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Abstract: Progressive encoding and transmission, i.e., a crucial technical foundation of 3D Web
Geographic Information Systems (WebGIS), addresses the contradiction between massive 3D building
data and limited network transmission capacity. Most progressive encoding algorithms, taking
vertices, edges or triangles as encoding units, may break the inherent geometric and topological
characteristics of 3D building models. Thus, a novel 3D building model encoding method that can
maintain the internal characteristics is proposed, which can be used for high-efficiency progressive
transmission. With this method, each building is decomposed into three types of fundamental
structures: main structure, independent structure and attached structure. A structural topology
graph (STG) was constructed based on the connections among structures. Guided by STG, one or
more structures were wrapped as the smallest incremental transmission unit, denoted as transmission
node. When requested, the real-time position of viewpoint, orientation and visual importance of
nodes are used to pick up expected nodes for responding. The results confirm that the proposed
method can better maintain the geometric and topological characteristics while encoding 3D building
models. While serving for transmission, the proposed method not only effectively reduces the
transmission load, but also provides users with a better consistency experience on the building
appearance at different simplification levels.

Keywords: 3D building model; progressive encoding; structure extraction; structural topology graph

1. Introduction

The 3D building model, which is widely used in 3D navigation and digital cities, is
essential to the virtual geographic environment [1]. 3D building models have substantial
data because of their rich details. Massive building model data not only impose a heavy
load on network transmission but also pose a huge challenge to client rendering [2]. In
order to meet the needs of real-time interaction, level of details (LOD) [3] is proposed.
However, because no correlations exist among the models at different levels, a lot of data is
repeatedly transmitted, greatly wasting network transmission resources.

To address the contradiction between massive model data and limited network trans-
mission capacity, a progressive encoding and transmission strategy has been developed [4–7].
The prerequisite of progressive transmission is to simplify a 3D model into a basic model
with many increments. During the transmission, the basic model is first transmitted, and
then increments are transmitted progressively to refine the model on demand or in a fixed
order, which significantly reduces data redundancy among a series of transmissions [8].
Progressive Mesh (PM), the most widely used algorithm proposed by Hoppe in 1996 [9,10],
can progressively encode large-scale free-form 3D surface models into multi-resolution
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models very well. However, 3D building models have much stricter geometric constraints
on the mesh, such as parallel, perpendicular, coplanar, etc., which are quite different
from the free-form surface models. Several components, as parts of 3D building models,
combined through various connections, can lead to complex internal topological rela-
tionships [11]. Many existing algorithms, e.g., PM, taking vertices, edges or triangles as
progressive encoding increments, may break the inherent constraints inside the building
model, leading to unreal appearance deformation.

For example, Figure 1a depicts that the vertical relationship between the window
frame and the wall is broken. In addition, in Figure 1b, the support plate under the water
tower is oversimplified, causing the water tower to be suspended in the air, distorting the
spatial relationship between the support plate, water tower and pillars. Notably, there are
severe defects for the traditional encoding methods to be directly applied to the 3D building
models. However, there has been little research on progressive encoding and transmission
that maintain internal characteristics of the building with complex components.
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This study explores a novel 3D building model encoding method that can maintain
the internal geometric and topological characteristics and be used for high-efficiency
progressive transmission. With this method, each building model is decomposed into three
types of structures: main structure, independent structure and attached structure. Using
the connection relationship of these structures, one or more structures are wrapped as the
smallest incremental transmission unit, denoted as the transmission node. Based on the
real-time position of viewpoint and attributes of nodes, expected nodes are dynamically
picked up and responded to the client for model refinement. The results confirm that the
proposed method can better maintain the geometric and topological characteristics while
encoding 3D building models. In addition, when serving for the transmission, the real-time
network load is significantly reduced.

2. Related Work
2.1. Structure Recognition

A structure is a vital feature of building models, which reflects the design process
and design rules of building models. In addition, it affects the recognition of the model
by humans [12]. Sakurai et al. [13] indicated that a structure is a single face or a set of
connected faces with certain characteristic combinations of topology and geometry. The
main task of structural recognition is to identify these faces. Presently, researchers in
computer-aided design have conducted extensive research on structural feature recogni-
tion. Among them, the graph-based method has become one of the main streams after
years of research [14]. Joshi et al. [15] proposed a feature recognition algorithm based
on the attribute adjacency graph (AAG). This algorithm pre-defined a series of rules and
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effectively extracted holes, steps and other structures in the solid model. Gao and Shah [16]
combined aspects of graph-based and hint-based feature recognition with delta volume
decomposition, added attributes to the face based on AAG and proposed an extended
adjacent attribute graph (EAAG), which can effectively extract interactive feature structures.
Notably, graph-based algorithms can effectively extract various structures of the model, but
further research is required in sub-graph matching efficiency, processing and recognition
of complex features [17].

In addition, artificial neural networks (ANNs) have been used in structural feature
recognition. Jun and Raja [18] extracted geometric attributes from the scan points of the
model, including concave/convex and open/closed attributes. Using these attributes as
the input to the ANN module can effectively identify prismatic part machining features.
Notably, ANNs (1) can learn and induce, (2) have a high tolerance for input errors and (3)
can flexibly identify new feature types [19]. However, using ANNs to identify structures
from complex componentized buildings requires further exploration.

To recognize building structures, Li et al. [20] divided the geometric structures of
building models into three categories: embedded structures, compositional structures and
connecting structures. Then, EAAG was used to extract these structures, and a robust
scheme with progressive simplification was proposed. Thiemann and Sester [21] improved
the polyhedral segmentation algorithm proposed by Ribelles et al. [22]. In particular, they
used planes to segment buildings to obtain structures and used a cell model to represent
the topological adjacency of the structure. Kada [23] defined a set of extraction rules based
on the angle relationship of the face, which can effectively identify the extrusion, notch and
tip of the building. The aforementioned structure identification methods are mostly used
to generate a higher-quality LOD model by reducing structures. However, there has been
little research on extracting structure for progressive transmission. To extract structure for
progressive transmission, the proposed method uses the mesh segmentation method and
the graph-based method to extract the structure in the building.

2.2. Progressive Encoding and Transmission

To address the shortcomings of data redundancy in discrete LOD, researchers in
computer graphics have proposed numerous progressive encoding methods for 3D models.
The key task of progressive coding is to progressively simplify 3D models and encode sim-
plified data. Hoppe [9] proposed a progressive mesh, which divided the complex 3D model
into a basic mesh representing the lowest resolution model and mesh increments. With the
continuous transmission of mesh increments, the mesh resolution is also increased. To this
end, Popović and Hoppe [24] further improved the fidelity of the model in the encoding
process by allowing the topological relationship to be changed. Hoppe [25] reduced the
rendering and transmission pressures by changing the viewpoint parameters to selectively
refine the progressive mesh. This type of algorithm is often applied to continuous surfaces,
such as terrain, and has achieved good results. Most of these algorithms use geometric
primitives, such as vertices, edges and triangles, as the encoding units. The aforementioned
progressive mesh series algorithm simplified models based on the edge collapse operation,
which recorded the sequence of the edge collapse operation as the increment unit. In
addition, Chen et al. [6] simplified models based on the vertex clustering algorithm and
realized the progressive visualization of complex 3D models by using vertex data as the
encoding units. Hou and Liu [26] used a half-edge structure to store models and redesigned
the weight computing method of Garland’s QEM (Quadric Error Metrics) algorithm [27]
based on the importance degree of the vertex, which can promptly generate progressive
meshes. However, these methods do not consider the geometric and topological constraints
of the building and breaking these constraints will cause a severe appearance impact and
cognitive ambiguity. Therefore, a progressive encoding method, specifically for buildings,
should be explored.

Regarding the progressive encoding of building models, Kada [28] presented a pro-
gressive encoding and transmission scheme for 3D building models. This scheme is based
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on string grammars that generate string representations of planar half-space models, which
can progressively transmit building models with simple structures. However, this method
cannot be used to encode complex building models. To better describe the spatial com-
position of each building model and the relationship among different building models,
Sun [29] constructed a multilevel semantic model, which can better guide the transmission
of building models based on semantic conditions. From the perspective of structural
cognition, Sun [12] performed multi-resolution data organization and expression on 3D
building models based on detailed structure removal. The appearance of the model can
still be maintained at different resolutions. Since this algorithm needs to construct a face
connection relationship, it is challenging to apply it to componentized buildings.

In essence, when the progressive encoding algorithm for the free-form surface model
is directly applied to building models, the geometric and topological constraints of the
building will be very easily broken. While used for building models with complex compo-
nents, existing progressive encoding algorithms face many difficulties and result in some
unreasonable effects. Thus, this study aims to maintain the internal geometric and topolog-
ical characteristics of building models while progressively encoding and transmitting the
building models.

3. Methodology

The algorithm flow is illustrated in Figure 2. First, we segment the mesh of the
building models into components, from which we extract structures and construct a
structural topology graph. Then, one or more structures are wrapped in the transmission
node. Next, the attributes of these nodes used for transmission are computed, and finally,
data of these nodes are reorganized according to the attributes to store them in the server
for progressive transmission.
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3.1. Decompose the Building into Structures
3.1.1. Segment the Mesh

From an abstract perspective, a building model can be seen as a combination of
different types of structures [20]. In this study, definitions of components and structures
are different. Specifically, the component is an independent triangular mesh that does
not contain explicit semantic information, such as the radar receiver shown in Figure 3.
Conversely, the structure is a set of triangles that express specific semantics. A component
can directly express a structure, such as an air conditioner, as shown in Figure 3b. In
addition, it can include multiple structures, such as windows embedded in the wall, and
the two structures together form the main component. Notably, we begin by segmenting
the building into multiple components and then extract the structure from the components.
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This research expresses the building models based on She’s data structure [30], which
records the connection relationships among triangles. When there is an identical shared
edge between the two triangles, they are defined as adjacent triangles. This research uses
the breadth-first search algorithm to segment the building model mesh into components.
The specific steps are as follows:

Step 1: Traverse the model mesh to build a triangle set, tSet.
Step 2: Take out an unvisited triangle, t, from tSet, set t as visited, put it into queue, q,

and create a new component, c.
Step 3: Take out triangle, t, from q, add it to component c, traverse all unvisited

neighbor triangles of t, set it as visited, and put it into queue, q, repeat step 3 until there are
no triangles in q.

Step 4: Repeat steps 2 and 3 until all triangles in tSet are visited.
The mesh segmentation results are shown in Figure 3, where different colors represent

different components. Based on these components, we decompose the 3D building model
into three types of basic structures: main, independent and attached structures. It is
evident that the appearance of the building models is mainly expressed by several main
components, and the other components play a decorative role. Each main component is
composed of the main structure and an attached structure. The main structure is usually
the entire wall after removing the attached structure. The attached structure is embedded
in the main components, with obvious protrusions and depressions, such as the window
in Figure 3. The remaining auxiliary components were independent structures. These
structures often have the characteristics of a small surface area and small volume. Removing
such structures does not leave holes on the surface of the building.

3.1.2. Extract Main Components and Independent Structure

The main idea of extracting the independent structure is to distinguish the main com-
ponents from the building components, and the remaining components are independent
structures. Thus, we propose a method to identify independent structures considering
the volume and surface area. We used the volume and surface area of the components to
extract the independent structures. The details are as follows:

Step 1: Calculate the volume, Vi, of the oriented bounding box (OBB) of each compo-
nent and the surface area, Sj, of the component.

Step 2: Sort the components in descending order according to the volume. According
to the order of volume from largest to smallest, perform an accumulation operation on
volume, Vi, one by one to obtain Vsum. When Vsum ≥ Vtotal × t1, the accumulation stops,
and the accumulated components form set I.
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Step 3: Sort the components in descending order according to surface area. According
to the order of the surface area from largest to smallest, perform an accumulation operation
on the surface area, Sj, one by one to obtain Ssum. When Ssum ≥ Stotal × t2, the accumulation
stops, and the accumulated components form a set J.

Step 4: Return the components B = {I ∪ J}.
Among them, B contains the main components, and the remaining components are

called independent structures. t1 and t2 are the thresholds, ranging from 0 to 1, which can
be adjusted freely according to the degree of fragmentation of the individual components
of the building.

3.1.3. Extract Attached Structures

The prerequisite for extracting attached structures is to obtain the connection relation-
ship of the face. We used the greedy clustering algorithm [20] to perform mesh clustering
on the main components before extracting the attached structures. This method clusters
triangles with similar normal vectors into faces. The results are shown in Figure 4a. Subse-
quently, we calculated the angle between the faces. When the angle is less than 180◦, there
is a concave connection between the faces, whereas when the angle is greater than 180◦,
there is a convex connection between the faces. According to these connection relations, an
AAG [15] was constructed. AAG expresses the face and the connection relationship in a
graph, which can be represented as AAG ={F, E, A}, where F is the face obtained by clus-
tering, E is the connection between the two faces, and A is the concave-convex attribute of
E. Using the graph search algorithm in AAG can effectively extract the attached structure.
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We divide the attached structure into simple and complex attached structures and
define the following extraction rules:

In AAG, for a subgraph, g, and its neighbor subgraph, n, if (1) the internal connections
of g are concave, while all the connections between g and n are convex, or (2) the internal
connections of g are convex, while all the connections between g and n are concave, then
we consider g to be a simple attached structure. If the number of inner faces of n is 1 and all
the connections of g and n are the same, we consider g to be a complex attached structure.

As shown in Figure 5a, there are two face sets: a simple attached structure (left) and
a complex attached structure (right). In Figure 5b, each face is expressed as a node, and
the color of the edge represents the connection relationship between the faces. There
are two attached structures in AAG: a simple attached structure (left subgraph) and a
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complex attached structure (right subgraph). Specifically, according to the extraction rules,
when a group of faces has the same internal concave-convex connection relationship but
opposite to the external concave-convex connection relationship, it is recognized as a
simple attached structure. Simple attached structures are widely present on the main
components of a building, such as windows and doors. In contrast, when a group of
faces has different internal connection relationships, regardless of the complexity of the
connection relationship, as long as the group of faces is connected to only one face and has
the same concave-convex connection relationship with the face, it will be recognized as a
complex attached structure.
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simple attached structure, and the one on the right is a complex attached structure. (b) AAG: The
green frame corresponds to the simple attached structure. The yellow frame corresponds to the
complex attached structure.

Since simple attached structures may be embedded in complex attached structures,
we first extract simple attached structures and remove them from AAG. This process was
performed iteratively until all simple attached structures were removed, and then the
complex structures were extracted. When the number of faces of the attached structure is
less than or equal to 3, extracting the structure for transmission will result in unnecessary
redundancy; therefore, we do not extract them. When extracted to the end, the regular wall
is easily over-extracted as a simple attached structure; therefore, when the volume of OBB
of the simple attached structure is greater than half of the volume of the main components,
the structure is not extracted.

Since attached structures are embedded in the main components, when attached
structures are removed, holes will be left on the surface of the main structure, severely
affecting the appearance of the building. To minimize the visual impact caused by the
removal of the structure, we used the algorithm of Gao [31] to triangulate the holes to
generate a temporary mesh, called the hole triangle mesh. To maintain the texture of
the triangular mesh of holes, we used the projection method to generate a temporary
texture [32]. Owing to the preservation of the texture, the appearance of the building was
well-maintained.

3.2. Data Organization for Progressive Transmission
3.2.1. Structural Topology Graph

The building model has been decomposed into structures, but the size of structures
is used as the sequence of encoding and transmission, which may break the topological
relationship among the structures. For example, a small structure, A, supports a larger
structure, B, if structure A was transmitted after structure B, and B was suspended in the
air. Therefore, the encoding and transmission sequence of the structure must be reasonably
arranged to ensure that the topological relationship of the structures at each resolution is
not broken. In addition, some independent components may depend on each other. For
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example, steps and handrails form a staircase. If only handrails are transmitted, it would
be challenging for users to identify the staircase correctly. Therefore, structures need to be
further combined to maintain their integrity.

To express the connection relationship of the structure more clearly and combine
structures conveniently, we constructed the structural topology graph STG = {N, E},
where N = {main structure, independent structure, attached structure}, and E is the con-
nection relationship between the structures. The key task of constructing an STG is to
judge whether the structures intersect. Owing to many structures of the building models
and several triangles inside the structure, it is time-consuming to conduct the intersection
test directly. We propose a method for quickly calculating the connection relationships
among structures. In addition, this method considers modeling errors, such as independent
structures that do not intersect with any structure. The specific steps of the method are
as follows:

Step 1: Create the axis-aligned bounding box (AABB) for each structure.
Step 2: Calculate whether AABBs of all structures intersect in pairs. If they intersect,

then calculate whether there is a pair of intersecting triangles. If true, then the two structures
intersect.

Step 3: Determine whether there is an independent structure that is not connected to
any structure. If it exists, we magnify the structure along the center of gravity by 1.1 times,
which is expansion [33].

Step 4: Repeat steps 2 and 3 until there is no independent structure that is not con-
nected to any structure in STG.

3.2.2. Transmission Nodes

The transmission node is the smallest unit that requires to be transmitted to complete
the refinement of the model. It is composed of a structure or multiple structures. We define
four types of transmission nodes based on STG: the main node, the leaf node, the combined
node and the hole triangle mesh node.

(1) Main node
The main node is the most basic model and is transmitted at the beginning. This

is regarded as the roughest model. It is composed of the main structure obtained in
Section 3.1.2, without the attached structure, such as S1 in Figure 6. Notably, we merge all
the main structures into one transmission node, referred to as the main node.
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(2) Leaf node
The leaf node expresses the semantics separately, such as S2–S4, S5 and S6 in Figure 6.

The leaf node can be constructed directly from attached and independent structures, and
they are transmitted in sequence. First, the search for a node with only one neighbor in
STG is marked as a leaf node. Then, mark the neighbor node as its parent and remove it
from STG. This step is repeated until there exist no new leaf nodes.

(3) Combined node
The structures are combined to express semantics, known as combined node. They

comprise independent structures or a mixture of independent structures and attached
structures, such as staircases, water towers and other complex structures, such as S7, S8, S9,
S10 and S11 in Figure 6. These independent structures were transmitted as a whole. To
extract combined nodes: first, the main node is marked as a disconnected node to avoid
marking the main node as a combined node when traversing the nodes. Subsequently, we
traverse the graph using a breadth-first search algorithm, and each connected subgraph
is constructed as a combined node, and finally, the neighbor node is recorded as the
parent node.

(4) Hole triangle mesh node
The hole triangle mesh node refers to the triangle mesh that fills the hole caused by

removing the attached structure. Notably, each hole triangle mesh node is associated with
an attached structure, and this node should be transmitted along with the parent node of
the attached structure. Suppose there is a hole triangle mesh node, toh, associated with the
attached structure, s f . The transmission node, t, is generated from s f , and the parent node
of t is f t. toh should be transmitted along with f t.

As shown in Figure 7, the main node is composed of the main structure (1:1 or n:1),
the leaf node is composed of an independent structure or an attached structure (1:1) and
the combined node can be composed of independent structures (n:1) or a mixture of
independent structures and attached structures composition.
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3.2.3. Node Attributes for Progressive Transmission

In the process of real-time transmission of 3D building models, the transmission
node is progressively transmitted to refine the scene. To speed up the selection of nodes
with more visual prominence, we add two attributes to the transmission nodes: visual
importance and orientation.

(a) Visual importance

Since the main node and the hole triangle mesh node have their own rules for trans-
mission, only the visual importance of the leaf and combined nodes need to be calculated.
Generally, the visual importance of a transmission node is represented by its volume. The
larger volume indicates the higher visual importance. For the convenience of calculation,
we use the OBB volume of the transmission node as the visual importance. Transmission
nodes with higher visual importance give priority to the transmission.

(b) Orientation visibility

For buildings, the structure is often attached to the surface of the main node. Thus,
the orientation of the surface where the structure is attached determines whether the
transmission node connected to the surface is visible from a certain viewpoint. If the angle
between the direction of the surface and the line-of-sight ranges from −90◦ to 90◦, we
could not see the surface and the transmission node on the surface. We refer to this factor
as the orientation visibility of the transmission node. To further reduce the amount of data
transmitted, only the visible transmitting nodes were loaded. We define six orientations of
transmission nodes: up, down, left, right, front and back.

The main node is visible in all directions. We mark the transmission node directly
connected to the main node as the second-level node and calculate the orientation of the
second-level node first. The calculation method is as follows: First, obtain the face set,
F = { f1, f2 . . . . . .}, where the transmission node, T, intersects with the main node. These
face sets are from the results of triangle clustering in Section 3.1.3. Then, calculate the
product m of the normal vector

→
n = (x, y, z) of face, f1, and the unit vector

→
x = (1, 0, 0)

of the positive X-axis. If m is greater than d, F is considered to be visible on the positive
X-axis. Thus, the right orientation visibility of T is true. Notably, d is the threshold that can
be adjusted freely. The smaller d is, the more visible the structure is, and its value in this
study is 0.3. Determine the visibility of all faces in set F in six directions, and assign the
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visible result to T, as well as other transmission nodes connected directly or indirectly to it,
as the attribute value of orientation visibility.

3.3. Real-Time Progressive Transmission

In the real-time transmission stage, viewpoint information is transmitted from the
client to the server. From this viewpoint, the server obtains the transmission nodes that
need to be loaded in the current scene and transmits them to the client in an orderly manner.
Subsequently, the client receives data and renders it to realize progressive refinement of the
building structure. In traditional methods, the refinement units of the model are usually
vertices and edges, which require additional reconstruction of the triangle mesh. In this
study, the proposed method uses the structure as the refinement unit, and data is directly
added to the scene, which avoids the reconstruction of the triangle mesh. This is more
efficient at runtime.

To speed up the search for nodes that need to be transmitted, we maintain a data
structure for each building model on the server, recording the building ID, the center
location of the building, the main node, and six lists in order. Each list stores nodes
visible in six directions. The nodes in the list are organized in descending order of their
visual importance:

Struct Building{
Unsigned int BuildingID;
Vector3f Center;
TransmissionNode MainNode;
List LeftNodeList;
List RightNodeList;
List TopNodeList;
List BottomNodeList;
List FrontNodeList;
List BackNodeList;

}
Struct TransmissionNode{

Unsigned int NodeID
List HoleTriangleMeshNodeIDList;
Float VirualImportance;
Data * renderData;

}
The process to obtain the expected transmission nodes is shown in Figure 9. When the

scene is loaded for the first time, the server transmits the main nodes of all the buildings
and their associated hole triangle mesh nodes. When roaming in the scene, the server
first performs a spatial query to filter the buildings in the field of view. Then, the distance
between the viewpoint and each building model was calculated based on the center position
of each building. Calculate the minimum visual importance of the transmission node that
needs to be loaded in each building model based on the distance, and the visible orientation
of the building model based on the position of the viewpoint relative to the building model.
According to the minimum visual importance, the binary search algorithm is used to find
the nodes that need to be transmitted from the visible ordered list of each building, and
the order of the nodes is organized in descending order of visual importance. If the parent
node of a child node has not been transmitted, the parent node is inserted in front of the
child node to ensure that the parent node is transmitted before the child node. A hash set
is created on the server to save transmission nodes that have been transmitted, thereby
avoiding repeated transmissions.
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Figure 9. The flow chart of the server obtaining the transmission node.

A list of rendering nodes that have been added to the scene is maintained on the client
side, known as the transmission node list (TNL). When a new transmission node arrives, if
there is a hole triangle mesh node associated with the new node in the TNL, the current
triangle hole node is removed.

4. Results

To verify the feasibility of the proposed method, a prototype system was designed.
This system includes three parts: preprocessing, server and client. Specifically, the pre-
processing part reads the model, extracts the structure, creates the transmission node and
stores the transmission node data to a disk file. The server sends the transmission node
data dynamically according to the viewpoint information received. The client sends the
current viewpoint information, receives the transmission node data sent by the server and
adds it to the scene for rendering. The software solution for the test results was developed
using Microsoft Visual Studio 2017, the programming language was C++, the client and
server programs were both windows console applications and the client used OpenScene-
Graph (OSG) as the 3D rendering engine. The operating system was 64-bit Windows10,
the processor was Intel Core i7-7700HQ, the graphics card was NVIDIA GeForce 940MX
and 16 GB of memory.

The results of this method are discussed in two aspects. First, we chose two different
types of classic models to show the structure extraction results of our algorithm. By
comparing with traditional algorithms in Model 3, we show the appearance of Model 3 at
different simplification levels. Second, we counted the data loading of the algorithm for
large-scale urban scenes. The statistical information of the model used in this study was
shown in Table 1.

Table 1. Model information statistics.

Model No. of
Triangles

No. of
Independent

Structures

No. of
Attached

Structures

No. of
Leaf Nodes

No. of
Combined

Nodes

Model 1 273,708 6118 197 288 25
Model 2 14,183 6 791 797 0
Model 3 13,434 466 63 17 47

Urban scene 3,938,519 232,980 38,027 51,503 12,656

4.1. Progressive Encoding Results
4.1.1. Structure Extraction and Transmission Node Construction Results

To demonstrate the extraction ability of the structure extraction algorithm, the experi-
ment was performed on two models, one with abundant independent structure (Model 1)
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and the other with abundant attached structure (Model 2). Both models were developed
using the 3DS max.

Figure 10 shows the structure extraction and transmission node construction results of
Model 1, which is a building in a block in New York City, USA. As shown in Figure 10b, the
model has several independent structures, which are small in size and serve as decorative
effects. Figure 10d shows the construction results of the transmission node. The building
model contains several combined nodes, such as signal towers and billboards.
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Figure 10. Structure extraction and transmission node construction results of Model 1. (a) Original
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(d) transmission node construction results.

Figure 11 shows the structure extraction and transmission node construction results
of Model 2, which has an abundant attached structure. Figure 11b depicts that the building
model has almost no independent structure. Figure 11c shows the extraction results for the
attached structure. Simple attached structures are mainly windows, which are the most
common structures in modern buildings. Complex modern buildings are almost covered
with windows. In addition, some complex attached structures have been extracted, such
as the combination of stairs and rooftops. Figure 11d shows that the attached structure is
mostly constructed as leaf nodes.

Figures 12a and 13a illustrate that the building model is refined by receiving transmis-
sion nodes. In this process, the appearance of the model is not unrealistically deformed.
In Figures 12b and 13b, the hole triangle mesh node temporarily replaces the associated
node in the low-level building model, maintaining its main appearance. Notably, when the
associated node is received, the hole triangle mesh node is replaced by the associated node.
The building is refined with structures as a unit, which enhances the user’s understanding
of the building design process and design rules. However, directly loading the structure
brings visual popping effects to the user. In the future, we consider using simplified nodes
to reduce visual popping effects before loading fine nodes.
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4.1.2. Compared with Traditional Algorithms

Existing progressive encoding algorithms for 3D models are typically based on a
simplified operation. As a classic simplification algorithm, QEM is often used to simplify
various 3D models and can always achieve satisfactory effects. To compare the effect of the
progressive encoding results of the building models, we chose the QEM for comparison.

In Figure 14a, when Model 3 is simplified to 44% by QEM, the stairs are partially
simplified. Nevertheless, the proposed method constructs the stairs as a combined node
for transmission. When Model 3 is simplified to 11% by QEM, the wall of Model 3 is
oversimplified. However, the wall usually occupies a large visual area and has high visual
importance. The simplification based on edge collapse makes it challenging to maintain
geometric characteristics. For example, it destroys the parallel relationship between win-
dow and wall, and simplifies the triangle of the wall to overlapping triangles, causing
flicker (Z-fighting problem) [34]. The proposed algorithm avoids over-simplification of
main structures, such as walls, using only 54% of data, and all the details of the visible
orientation were restored. In the case of a poor network environment, the rough building
model cannot be refined for a long time. Since the proposed method can maintain the main
appearance under various simplification rates, it will give users a better experience.

4.2. Transmission Efficiency

In the case of limited network bandwidth, the transmission time of the 3D building
models is primarily affected by the total transmitted data. We used the cumulative number
of transmitted vertices as an indicator to measure the total transmitted data. When roaming
in a city scene, the proposed method and discrete LODs are used to load all scene data, and
the number of vertices in the scene is counted in real-time. An urban scene is shown in
Figure 15. The total number of buildings was 466, and the total amount of data is shown in
Table 1.

As shown in Figure 16, we calculated the number of vertices in a scene using discrete
LODs. The simplification rates of the five levels of discrete LOD were 80%, 60%, 40%,
20% and 0%, respectively. Since the models of different levels of discrete LOD are not
related, substantial data is repeatedly transmitted. The total amount of data loaded by
the proposed algorithm was slightly higher than the total data volume of the model when
all the data of the model were loaded. This is because the data of the hole triangle mesh
node are redundant. The experiments showed that the redundant data in this scenario
accounted for 6.5% of the total data, which had little influence on the transmission.
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In the local area network (LAN), we used two metrics to measure the rendering
and transmission performance of the system: rendering frame rate and delay time. The
rendering frame rate is the number of frames rendered per second. The delay time is the
time it takes for a node to be requested until it is added to the scene, including the time
for reading, transmitting, receiving and adding to the scene. After receiving the nodes,
the client directly adds the nodes to the scene without reconstructing the existing mesh,
which is efficient. As shown in Table 2, the average value of the rendering frame rate is
88. Due to the viewpoint-dependent strategy, only visible nodes are transmitted, which
reduces the instantaneous transmission load. The average value of the delay time is 38 ms.
The experimental results show that the proposed method can browse smoothly in large
city scenes.

Table 2. Performance statistics.

Frame Rate (fps) Delay Time (ms)

Average 88 38
Maximum 198 495
Minimum 32 1

Median 79 33

5. Discussion
5.1. About the t1 and t2

To extract the main components, t1 and t2 are introduced, as in Section 3.1.2. The t1
and t2 in this study are between 0.8 and 0.95, and each model has its own t1 and t2. As
shown in Figure 17, if the t1 and t2 values are too low, some main components may not be
extracted, which affects the appearance of the basic mesh. If the t1 and t2 values are too
high, the amount of data in the basic mesh will be too large, which leads to slow floading
of the basic mesh. To balance the basic mesh data and appearance effect, t1 and t2 should
be set reasonably for each building model. In the follow-up work, the feature vector will be
constructed by extracting the features of the components of the building, such as volume,
surface area, number of adjacent components and the orientation of the building, etc.,
using artificial intelligence methods, such as support vector machines, and neural network
methods to classify building components, so as to obtain main components.
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Figure 17. The influence of t1 and t2 on the appearance of the building with several separately
modeled walls.

5.2. From our Method to CityGML

The Open Geospatial Consortium (OGC) proposed CityGML [35], which defines five
levels of 3D building models, from rough model to fine model, LOD0 to LOD4. As shown
in Figure 18, the encoding level of the proposed method is between LOD2 and LOD3.
The basic mesh (main node) can be understood as LOD2 retains the roof and borders,
and changes to LOD3 by continuously increasing the details of doors and windows. The
proposed method provides a new idea for the generation of LOD2 and LOD3.
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6. Conclusions

A novel 3D building model encoding method was proposed for progressive transmis-
sion. Unlike the traditional algorithm that uses vertices, edges or triangles as encoding
units, the proposed method decomposes the 3D building models into three types of struc-
tures. In addition, it wraps these structures as the smallest incremental transmission unit,
named transmission node, guided by connections among structures. Based on the real-time
position of the viewpoint and attributes of the nodes, the expected nodes are dynamically
picked up and responded to the client. A series of experiments confirmed that the proposed
method could better maintain geometric and topological characteristics while encoding 3D
building models, and effectively avoids the structural cognitive ambiguity of the building.
While serving for transmission, the real-time network load is significantly reduced.

There are still some limitations in structural recognition—the proposed method may
not extract the main structure entirely and accurately from a building with several sepa-
rately modeled walls. Second, the proposed method could not entirely extract the attached
structures embedded in multiple faces. Recently, artificial intelligence methods have been
developed rapidly, which have a strong ability of learning and induction. By extracting
and constructing the features of the components of the building, artificial intelligence
methods, such as the support vector machine method, can classify the building compo-
nents accurately to obtain the main components. In addition, many successful algorithms,
such as neural networks, have been proposed in the field of computer-aided design for
identifying the structural characteristics of interaction. Encoding the face relationship of
the building and the topological relationship of the geometric structure, constructing and
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training the artificial neural network model can extract more complex building structures.
This is worthy of further investigation.
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