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Abstract: Heavy metal pollution is a major environmental problem facing humankind. Locating the
source and distribution of heavy metal pollutants around mines can provide a scientific basis for
environmental control. The structure effect and random effect of a semivariogram can be used to
determine the reason for spatial differences in the heavy metal content in surface soil, and the coefficient
of variation and regression analysis can be used to confirm that the verification accuracy meets the
geostatistical requirements. According to the maximum difference method, the content of heavy metals
in the surface soil of the mining area is higher than that of the surroundings, and Cu and Zn levels are
higher than the background values for Inner Mongolia. In the present case, Zn, Mn, Pb, Cr, Ni, and
Cu levels exceeded the background values for the surroundings of the study area by 65.10%, 53.72%,
52.17%, 46.24%, 33.08%, and 29.49%, respectively. The results show that human activities play a decisive
role in the spatial distribution of heavy metals, leading to their spatial distribution in the form of “core
periphery”. This distribution pattern was significantly affected by the slope, NDVI value, and the
distance from the mining area, but the spatial distribution of Pb was significantly related to high-grade
roads. The research methods and conclusions have reference significance for the sources and spatial
distribution characteristics of heavy metal pollution in similar mining areas and provide a target for the
prevention and control of environmental pollution in the study area.

Keywords: maximum difference method; semivariogram; kriging interpolation; spatial variability;
opencast mine area; heavy metals

1. Introduction

Soil is the basic material of human production and the origin of cultural civilization [1,2].
The development of soil is affected by the climate and meteorology [3], the soil parent
material [4], the topography and landscape, vegetation coverage, human activities, etc. In
the background of modern mechanized mass production, the large-scale mining activities of
humans lead to land occupation, vegetation damage, soil layer damage, and other behaviors,
resulting in large-scale air pollution, river pollution, and soil pollution [5]. In particular,
groundwater pollution, dust pollution [6], heavy metal pollution, and other phenomena in
mining areas and the surrounding environment are more common [7]. Heavy metal pollution
in mining-area soil is mainly caused by ore mining, processing, transportation, storage, tailings
accumulation, and other processes [8]. The heavy metals in the soil mainly come from the
symbiosis of ore and the heavy metals in associated minerals [9]. They enter the mining
area and its surrounding soil environment during mining and transportation links and are
continuously enriched there [10]. When the heavy metals in the soil environment are enriched
to a certain level, heavy metal pollution will occur. The enrichment of heavy metals in the soil
will damage the physical and chemical properties of the soil, cause irreversible pollution to
the environment, and threaten human health [11], and with continuous production activities,

ISPRS Int. J. Geo-Inf. 2021, 10, 290. https://doi.org/10.3390/ijgi10050290 https://www.mdpi.com/journal/ijgi

https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0002-9910-0946
https://www.mdpi.com/article/10.3390/ijgi10050290?type=check_update&version=1
https://doi.org/10.3390/ijgi10050290
https://doi.org/10.3390/ijgi10050290
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijgi10050290
https://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2021, 10, 290 2 of 18

heavy metals will migrate in the form of dust particles and enter the surface soil in the form
of dry and wet depositions, resulting in more serious migration of heavy metals [12]. In order
to prevent and control the aggravation and diffusion of heavy metal pollution, it is crucial
to develop a perfect monitoring technology for the concentration and distribution of heavy
metals in soil and to form a comprehensive strategy for the prevention and control of heavy
metal pollution and health risk in mining areas [9].

Traditional research on soil pollution is mainly based on field observation and laboratory
analysis [13]. With the development of information technology, geostatistics in GIS has more
advantages in studying phenomena with the characteristics of time and space changes [14].
In the study of the spatial variability of soil properties, reasonable application of geostatistics
and GIS technology can open up new research [15]. These two methods are also the most
extensive and effective methods to study the spatial distribution and index change of heavy
metals in soil [16]. Through the application of spatial analysis technology, researchers can
effectively determine the relationship between heavy metal indicators and pollution sources
in high pollution areas and further, find out the reasons for the abnormal indicators.

This technology is also used for studying land-use management and pollution-control
measures [10,15]. The spatial distribution of pollutants is very important in cleaning up
and preventing pollution. According to the pollutant threshold of various sampling sites, a
regional distribution map of pollutants was drawn up by using the interpolation model
of GIS to describe the temporal and spatial variation of pollutants [17]. It is common to
study regional pollution [15]. Inner Mongolia is in the fragile ecological area of northern
China, which is rich in mineral resources, and the ecological damage and environmental
pollution caused by mining activities are serious. It is necessary for enterprises and scientific
researchers to monitor and formulate effective management measures in a timely manner
to ensure the sustainable development of mines [5].

The Wulantuga open-pit coal mine and Shengli coalfield are distributed in the Xilinguole
Grassland. Open-pit coal mining produces a large amount of solid waste substances that
contain heavy metal ions that can enter the surface layer of soil under the action of rainwater
intrusion and erosion, causing heavy metal pollution in the surface soil [18]. However, the
topsoil can be migrated under the influence of wind or surface run-off, which leads to the
accumulation of soil pollution near the mining area [3,19]. Therefore, to take effective and
scientific environmental protection measures, it is urgent to obtain a full knowledge of the
pollution status and spatial distribution characteristics of heavy metals in mining areas. Taking
the Xilinguole Grassland open-pit coal mine area as the research object, this paper makes a
spatial distribution map of heavy metals in soil by applying spatial analysis technology and
includes an analytical discussion of the formation reason for and influencing factors of the
distribution of heavy metals in the grassland soil around the mining area. It is hoped that
this paper can offer a certain reference function in the prevention and control of heavy metal
pollution in the open-pit coal mine area of the grassland.

The purpose of this study was (1) to analyze the spatial distribution of heavy metals
in the topsoil around the open-pit mining area and (2) to explain the potential mechanism
affecting the spatial distribution of heavy metals. The research methods of this paper provide
a reference for the analysis of the source and spatial distribution of pollutants and provide a
theoretical basis and case support for targeted pollution control in the mining area.

2. Materials and Methods
2.1. Study Area

The West No. 1 open-pit mine and the West No. 2 open-pit mine of Shengli coalfield
in the Xilinguole area, Inner Mongolia, were selected as the research. The Shengli coalfield
of Xilinguole League is in the Xilinguole area of Inner Mongolia and is about 4 km from the
western boundary of Xilinhot City, whose jurisdiction it is under. The climate of the study
area is temperate and semi-arid grassland. The weather during winter is mostly cold and
dry, and the summer is mainly warm and humid. From the months of March to May each
year, there is often strong wind, and the monthly average wind speed can reach 4.9 m/s.
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The average annual precipitation is 33.69 cm, and about 70% of rain occurs from May to
August each year. The frost-free period from April to October lasts for about 150 days.
The annual evaporation is about 160–180 cm, which is 4 or 5 times higher than the annual
precipitation (Figure 1).
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Figure 1. Location of the research area and distribution of the sampling sites.

2.2. Sample Design and Data Acquisition

Mining area location data (shape file data, Figure 1) were collected from Inner Mongo-
lia Agricultural University, which has been serving the mining sector in Inner Mongolia.
The data were strictly validated based on Google Earth image and field data. The accuracy
of validation reached 95%. Using the Google Earth remote sensing image of the map and
the method of labor measurement [20], the boundaries of the West No. 1 open-pit mine
and the West No. 2 open-pit mine were determined, and the range within 8 km of the
mining boundary was taken as the research area. The mining area was taken as the center
and a radius was created around in to form the survey sample lines. According to the
remote sensing results and the actual situation of the mining area, a survey sample line
with a length of 4 km was set in the east direction of the mining area. Since there is a
large-scale wind power plant in the northwest of the mining area, and in order to avoid
affecting the accuracy and validity of the experimental data, no survey sample line was
set in the northwest of the mining area. At the same time, ArcGIS 10.0 was used to extract
random sample points near the high-grade highway in the study area, and DEM data were
extracted according to the points; terrain slope data and distance data from the highway
were also generated.
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Taking the mining area as the middle line, one research sample line was set in seven
directions, namely east, south, west, north, southeast, southwest, and northeast; in combi-
nation with the actual situation around the mining area, a total of five survey sample sites
were set on the sample line in the east direction at 0 km, 0.5 km, 1 km, 2 km, and 4 km from
the outer boundary of the mining area. In the remaining six sample belt directions, seven
survey sample lands were set at 0 km, 0.5 km, 1 km, 2 km, 4 km, 6 km, and 8 km from the
outer boundary of the mining area (Figure 1). A GPS location system was used to record
the basic geographic information of each sampling site in detail.

The soil collection time lasted from July to the end of September in 2018. Within the
sample area, an area of 100 × 100 m2 was selected in advance for preliminary sampling.
Then, a 100 m sample line diagonally crossing the selected area was chosen, with six survey
sample plots, numbered C1–C6, set on the sample line, whose area was 1 × 1 m2. In the
odd sample plots, surface soil samples were collected using a soil drill with a diameter of
5 cm, and the general collection depth was 0–10 cm. The drilling frequency of each sample
was set at 5 times. The obtained samples were mixed evenly and collected with plastic bags
and then marked and brought back to the laboratory. After natural drying in the laboratory,
sand and gravel remains were removed as well as those of plants and other impurities
by sifting them through a 100-mesh sieve for proper preservation in preparation for the
subsequent analysis.

On the premise of fully studying the content of heavy metals in coal mine rocks, six
kinds of heavy metal elements that can clearly reflect the indexes, namely Cr, Cu, Mn, Ni, Zn,
and Pb, were selected as the objects for this measurement. The total amount was measured
using the open decocting method with the solvent of chlorozotocin acid–perchloric acid
(HNO3-HCl-HClO4), and the heavy metal content was measured by ICP-OES [21].

The NDVI dataset consists of atmospherically corrected surface reflectance data from
the Landsat 8 OLI/TIRS sensors. These images contain 5 visible and near-infrared (VNIR)
bands and 2 short-wave infrared (SWIR) bands processed to orthorectified surface re-
flectance, and two thermal infrared (TIR) bands processed to orthorectified brightness
temperature. This product was supplied by USGS (USGS https://www.usgs.gov/, ac-
cessed on 1 May 2021). The spatial resolution of the dataset was 30 m, and the data
acquisition time was from 2013 to 2018. Finally, the arithmetic average of images with less
than 40% cloud coverage from June to September in summer was calculated. The infrared
band corresponded to B5 (0.851–0.879 µm) of Landsat 8, and the red band corresponded to
B4 (0.636–0.673 µm) [22].

NDVI =
B5 − B4
B5 + B4

(1)

2.3. Methods
2.3.1. Spatial Data Generation and Data Processing

The slope was extracted from SRTM (Shuttle Radar Topography Mission V4.1), and
the generated DEM data were resampled to 250 m resolution. The NDVI dataset is based
on continuous time series SPOT/VEGETATION NDVI satellite remote sensing data and
is generated using the maximum value synthesis method. In the process of measuring
the content of heavy metals in soil, the SPSS 16.0 single sample K–S test method was used
to test the normal distribution of the data; the data of various heavy metals were fitted
with the help of ArcGIS Desktop 10.5 software, and then, a spatial distribution map was
generated as an output.

2.3.2. Maximum Difference Method

The maximum value comparison method takes the difference between the maximum
value and the background value of the soil heavy metal element I in the study area as the
research object to screen out the types of soil heavy metals whose maximum value exceeds
the background value (also known as the safety warning value) and the distribution of this

https://www.usgs.gov/
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type. This method only evaluates whether the heavy metal content exceeds the standard
and the spatial distribution range of pollution, and the results are intuitive and readable.

∆H = MaxCi − Bi (2)

where Ci is the measured content of the soil heavy metal element i (mg/kg) and Bi is
the regional background value of the soil heavy metal element i (mg/kg). In the spatial
distribution of heavy metals, the background value may not be an integer, and the decimal
is truncated to take the integer upward. The calculation of the background value is based on
the average content of heavy metals in the soil in the north, south, and west of the mining
area, 10 km away from the mine, which better reflects the pollution of the surrounding soil
due to open-pit coal mining.

2.3.3. Coefficient of Variation

The coefficient of variation is a standardized measurement method of probability
distribution or frequency distribution. When the coefficient of variation is low, the data
have less variability and higher stability. The spatial variability of soil and vegetation
characteristics can be expressed by CV.

CV =
S
x
× 100% (3)

where CV is the coefficient of variation, s is the standard deviation, and x is the average
value. It is generally believed that CV < 10% denotes weak variability, 10% ≤ CV ≤ 100%
denotes medium variability, and CV > 100% denotes strong variability.

2.3.4. Semivariogram

In the early 1960s, the French geologist G. Matheron [23] proposed the semivariogram,
which is used to describe the spatial characteristics of the coexistence of structural and
stochastic characteristics of regionalized variables [24,25] and to express the spatial vari-
ability and correlation degree of regionalized variables on a certain scale. Assuming that
the mean value of the random function is stable, variance exists and is limited and the
value is only related to the interval h, the semivariogram function γ(h) can be defined as
half of the incremental variance of the random function Z(x). A semivariogram has an
independent variable and a dependent variable like ordinary functions. The independent
variable is step h, and the dependent variable is a semivariogram value γ(h).

γ(h) =
1

2N(h)

N(h)

∑
i=1

[Z(xi)− Z(xi + h)]2 (4)

where x is the sample point, xi is the attribute value of sample point i, and N(h) is the
logarithm of points with distance h. Therefore, the value of the semivariogram is the
average value of the square of the difference between the sample point x and the attribute
of the sample point h.

A semivariogram is usually characterized by three parameters [26]: (1) nugget variance
(Co), which is mainly caused by spatial variation and measurement error; (2) structural
variance (Co + C), which generally represents the maximum variance between data pairs;
and (3) range (A), which represents the farthest distance of correlation between graphic
parameters. The experimental variogram is a discontinuous distribution function obtained
from the collected data, which need to be fitted by the theoretical variogram to obtain a
continuous evaluation of variability [27].

In the process of studying the spatial differentiation of geographical objects or phe-
nomena, the most important parameter of a variogram is the ratio of nugget value to
abutment value. The ratio represents the proportion of spatial heterogeneity caused by
human activities in the total variation of the system, while the base value represents the role
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of the composition of the natural environment. The lower the ratio is, the more significantly
it is affected by the natural environment. The higher the ratio is, the greater the impact
of human activities is. If the ratio is lower than 25%, it indicates that the system has a
strong spatial correlation, which is mainly caused by the structural effect of the natural
environment. If the ratio is between 25% and 75%, it indicates that the system has a medium
spatial correlation, which indicates that its spatial change is the result of the joint action of
the natural environment factors and the random factors of human activities. If the ratio is
higher than 75%, the spatial correlation of the system is very weak, and the variation is
more significantly affected by human activities.

2.3.5. Spatial Local Interpolation of Heavy Metals in Soil Surface

Kriging interpolation, also known as spatial local interpolation, is a method of unbi-
ased optimal estimation of regionalized variables in a limited area based on variogram
theory and structural analysis [28]. To use the kriging interpolation method for prediction,
the first step is to create a variogram. Through semivariogram modeling, the spatial auto-
correlation of spatial samples is analyzed. Then, the unknown value is predicted by the
semivariogram estimation model.

Z∗(x0) =
n

∑
i=1

λiZ(xi) (5)

where Z∗(x0) is the estimated value of the electricity to be measured, Z(xi) is the measured
value of the i-th sample point, n is the number of measured samples participating in the
calculation, and λi is the weight coefficient of the i-th sample point. The weight is obtained
by unbiased estimation and minimum variance of kriging interpolation. The calculation is
as follows: 

n
∑

i=1
γ
(
xi − xj

)
λi + µ = γ

(
x0 − xj

)
(j = 1, 2, · · · , n)

n
∑

i=1
λi = 1

(6)

where γ
(

xi − xj
)

is the semivariogram between the i-th and j-th sample points and
γ
(

x0 − xj
)

is the semivariogram between the j-th sample point and the interpolation
point, both of which can be obtained from the fitted variogram; µ is the Lagrange multiplier
and n is the number of sample points.

2.3.6. Linear Regression Test

Suppose that a dependent variable y is affected by k independent variables x1, x2,
. . . , xk. The n groups of observations are (ya, x1a, x2a, . . . , xka), a = 1, 2, . . . , n. Then, the
structure of the multiple linear regression model is as follows:

ya = β0 + β1x1a + β2x2a + · · ·+ βkxka + εa (7)

where β0, β1, . . . , βk are the undetermined parameters and εa is a random variable.

3. Results
3.1. Basic Characteristics of Heavy Metal Content in Surface Soil of Mining Area

According to descriptive statistics (Table 1), there is no abnormal value in the data. A
normality test was carried out for Cr, Cu, Mn, Ni, Zn, and Pb. As the sample size of the
research data was more than 50, the Kolmogorov–Smirnov test (K–S test) was used [29].
According to the p-value of the K–S test, Zn and Pb showed significant differences (p < 0.05),
but they did not have normal characteristics. Cr, Cu, Mn, and Ni did not show significant
differences (p > 0.05), but they were normal. At the same time, according to the CV value, it
was found that Zn has weak variability while the other heavy metal elements have medium
variability, which indicates that the heavy metals in the soil of the mining area are greatly
affected by the external environment and human activities.
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Table 1. The statistical features of concentrations of heavy metals in soil of mining area.

Heavy
Metals

Minimum
(mg/kg)

Maximum
(mg/kg)

Mean ± SD
(mg/kg) Skewness Kurtosis

K–S Test Coefficient of
Variation (CV)

Background Value of Reference Area

Surroundings Inner Mongolia China U.S.A

D p (mg/kg) (mg/kg) (mg/kg) (mg/kg)

Cr 18.51 44.49 27.538 ± 5.840 0.62 0.222 0.068 0.78 21.21% 9.7 24.18 36.5 61
Cu 12.72 19.7 16.228 ± 2.023 −0.148 −1.217 0.107 0.14 12.47% 10.2 14.21 12.9 22.3
Mn 174.87 505.97 352.562 ± 70.469 −0.341 0.384 0.078 0.584 19.99% 9.34 310.27 446 583
Ni 11.63 17.62 14.854 ± 1.790 −0.225 −1.31 0.105 0.156 12.05% 10.69 13.17 17.3 26.9
Zn 40.27 49.95 45.764 ± 2.702 −0.579 −0.727 0.133 0.020 * 5.91% 22.49 41.89 48.6 74.2
Pb 2.76 4.64 3.411 ± 0.470 0.942 0.056 0.165 0.001 ** 13.79% 16.96 3.39 15 26
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3.2. Difference between the Maximum and Background Values of Heavy Metals in Surface Soil of
Mining Area

In previous studies, different criteria were selected as reference values according to
research needs [30,31]. The purpose of this study was to evaluate whether the heavy metal
concentrations in the surface soil around the mining area exceed the standard caused by
open-pit coal mining and to compare the element background values in the study area
to those in other areas. The average values of soil heavy metal contents (surroundings)
and the background values of soil (layer A) in Inner Mongolia, China, and the United
States in the northern, southern, and western directions of the mining area were selected
as the reference values to compare and analyze the changes in heavy metal contents in
the surface soil of the mining area. It was found that the contents of heavy metals in
the surface soil of the mining area are higher than those of surrounding areas; Cu and
Zn are higher than the background values of Inner Mongolia, but all values are lower
than the national background values, indicating that the mining area and nearby soil are
significantly affected by coal mining (Figure 2).
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Figure 2. Statistical analysis of heavy metals in soil of mining area.

3.3. Semivariogram Analysis of Heavy Metals in Soil of Coal Mining Area

In order to avoid the scale effect, deform the variogram, raise the nugget variance and
structural sill, increase the estimation error, and cover up the inherent structure, GS + 9.0
was used for logarithmic transformation of Zn and Pb, which do not conform to normal
characteristics. The transformed data met the assumptions of geostatistical analysis. The
semivariogram model was used to fit the graph and the determination coefficient was
comprehensively considered. According to the principle that R2 is the largest, RSS is the
smallest, and the range is greater than the sample spacing, the optimal semivariogram
function model (Figure 3) was selected and the relevant parameters were obtained (Table 2).
The results showed that Cu, Mn, Ni, and Zn conform to a Gaussian model, while Cr and
Pb conform to a spherical model. The fitting degree of the six heavy metals’ data and the
semivariogram function model was good, reaching 0.792–0.986. Therefore, to meet the
relevant statistical requirements (Table 2), the semivariogram model could be used, and
the accuracy also meets the requirements of spatial difference.

The ratio of nugget value to abutment value is an important indicator to reflect the
degree of spatial heterogeneity of regionalized variables [32], which reflects the dominant
role of structural factors (natural factors) or random factors (human factors) in the compo-
sition of spatial variation. This study found that Cr, Cu, Mn, Ni, Zn, and Pb are the most
important elements in the regional variation. The ratio of nugget value to abutment value
of the six heavy metal elements was more than 75% (Table 2), which indicates that the
spatial distribution of the six elements in soil is mainly caused by human activities rather
than natural distribution or evolution.
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Table 2. The types of soil heavy metals.

Heavy Metals Nugget Variance Structural Sill Range Proportion
R2 Residual Model

Co Co + C A C/(Co + C) RSS Variogram
Model Type

Cr 1.71 × 10−2 0.084 22,870 0.797 0.792 0.001 Spherical
Cu 1.60 × 10−3 0.036 9370 0.955 0.973 0.000 Gaussian
Mn 1.56 × 10−2 0.091 10,570 0.828 0.890 0.001 Gaussian
Ni 1.40 × 10−3 0.036 9810 0.961 0.960 0.000 Gaussian
Zn 2.10 × 10−4 0.020 17,810 0.990 0.986 0.000 Gaussian
Pb 1.00 × 10−5 0.021 9090 1.000 0.938 0.000 Spherical

3.4. Spatial Distribution Characteristics of Soil Heavy Metal Content

Due to the spatial differentiation of heavy metal enrichment in soil in some regions
and the lack of statistical data in some regions, it is difficult to accurately reflect the actual
situation of soil by simply using sample data for analysis and evaluation [32]. The kriging
model essentially estimates the value of variables in regions without data by using the
original data of regionalized variables and the structural characteristics of a variogram.
Combined with the previous research on the spatial distribution characteristics of soil
heavy metals, based on the selection standard of the heavy metal interpolation method [33],
an error comparison of the surface soil interpolation method (Table 3) was obtained. The
results showed that the optimal interpolation method of Cr, Cu, Mn, and Ni in the mining
area is ordinary kriging, and the optimal interpolation method of Zn is simple kriging.

Spatial differentiation is a process to simulate and generate the real spatial distribution
characteristics of elements using spatial modeling [34]. Based on the parameters of the
semivariogram model (Table 2) and kriging type (Table 3), the spatial differences of six
heavy metals in the soil near the mining area were analyzed using ArcGIS 10.5 (Figure 4).
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Table 3. Error comparison of spatial interpolation methods for heavy metal content in surface soil of mining area.

Heavy Metals Kriging Type Mean
Standardized

Root Mean
Square

Average Mean
Error

Root Mean Square
Standardized

Cr

Ordinary −0.003 3.422 3.495 0.939
Simple 0.018 3.984 3.750 0.862

Universal −0.002 3.801 4.432 0.733
Indicator −0.002 3.430 3.469 0.929

Probability 0.010 4.435 4.489 0.864
Disjunctive 0.008 4.196 4.285 0.871

Cu

Ordinary −0.002 0.464 0.528 0.907
Simple −0.031 0.516 0.663 0.796

Universal −0.389 0.531 0.050 0.842
Indicator 0.006 0.775 0.362 0.775

Probability −0.009 0.564 0.587 0.833
Disjunctive −0.031 0.516 0.663 0.796

Mn

Ordinary −0.009 47.320 47.208 0.917
Simple −0.008 49.035 51.120 0.909

Universal −0.214 47.320 42.144 0.693
Indicator −0.039 49.357 48.415 1.016

Probability −0.102 48.358 46.410 1.200
Disjunctive −0.008 49.035 51.120 0.989

Ni

Ordinary −0.039 0.447 0.433 0.857
Simple −0.038 0.465 0.630 0.782

Universal −0.799 0.447 0.405 0.430
Indicator 0.009 0.479 0.494 0.759

Probability 0.049 0.498 0.399 0.754
Disjunctive −0.038 0.483 0.530 0.782

Zn

Ordinary 0.134 0.884 0.839 0.569
Simple −0.006 0.860 0.871 1.005

Universal −0.119 0.884 0.821 0.730
Indicator 0.005 0.980 0.873 0.804

Probability 0.007 0.876 0.979 0.787
Disjunctive 0.134 1.010 1.719 0.569

Pb

Ordinary 0.025 0.326 0.243 0.503
Simple 0.019 0.255 0.356 0.622

Universal −0.006 0.309 0.358 0.887
Indicator 0.054 0.349 0.393 0.529

Probability 0.063 0.336 0.389 0.745
Disjunctive 0.013 0.272 0.374 0.674
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Figure 4. Kriging interpolation prediction chart of soil heavy metal content.
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Figure 4. Kriging interpolation prediction chart of soil heavy metal content.
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It can be seen from Figure 2 that the Cr content was the highest in the soil in the center
of the mining area, and the Cr content in the center, north, and northeast of the mining
area was significantly higher than that in the other directions, showing a flaky spreading
distribution. The area where the heavy metal content exceeded the background value of the
surrounding environment accounted for 46.24% of the study area; the content of Cu and
Ni was centered in the mining area, showing a “core” distribution slightly higher than that
in the other directions extending to the east and northeast, and these elements exceeded
the background value by 29.49% and 33.08%, respectively. The distribution of Mn and
Zn showed a diffuse distribution from northeast to southwest, exceeding the background
value by 53.71% and 65.10%, respectively, and the part exceeding the background value
divided the study area into two parts. The difference was that the distribution of Mn
exceeding the background value was more concentrated in the northeast of the study area,
while the distribution of Pb was convex to the southwest; in total, 52.17% of the study area
had a Pb content over the background value. The spatial distribution of Pb in the surface
soil showed a “dual core” distribution.

3.5. Analysis of Factors Influencing the Spatial Distribution of Heavy Metals

In order to further quantitatively analyze the spatial distribution pattern [33] of heavy
metals in the mining area, a stepwise regression model was established with six heavy
metal elements as dependent variables and distance from the pit, slope (Figure 5, a profile
that can reflect the change of slope at different points in different directions), and NDVI as
independent variables (Figure 6a–c, and Table 4). The R-squared and adjusted R-squared
values of all heavy metals except Pb were close to 1, indicating that the fitting degree was
high, and there was a negative correlation with the mine distance; Cr, Mn, and Zn had a
positive correlation with slope, while Cu had a negative correlation. Ni and Pb had no
obvious correlation with slope and NDVI had a negative correlation with Cu and Ni but
no significant correlation with Cr, Mn, or Pb. The F-value of Cr, Cu, Mn, Ni, and Zn was
greater than 3.40, and the p-value was less than 0.01, which indicates that all heavy metal
elements except Pb had a significant linear correlation with distance, slope, and NDVI.
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Table 4. Linear regression results of heavy metal elements in surface soil of mining area with pit distance and NDVI (n = 44).

Heavy
Metals Factor

Unstandardized
Coefficients

Standardized
Coefficients t p VIF R2 Adjusted

R2 F
B Std. Error Beta

Cr

Constant 31.24 1.23 - 25.38 0.000 ** -

0.77 0.753
F (3,40) = 44.726,

p = 0.000
Distance 0.00 0.00 −0.89 −10.71 0.000 ** 1.21

Slope 0.46 0.16 0.23 2.87 0.007 ** 1.14
NDVI −11.15 9.18 −0.10 −1.21 0.23 1.09

Cu

Constant 20.36 0.54 - 37.84 0.000 ** -

0.844 0.832
F (3,40) = 71.961,

p = 0.000
Distance 0.00 0.00 −0.70 −10.20 0.000 ** 1.21

Slope −0.25 0.07 −0.24 −3.60 0.001 ** 1.14
NDVI −18.56 4.01 −0.30 −4.62 0.000 ** 1.09

Mn

Constant 411.05 18.41 - 22.33 0.000 ** -

0.723 0.702
F (3,40) = 34.720,

p = 0.000
Distance −0.02 0.00 −0.83 −9.06 0.000 ** 1.21

Slope 6.50 2.40 0.24 2.71 0.010 ** 1.14
NDVI −274.74 137.36 −0.17 −2.00 0.05 1.09

Ni

Constant 17.17 0.56 - 30.78 0.000 ** -

0.783 0.767
F (3,40) = 48.085,

p = 0.000
Distance 0.00 0.00 −0.83 −10.28 0.000 ** 1.21

Slope −0.01 0.07 −0.01 −0.06 0.95 1.14
NDVI −8.43 4.16 −0.16 −2.02 0.050 * 1.09

Pb

Constant 3.61 0.32 - 11.27 0.000 ** -

0.021 −0.053
F (3,40) = 0.281,

p = 0.839
Distance 0.00 0.00 −0.08 −0.45 0.65 1.21

Slope −0.01 0.04 −0.02 −0.13 0.90 1.14
NDVI −1.44 2.39 −0.10 −0.60 0.55 1.09

Zn

Constant 48.43 0.76 - 63.50 0.000 ** -

0.819 0.806
F (3,40) = 60.462,

p = 0.000
Distance 0.00 0.00 −0.91 −12.32 0.000 ** 1.21

Slope 0.36 0.10 0.26 3.59 0.001 ** 1.14
NDVI −10.14 5.69 −0.13 −1.78 0.08 1.09

The symbol * indicates the statistical significance at the 0.05 level, and the symbol ** indicates the statistical significance at the 0.01 level.

3.6. Analysis of Influencing Factor of Pb

The relationship between Pb in soil and mining distance, slope, and NDVI was
not obvious. Based on the characteristics of surface mining production, the relationship
between the lead content around the mining area and road transportation was analyzed.
The lead content may be affected by road transportation (Figure 7). Using ArcGIS 10.5,
random points were generated in various line directions, and a regression function was
established according to the distance between each point’s lead content and the road
around the mining area [35]. It was found that lead content in the west, southwest,
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south, and southeast of the mining area was positively related to road distance. The
correlation between the Pb content and road distance follows the order of RW

2 > RSW
2

> RS
2 > RES

2 (Figure 8), and the longest road does not exceed 4 km. In the true west
direction of the sample point, the impact of the road was very significant, while the north
and northeast contain mostly village roads, which are not suitable for coal transportation,
so the relationship between lead content and roads was not significant.
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4. Discussion

From the perspective of research methods, the introduction of statistical methods into
the study of soil properties and spatial–temporal distribution can not only improve the
efficiency and level of information processing and analysis but also serve as a supplement to
the traditional research methods of the spatial variability of soil properties [4,36]. Therefore,
the spatial distribution characteristics of heavy metals can be quantitatively described
by statistical methods. In general, the heavy metal pollution in the mining area has the
distribution characteristics of point, line, ring, and band, showing a spatial distribution
pattern of pollution in the upper, surface, and underground areas. The content of heavy
metals in the soil was the highest in the center of the mining area, being slightly higher
in the east, north, and northeast than in other directions, and was inversely proportional
to the distance from the mining area. The data show that the local open-pit coal mining
has a certain impact on the soil around the mining area and increases the content of heavy
metals in the soil. However, soil heavy metals have obvious temporal variability. In this
study, only the relevant factors of spatial variability were analyzed. In the future research,
the temporal and spatial differentiation of heavy metals should be discussed further. As
the spatiotemporal Kruger method is suitable for the analysis of location, time, and multi-
attribute motion data [37], it can realize the assimilation of multi-source spatiotemporal
datasets [38], such as those from tracking research of animals, plants, and spatiotemporal
phenomena in different historical periods [39,40].

From the perspective of influencing factors, the effect of diffusion factors on soil cannot
be ignored. The distribution of heavy metals is affected by the prevailing wind direction [41],
pollutant deposition, vegetation coverage, landform, rivers, and human activities. This
diffusion will lead to a great change in the content of heavy metals in the soil in different
directions. As there is no river around the mining area, heavy metal pollutants mainly appear
from atmospheric deposition and particle diffusion. Except for southeasterly wind in summer,
the other seasons in the mining area mainly experience southwesterly wind. Therefore, as the
mining area is in the downwind direction [3], the content of heavy metals in the north and
northeast is significantly higher than in other directions.

Additionally, the density of human activities also has a significant impact on the
enrichment of heavy metals in soil. For example, the sampling point in the east of the
mining area is not only affected by the dominant wind direction but also by the urban
area. At the same time, the open-pit mining in the study area resulted in the accumulation
pattern of heavy metal elements in the soil that diffused from the central area of the coal
mine to the surrounding area [19,42]. Heavy metal emissions from heavy machinery and
truck transportation are also potential environmental risks, forming a strip pattern of
pollution [43]. For example, in the west and south of the mining area (W, SW, S, SE),
the sample point’s Pb value was significantly affected by road transportation, while the
topography and vegetation had a significant influence on Cr, Cu, Mn, Ni, and Zn but not on
Pb. All of these can be used to draw a high-precision distribution of heavy metal pollution
in the soil by interpolation method [5,44].

In conclusion, in the process of industrialization and urbanization, mining industry
and urban activities are very important factors affecting the spatial distribution of heavy
metals in soil [45]. In particular, it is necessary to fully understand the content and
distribution of heavy metals in the soil in a timely manner and strengthen environmental
protection measures within the scope of human activities so as to prevent heavy metal
pollution and ensure the healthy and sustainable development of the mining area [11,46].
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5. Conclusions

The content of heavy metals in the surface soil of the study area was higher than the
background value of heavy metals in the grassland around the mining area, but lower
than the background value of Inner Mongolia. According to the structure effect and
random effect of the semivariogram, the content of heavy metals in the mining area and its
surrounding surface soil is mainly affected by external human activities and is not formed
naturally. Among the heavy metal pollution, Cr, Cu, and Ni form the pollution within
the mining area, while Mn, Zn, and Pb form the diffusion pollution. The other five heavy
metal elements, except Pb, are affected by distance, slope, and NDVI. The high-grade
highway has a significant impact on the lead content in the surface soil of the mining
area. In view of the heavy metal deposition in the grassland mining area, it is necessary to
prevent secondary pollution caused by transportation of large amount of coal resources.
In this paper, the source, spatial distribution, and diffusion characteristics of heavy metal
pollutants in the coal mining area are discussed. These can provide reference cases for
the study of heavy metals in other mining areas and provide a scientific basis for the
decision-making of environmental governance in the coal mining area.
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