeLength Factor # # # #
Topographic Index

√
#

√ √

Topographic Relief #
√ √ √

Topographic Roughness #
√

#
√

Weathering Degree
√ √ √ √

Note:
√

stands for being selected, # stands for not being selected.

Validation of the four models showed that SVM was the most reliable method, exhibit-
ing the best prediction rate on the deformable clustering attribute fusion dataset, followed
by RF and DT, while NB had the worst performance. This underlines the classification
ability of SVM on small samples with high dimensional features because of the use of
nonlinear kernel function of SVM. Compared with the related research of landslide suscep-
tibility mapping based on machine learning, the classification results of SVM and RF have
better consistency with previous studies [16,20,23,25–29]. Table 8 and Figure 11 present
the accuracy and reliability of the four machine learning models based on ROC area, from
which we can know that RF has the highest reliability, followed by SVM and DT, while
NB has a low reliability. Compared with the four machine learning models, NB has more
stable classification efficiency, and classification results are easy to explain, but there is
a certain error rate in the classification decision; DT has simple classification rules, high
operation efficiency, but it is easy to produce over fitting phenomenon; SVM has a high
accuracy, which provides theoretical guarantee for avoiding over fitting, and is suitable
for dealing with nonlinear problems, and has strong generalization ability, but it needs a
parameter setting. As an ensemble learning model, RF has a high training efficiency and no
parameters and has strong practicability. For the classification problem of this study, the re-
search results show that the comprehensive ranking of the algorithm is SVM > = RF > = DT
> NB, which means that machine learning models are better than discriminant models and
statistical models, which is basically consistent with the conclusion of [17,20,22,23,26–29].
The study verified the feasibility of early identification of landslide hazards by using differ-
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ent machine-learning methods combined with deformation information and multi-source
landslide influencing factors rather than by relying on human–computer interaction, which
shows that the efficiency of potential hazard identification can be increased while reducing
the subjective bias caused by relying only on human experts.

5. Conclusions

Based on the 64 obvious deformation potential dangers identified in the study area,
83 deformation accumulation areas and 54 non-landslide deformation accumulation areas
were obtained. By using multi-source data, such as remote sensing data, DEM, DLG, basic
geology and land cover, 17 landslide influencing factors were analyzed and extracted.
Through spatial analysis and regional average statistics, an attribute fusion dataset in-
cluding landslide hazard and non-landslide hazard deformation concentration area were
formed. In this study, four machine-learning algorithms, namely NB, DT, SVM and RF,
were used to classify and identify the deformation accumulation areas of potential landslide
hazards and non-potential landslide hazards, respectively. The results show that the SVM
algorithm has better classification accuracy on the basis of attribute selection and parameter
optimization, followed by RF, DT and NB.

At the same time, different algorithms had different dependence on 17 landslide
influencing factors, among which NB selected 13 attributable factors, DT selected 10
attributable factors, SVM selected 6 attributable factors, and RF selected 14 factors. The
SVM algorithm selected the least attribute features, but had the best classification results. It
can be seen that SVM can yield better results than other algorithms on the small unbalanced
finite dataset. However, due to the large amount of calculation involved with the SVM
algorithm, it is difficult to expand to large datasets, and its efficiency is lower than that
of the other three algorithms. RF did not perform as well as when used for processing
high-dimensional data and feature missing data, as it may not produce a good classification
for the small sample datasets. The DT algorithm could easily ignore the correlation among
the attributes in the datasets. For data with different number of samples, DT will select
different attributes. NB Algorithm does not work well when the correlation degree of
sample attributes is high due to the assumption of independence of sample attributes.

According to the selection results of 17 landslide influencing factors (Table 9), Drainage
Density, NDVI, Slope and Weathering Degree play an indispensable role in the machine
learning and recognition of landslide hazards. And as important factors of landslide
hazard identification, Altitude, Aspect, Fault Distance, ProfileCurve, Topographical Index,
Topological Relief, Land Cover, PlanCurv, River Distance, Topographic Roughness and
Road Distance were selected for different machine learning methods. However, Curv
and Slope Length Factor had no obvious effect in this study, which may have a strong
correlation with one or some of the 17 factors. But the importance of different factors is not
consistent in the algorithm.

In summary, the study provides a better solution to distinguish which deformation
accumulation areas are landslide hazards and non-landslide hazards based on surface
deformation and influence factors of landslide, which is a more complex problem. Com-
pared with traditional methods, the machine-learning method can fit complex multiple
interactions or nonlinear relationships, which brings a higher prediction accuracy. This
study is based on the comparative study of different machine learning algorithms in the
fields of attribute feature selection and parameter optimization. Despite yielding a certain
accuracy in landslide predictions, the outcomes of different landslide identification models
are prone to spatio-temporal disagreement due to different input variables and theoretical
basis of the algorithm; and therefore, uncertainties. Uncertainties in the results of various
landslide identification models create challenges in selecting the most suitable method to
manage this complex natural phenomenon. In order to reduce these uncertainties, in future,
the study will carry out further research on automatic extraction of surface deformation
accumulation areas, which determines the basis of potential active landslide recognition
accuracy. A landslide identification method based on ensemble learning will be studied,
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which can considerably improve the accuracy and certainty of the predictions by suppress-
ing the weaknesses and disadvantages of each individual model, in order to reduce the
impact of the uncertainty on the potential active landslide recognition results to a certain
extent. However, the study provides a multi-source data feature-driven method reference
for potential landslide hazard identification based on deformation concentration area, and
changes the traditional working mode of potential landslide hazards identification based
on subjective experience of experts to a certain extent.
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