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Abstract: Light rail transit (LRT), an essential urban public transport system in China, significantly
reshaped the urban land-use (LU) pattern. Although the LRT impact and land-use change (LUC)
analysis plays an essential role in urban planning policy, the spatiotemporal heterogeneity of LRT
impacts have not been considered in LUC simulation studies. This study simulates the urban
LU change, considering the spatiotemporal heterogeneity of LRT construction impacts on urban
LUC. LUC from 1995 to 2005 in Nanjing, China, is chosen as a case study. At first, the distance
decay function is employed to verify the quantitative impact of LRT construction on LU change.
Accordingly, the variation trends of each LU type during different stages are described in time and
space. A cellular automata model incorporated by the generated LRT impact is established and then
implemented for simulation. According to model performance assessment results, the proposed
model can produce a realistic urban pattern with Freedom of Movement (FoM) exceeding 24% and a
significantly lower relative error than the CA simulation without considering LRT influence.

Keywords: light rail transit (LRT); spatiotemporal heterogeneity; land-use change; cellular automata (CA)

1. Introduction

Land-use change (LUC) has been widely studied in the past few decades [1–4]. This
topic deals with the sustainable development of natural and anthropogenic systems and
their influences on air, water, soil, and human habitat. According to the performed studies,
the LUC dynamics variations lead to irreversible impacts of human activities on the
environment [4]. These variations lead to a complex process driven by a series of natural
and social factors [5–7]. Furthermore, the conversion and modification of the LUC caused
by human activities and natural processes may cause various environmental and ecological
problems. Accordingly, LUC tightly relates to various important socioeconomic and
environmental issues [8–10]. Thus, a detailed understanding of urban dynamics is essential
in regional and global sustainable development.

According to the Sixth National Population Census of the People’s Republic of China,
China’s urban population growth has peaked from 36.22% to 49.68% from 2000 to 2010 [11].
As a result, sharp population growth and rapid land development of some megalopolis
(e.g., Shanghai, Wuhan, Nanjing) led to traffic congestion and the deterioration of living
environments [12,13]. Constructing urban light rail transit (LRT) is a high priority for
Chinese governments to overcome these problems [14,15]. In China, LRT has become the
mainstream for the urban public transport system due to its advantages, including high
efficiency, large capacity, small above-ground space occupation, and less pollution [16,17].
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The LRT development provides a foundation for optimizing urban space layout and a great
opportunity to reconstruct urban land-use patterns [18–20].

The analysis of the relationship between LRT and LUC plays an essential role in the
urban planning and development/management policy [21,22]. Since 1960, the interactions
between LRT and land-use development have been well recognized. A new rail transit
line construction leads to transportation accessibility improvement and developable land
resource growth, indicating a positive and noticeable impact on both urban development
(e.g., labor market, crime rate, and public discourse) and property values surrounding
service areas [20,23–25]. Some studies have demonstrated that LRT profoundly impacts
urban land-use development by effectively creating higher intensity and more compact
development that occurred near rail stations based on the land-use data [26,27]. Others
concluded that the rapid transit system could only influence land cover change in periph-
eral areas, but not increase the developed center area along rail lines and stations [28].
However, as pointed out in some studies, since the LRT construction usually occupies
several land resources, the rail transit may harm land-use (LU) development [19,27,29,30].
As a consequence, the LRT can damage the ecological environment and threaten human
health. Moreover, various studies have been devoted to urban rail traffic spatiotemporal
effects on LU [20,31–33]. The impact of rail transport on LU can vary at different stages,
including design, planning, construction, and operation [31,34]. It can also vary depending
on the urban areas and LU types. Various quantitative methods have considered the
impacts of transit on land-use development, such as index comparisons [22], regression
models [35], and statistical significance tests [36]. However, although the existing literature
mainly focuses on the impacts of LRT on previous LU development, it is noticeable that
it does not analyze their effect on the future spatial growth, which is crucial to regional
planning.

The simulation and prediction of the potential changes of urban LU according to the
LRTs’ development have been recently performed. Some models, such as UrbanSim [18]
and Cellular Automata (CA) [21,37–40], have been proposed to investigate the influence of
LRT in the LUC simulation. Previous LUC simulation shows that the CA model performs
well in LUC simulation, although it is always challenging. CA is frequently utilized to sim-
ulate historical growth and model the dynamic urban development, which provides greater
simplicity and a more precise representation of the dynamics of the LU change [41,42]. In
this model, the transition rules are described with a location choice optimization problem
that maximizes land suitability with the impact of some selected driving factors. Intro-
ducing the influence of LRT into the simulation helps us to understand the urban LUC
process better. The common studies have addressed the interaction between urban LU
change and LRT stations. LRT can encourage high-density, mixed-use land development
near the stations, leading to more fragmented land patterns near LRT stations than the
other areas. For example, different extents of impacts of rail transit stations (e.g., 10 min
walking distance, half-mile catchments) on LU changes have been proposed to address
the relationship between transportation networks and LU patterns and simulate land
development around station using the CA model [38,43]. A multinomial logistic regres-
sion (LR) approach is commonly utilized to quantify the linear or nonlinear relationship
between driving factors and LU change. These results indicate how rail transit stations
shape the fine-scale LU change information in the small-scale region [39,40]. However, few
efforts focus on the interaction between urban LU change and LRT lines in time and space.
Although previous works have considered the influence of LRT on LUC, most studies
derived empirical results on LRT’s impact on urban LU development. It has been reported
that the LRT construction could induce an inhomogeneous spatial impact on urban LU
under time-varying spatial impacts [38,40]. Although LRT has been studied as an essential
driving factor in LUC modelling, few studies have investigated the heterogeneous external
interference of LRT on LU development in temporal and spatial dimensions. On the other
hand, the LRT influences on LUC have indicated a changed tendency with the LRT distance
in space [44–46]. This spatial heterogeneity of distance variations from LU blocks to LRT
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also has rarely been considered for LUC simulation studies. The temporal difference of
LRT influence has not been considered in the literature. Generally, the life cycle of LRT
consists of four stages: planning, construction, operation, and management [31,34]. Since
the spatial effect of LRT on their surrounding LU is of no doubt dynamic in different stages,
an LUC model considering the spatiotemporal heterogeneity of LRT influence should be
established for accurate simulation of the LUC process.

This study attempts to simulate the urban LUC considering the spatiotemporal hetero-
geneity of LRT influence, based on the above motivations. Since it is only focused on the
influence of LRT construction, the historical urban development during LRT construction
is considered. The LUC of Nanjing, China, from 1995 to 2005, the construction period of
Nanjing LRT Line 1, is selected as a study case. At first, the distance decay function method
is employed to evaluate the impact of LRT on LUC quantitatively. According to the LU
change direction and the distance to LRT, this function provides an attraction or repulsion
value. Then, the discrepancy trends of each LU type are explained in time and space for
different years. Finally, the generated relationship between LRT construction and LUC is
employed to establish a cellular automata (CA) model incorporated by LRT influence and
implement it for LUC simulation.

2. Study Area and Materials

The city of Nanjing (Jiangsu Province, China) is selected as a study case due to its
rapid urbanization and population increase [47]. As shown in Figure 1, Nanjing is one
of the most important gateway cities of China, located in the Yangtze River Delta, which
comprises of seven districts with a total area of 6597 km2. Although previous LUC models
have been reported in the literature [48,49], a spatiotemporal heterogeneous CA model
is established in this study. The construction of Nanjing LRT Line 1 begun in 2000 and
went into operation on 3 September 2005. It passes through the Jiangning, Downtown
(Zhucheng), and Qixia Districts. Therefore, the simulation results of these three districts
will be emphasized in this study.
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Figure 1. The city of Nanjing and Nanjing LRT Line 1.

As shown in Figure 2, the urban LU data with 30 m spatial resolution in 1995, 2000, and
2005 are utilized in this study. This dataset was published by the Geographical Information
Monitoring Cloud Platform (Available online: http://www.dsac.cn/, accessed on 3 March
2021), generated by manual interpretation from Landsat TM/ETM+/OLI image. The LU
data includes six LU types: farmland, forest, meadow, water, construction, and unused.
The overall classification accuracy of the farmland and construction is higher than 85%,
while it is higher than 75% for the other LU types.

http://www.dsac.cn/
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The road network, digital elevation model (DEM), and the master plan of Nanjing
city are also employed to analyze and model the LUC’s driving factors. The road net-
work published by National Earth System Science Data Center contains different roads,
including railway, national highway, highway, and county and town roads. This dataset
is adopted to analyze the relationship between the distance to different level roads and
LUC. The master plan of Nanjing city (1991–2010), officially published by the Nanjing
Urban Planning Administration Bureau, can generate different-level city/county centers,
farmland protection, and habitat conservation areas for further analysis. SRTM DEM is
utilized to calculate the slope and verify its impacts on LUC.

3. Methodology
3.1. Basic Ideas of the Proposed CA Model

As a spatially explicit modelling method, CA simulates complex systems using local
cell interactions and global drivers. Traditional CA components include cell state, neighbor-
hood influence, urban transition potential, and fixed constraints [50]. Cell state changes are
defined based on transition rules that reflect the combined interactions of these components.
The primary structure of the transition rules is specified as:

Ptotal = P(St+1
i

∣∣∣St
i , N, T, Con) (1)

where Ptotal is the total transition potential; St
i and St+1

i are the states of the cell i at time t
and t + 1, respectively; N describes the influence of cell’s neighborhood; P is the transition
potential defined by several drivers; Con includes the effect of any spatial and nonspatial
constraints.

In this study, a square 5×5 neighborhood window was selected, details of this will be
discussed in Section 3.3.1. The urban transition potential T and transition constraint Con
are defined using 4 selected drivers (topographic, planning, urban development, and LRT
construction). Table 1 shows the spatial variables employed to construct the CA model. The
topographic variable is mainly calculated by the slope derived from DEM. The distance
variables are defined as the Euclidian distances to each entity, computed by the Euclidean
distance function of ArcGIS software. Planning restriction is generally extracted directly
from the master plan map. The LRT factor, a decay function fitting between distance to LRT
line and LUC, was conducted. The detailed design of the CA model will be introduced in



ISPRS Int. J. Geo-Inf. 2021, 10, 308 5 of 19

the following section. Compared to classic CA models, the LRT impact was adopted as a
spatial constraint to reflect spatial heterogeneity in urban development.

Table 1. Spatial variables applied to build the CA model.

Spatial Variables Data Source Calculation
Method

Topographic
constraint Slope DEM Slope tool in ArcGIS

Planning
Restriction constraint

Farmland protection Master plan Extract and
reclassifyHabitat Conservation

Distance
Factor

Distance to water (d1) LU

Euclidean distance
function

Distance to railway (d2)

Road network
Distance to highway (d3)

Distance to national highway (d4)
Distance to provincial road (d5)

Distance to county road (d6)
Distance to municipal center (d7) Master plan

Distance to county center (d8)

LRT
Construction

Factor
LRT Road network

Euclidean distance
function and Gauss

decay function

Figure 3 illustrates our workflow for examining the spatial-temporal heterogeneity of
LRT influence on urban LUC simulation. At first, 1995, 2000, and 2005 urban land patterns
were generated from the LU data, and the LRT line was extracted from road network
data. A small set of urban development driving factors were generated to train the CA
model. The CA transition rules were constructed based on samples selected from historical
(1995–2000) urban patterns and their drivers. The CA model was then constructed by
integrating the four drivers, and the LU was implemented in 2005.

3.2. Transition Potential (T) and Constraint (Con) Establishment

As mentioned above, the next state of the target cell in the CA model is estimated
based on the current state and its neighboring cells by using transition rules. The driving
factors could model the transition rules. In this study, 4 driving factors were selected,
including topographic, planning, urban development, and LRT construction.

3.2.1. Topographic Constraint (Contopo)

The local topography can control the LUC process. For example, the land is no longer
suitable for farming when its slope degree exceeds 15

◦
. Thus, the topographic factor is

utilized to restrict the LU type transition based on the slope degree calculated from DEM.
It was designed as follows:

Contopo =



ConSi→construction
(
slope ≤ 25

◦)
ConSi→ f armland

(
slope ≤ 15

◦)
ConSi→water

(
slope ≤ 2

◦)
ConSi→ f orest

(
slope > 6

◦)
ConSi→unused

(
slope > 6

◦)
(2)

where Contopo is the topographic constraint that returns 1 for a suitable cell for the LU tran-
sition. Note that meadowland does not have a proper condition due to its low sensitivity
to the slope degree.
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3.2.2. Planning Restriction Constraint (Conplanning)

The LUC process can also be controlled by urban planning. In China, the master plan
published by the local government defines the restriction of specific areas for the LU-type
transition. The planning restriction factor can be defined based on the Master Plan data as:

Conplanning =



I f St
i ∈ ( f armland protection, habitat conservation)

then St+1
i = U, U ∈ ( f armland, f orest, meadow);
I f St

i ∈ (construction planning area)
then St+1

i = U, U ∈ (construction);
I f St

i ∈ (No building planned area)
then St+1

i = U, U ∈ (unused)

(3)

where Conplanning is the planning constraint; U stands for the LUC restriction in the master
planning. For example, if the cell Si is located in habitat conservation and farmland
protection areas in the master planning, the conversion of cell Si will be restricted to forest,
meadow, and farmland.

3.2.3. Distance Factor (Pdistance)

The spatial distances to certain geographic features (e.g., water, road, city center,
etc.) will also influence the LUC process. Logistic regression (LR) is commonly adopted
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to determine different spatial distance variables’ weights for the recursive calculation of
the transition probability [5]. Distances to water, railway, highway, national highway,
provincial road, county road, municipal center, and county center were considered. A
stratified random sampling method is employed to extract 20% of samples from the
distance variables and discover the CA model’s transition rules. The LR model statistically
determines the suitability of each cell, where multiple variables are weighted combined:

Pdistance =
1

1 + exp
(
−(β0 + ∑8

i=1 βi × di)
) , (4)

where Pdistance measures the LU transition suitability based on the LR model; [d1, d2, . . . , d8]
are the distance variables to water, railway, highway, national highway, provincial road,
county road, municipal center, and county center, respectively; [β0,β1, . . . , β8] are the
regression coefficients for the different variables.

3.2.4. LRT Construction Factor (PLRT)

According to previous studies, transportation facilities’ construction can make the
urban land spatially inhomogeneous, while the spatial impact continuously varies dynam-
ically over time. The traditional ring-based analysis is firmly grounded in classic urban
theory, which assumes a homogeneous spatial effect. This bias limits its capability when an-
alyzing the LRT influence on LUC. Some studies focused on half-mile (804.7 m) catchments
of station areas, corresponding to around 10 min walking distance [51,52] to investigate
the relationship between urbanization and LU. Kwoka et al. (2015) [53] pointed out that
a 15-min walk (approximately 1200 m) shed to stations would provide a more realistic
analysis. Some previous works [21,39,40,54] constructed a two-sided multi-ring buffer
to evaluate the impacts of LRT on surrounding urban land-use. In the existing body of
literature on the interactions between LU and LRT, Euclidean distance has been commonly
utilized to determine the spatial extent of LRT and analyze the gradual transition of LU
changes within different ranges. Therefore, a standard method is employed for defining
the spatial influence extent of the LRT line based on concentric ring partitioning. The
year-by-year LU change maps from 1995 to 2000 are firstly created to evaluate the LRT
impacts on its neighboring urban LU change. The relative change rate Kij through buffer
operations is then calculated to reflect the LRT spatiotemporal heterogeneity influence as:

Kij =
Aij

Aj
× 100% (5)

where Aij represents the transfer area of ith LU (the construction farm area in this study)
within the jth buffer zone, Aj is the total LU changed area within the jth buffer zone.

Pre-analysis (see details in Section 4.1.2) indicates a clear distance decay trend between
Kij and distance (d) to LRT. This trend can then be fitted by the decay function K(d) using
MATLAB 2014(a) software. The fitted decay function can quantitatively describe the
rule of urban LU change distribution near or away from the LRT and provide the spatial
information for urban dynamics simulation. Finally, the LRT factor can be defined by the
following equation:

PLRT = normalized
(

K(d)× t− t0

T

)
(6)

where the output PLRT describes the LRT factor, which is normalized to the range of [0, 1];
T denotes the period length (measured in years in this case); d depicts the distance to LRT
line; and t0 and t describe the initial and mid-term construction years, respectively.
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3.2.5. Final Transition Probability

The aforementioned 4 different factors should be then combined to determine each
cell’s transition probability. To attain this goal, the final transition probability is computed
as follow:

Pt
total = Contopo × Conplanning × Pdistance × PLRT (7)

where Pt
total describes the overall cell’s land-use change possibility. The cell should meet

the global urban development and neighborhood constraints while its LU state accord-
ingly changes.

3.3. Other Model Parameter Setting
3.3.1. Neighborhood (N)

In this study, an extended Moore neighborhood configuration (5 × 5) was employed
in which each cell indicates an area of 30 m × 30 m on the ground for the simulation [55].
In the neighborhood, LU types of the other cells, except the target cell, were first recorded.
The greater the number of specific LU types in the neighborhood, the greater the probability
that the target cell will be converted into this LU type.

3.3.2. Transition Possibility Threshold (Pthreshold)

The transition probability Pthreshold should be determined before running the CA
model. Taking the reference map of 1995 as a basis, the LU changes in 2000 were simulated
by computing the transition probability P of each cell by neglecting the LRT impact. For the
computed transition probability P of a cell, if P > Pthreshold, the LU type will be changed.
Some LU samples were randomly selected to estimate the range of Pthreshold through a
recursive procedure during the simulation. The optimal Pthreshold was determined by
analyzing the CA modeling performance. The Freedom of Movement (FoM) indicator (see
details in Section 3.4) was chosen to assess the model’s performance, where Pthreshold could
be determined when the FoM achieves the best.

3.3.3. Iteration Ending Condition

The CA model can model the dynamics of LU change over several iterations, where
every LU type will typically lose some of its lands to one or more of the other classes (and
it may also gain land from others). A Markov chain analysis could be employed to extract
the quantities and percentages of conversion between each LU type from the historical
LUC (i.e., from 1995 to 2000). The transition area matrix is utilized as the guideline for
the quantitative transformation in simulating the LU change. The constrained control was
adopted to determine the iteration number for providing the construction land area that
reaches the total transformation value.

3.4. Model Performance Assessment

The FoM indicator proposed by Pontius et al. (2008) could be adopted to evaluate the
simulation accuracy by comparing different and common areas between simulation results
and the actual map [6]. The FoM is defined as follows:

FoM =
B

A + B + C + D
(8)

where A represents the area changing, while it does not change during the simulations, B
is the common area changing in both the actual map and simulations. C denotes the area
changing in both the actual and simulated maps, while the LU change types are different.
D is the area that does not change in the actual map, while it changes during simulations.
Typically, satisfactory simulation results can be obtained when the FoM is up to 0.21.
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4. Results and Discussions
4.1. CA Transition Rule Result

As already mentioned, four driving factors, including topographic constraint, plan-
ning restriction constraint, distance factor, and LRT factor, were utilized to construct the
transition probability of each cell. Accordingly, the CA models were calibrated and vali-
dated. The topographic and planning restriction constraints could be easily generated by
raster reclassifying from the slope calculation and master plan.

4.1.1. Distance Factor

Seven spatial distance driving factors (see detail in Section 3.2.3) were utilized to
evaluate the LUC potential. LR was applied to determine spatial variables’ weights. Table 2
presents the estimated coefficients and their corresponding statistics. The stepwise forward
eliminates the redundant variables in LR, such as distances to a national highway and a
municipal center. Table 2 shows the estimated coefficients for the spatial variables.

Table 2. The coefficient of binary logistic regression for each LU type.

Coefficient/LU Farmland Forest Meadow Water Construction

β1 0.63 0.33 −1.35 - 0.65
β2 −0.20 −0.36 3.55 −0.12 -
β3 −2.40 - 2.25 2.43 1.25
β5 1.50 −1.82 −1.96 −1.52 −0.72
β6 - −1.05 1.56 0.67 0.85
β7 −1.52 −0.86 2.52 3.23 −1.85
β0 0.55 0.55 −5.35 −0.23 −0.45

Notes: The unused LU type is excluded since its change is irregular with spatial distance factors.

4.1.2. LRT Factor

A series of 0.2-km buffers were created step-by-step from the LRT line to assess
its impacts on the surrounding urban LU. Although previous case studies in Chinese
cities demonstrated that a 1~2 km buffer could quantify the LRT influences on LU [38,39],
these works were mainly focused on the development of detailed urban LU such as
industrial/commercial lands. Yang et al. (2019) has employed a 3.2 km buffer associated
with rail transit line to investigate the spatial effects of subways on the construction LU
changes [40]. These studies are employed in this work to construct a 3.2 km two-sided,
multi-ring buffer at the interval of 0.2 km for LRT in Nanjing to evaluate its influences on
neighboring urban LU, considering LU type information and barrier effect (e.g., Yangzi
River in Figure 2).

Figure 4 depicts the variation maps of different LU types associated with rail transit
lines from 2000 to 2005. There are two LU change directions, including construction to
farmland and farmland to construction. Statistical results show that the LUC direction
farmland to construction occurs more than 95% of all of the LUC directions, which can be
considered the chief contributor in each buffer ring. Thus, the change in direction of farm
to construction is utilized to evaluate the LRT impacts.

Figure 5 shows the relative change rate Kij between the years 1995 and 2000. LRT’s
spatial effect on construction land can be described as: (1) The LRT has considerable effects
on construction land development, while the total amount of construction land around the
line significantly increases. (2) According to a nonlinear relation, moving away from the
LRT line leads to an irregular decline in the growth rate of construction LU change.
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Figure 5. Absolute area change of LUC (farmland to construction) near the LRT line with various
distances.

As shown in Figure 6, decay trend fitting can be described with a Gaussian curve
between relative change rate K by Equitation (4) and spatial distance to the LRT line.
This function provides a decline in the conversion rate of change applied by farmland for
development as construction land according to its LU and distances. First, the LRT leads
to considerable impacts within the first to ninth buffers (i.e., 200–1800 m), described by
progressive improvement in the conversion rate of LU change with increasing distance
from the LRT. A very sharp decline in K(d) could be observed as we move away from the
existing areas (1.4 km~2 km) to the point where it finally drops slowly after 2 km.
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Figure 6. Fitting result between relative change rate and distance to the LRT line.

Different intraregional effects were employed to determine the LRT planning influence.
The spillover means that the LRT induces spatial damping in developing LU. Thus, the
LU conversion probability will be very low. The generated aggregation indicates that the
LRT spatially pulls the LU development, which increases the LU conversion probability.
As shown in Figure 7, five-year transition potential maps (i.e., from 2001 to 2005) were
generated by the LRT impact constructed into the CA model according to Equitation (5).
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The final transition probability was generated by Equation (6). The transition poten-
tials of each year and each LU type were utilized in the CA-based LUC simulation.

4.2. Model Parameter Result
4.2.1. Transition Possibility Threshold Result

Some samples were randomly selected to determine Pthreshold through a recursive
procedure in the simulation of the year 2000 based on the year 1995, accomplished by
comparing the actual LU pattern with the simulated results for different transition possi-
bility threshold parameters. The determination of Pthreshold in this work can be divided
into two main parts, which are rough and refined matching, according to Zhu [10]. The
rough matching takes the changes in the number of grids of each land-use type as the
index to determine the initial threshold range. Figure 8a shows the actual LUC cells in
number and simulated LUC cells of different LU types with different Pthreshold during
the year 1995 to 2000. The curves show the good result of the proposed method (i.e., the
simulated value is very close to the actual one) at Pthreshold of approximately 0.25–0.35. The
refined matching is further used to obtain the optimal threshold by verifying the accuracy
of the model within a smaller margin. The simulation accuracy of LU-type construction is
evaluated using the FoM indicator to investigate the optimal Pthreshold. Figure 8b describes
the relationship between Pthreshold (with a 0.02 step size in the interval [0.26, 0.36]) and the
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LU change performance in 2000 through the proposed CA model. It can be seen that the
maximum value of the FoM indicator was obtained for Pthreshold = 0.3.
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4.2.2. Iteration Ending Condition Result by Markov Chain

Table 3 presents the transition area matrix between the years 2000 and 2005, obtained
from the Markov chain. All of the original LU types have an inheritance degree close to
one. The neighborhood conditions and the mentioned transition matrices were adopted
to calculate the local neighborhood probability for each cell (Ni→j). Liu et al. showed
that superior simulation results could be obtained by the iteration number of an integer
multiple observation [4]. Therefore, the iteration number from 2000 to 2005 was chosen as
20, while the number of interval iterations per year was four. Thus, the LRT constraint is
incorporated in the model after 24 iterations.

Table 3. Transfer matrices at Nanjing in the range 2000–2005.

Construction Unused Forest Water Farmland Meadow

Construction 407.94 0.15 0.59 26.26 51.32 0.12
Unused 0.68 1.33 0.28 0.00 0.00 0.02
Forest 40.23 0.02 231.09 0.11 2.01 0.03
Water 26.28 0.00 0.86 237.84 17.90 0.00

Farmland 195.82 0.09 1.48 118.55 1226.02 1.28
Meadow 0.00 0.03 2.14 1.54 0.03 20.34

Notes: Row denotes inflow: column denotes outflow, unit: km2.

4.3. LUC Simulation Results

The proposed CA model was finally executed using Pthreshold = 0.30 and the above-
mentioned iteration-ending condition. The simulation was performed in discrete temporal
steps. Figure 9 shows the final LU simulation result of the year 2005. Compared to the
actual LU pattern in 2005 (see Figure 2c), the proposed method can simulate the spatial
structure of LU well. An overall FoM is 0.231, which is acceptable.
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Table 4 summarizes the FoM accuracies of LU simulation for different districts. As
shown in Table 4, developed areas, including Zhucheng, Qixia, and Jiangning, provided
higher accuracy than underdeveloped ones, such as Gaochun, Liuhe, and Lishui, demon-
strating the compatibility with the urban development level. The accuracy in forestry,
meadow, and water was relatively stable because they are ecologically protected zones in
the southern region. Since the unused land area is small, the simulation results are more
affected by other random factors. Thus, the accuracy variance across districts is high in the
unused land.

Table 4. The FoM accuracies of LU simulation in different districts by the proposed model.

Districts /LU Water Farmland Construction Unused Meadow Forestry

Qixia 0.186 0.212 0.251 0.225 0.214 0.216
Pukou 0.197 0.225 0.221 0.169 0.211 0.214

Zhucheng 0.206 0.211 0.276 0.178 0.185 0.219
Jiangning 0.215 0.212 0.245 0.203 0.224 0.213

Liuhe 0.212 0.222 0.223 0.210 0.219 0.221
Lishui 0.222 0.215 0.192 0.218 0.231 0.211

Gaochun 0.216 0.214 0.208 0.221 0.216 0.221

4.4. Comparison of CA Simulation between with/without Considering LRT Influence Factor

A CA model without LRT factors (i.e., only Contopo, Conplanning, and Pdistance) was
also constructed to prove that the CA model can achieve superior performance when
considering the LRT influence. Then, the model accuracies (FoM) of different districts
and LU types were calculated. As shown in Table 5, the proposed method provides a
promising performance in these three districts, where the FoM value is higher than 0.24.
However, compared with the existing developed regions (Zhucheng and Qixia), lower
accuracy could be obtained for Jiangning as a newly developed area. This may be due to
the complexity of urban development, which means that underdeveloped areas are mainly
driven by urban expansion.
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Table 5. Construction land validation (FoM) for various districts, simulated by the proposed and
comparative methods.

Qixia Jiangning Zhucheng Pukou Liuhe Lishui Gaochun

LRT impact 0.251 0.245 0.276 0.221 0.223 0.192 0.208
NO LRT 0.190 0.186 0.174 0.221 0.223 0.192 0.208

The urban land was also simulated without considering the LRT influence. According
to Table 5, higher simulation accuracies could be obtained in the mentioned three districts
in the presence of the LRT influence. Figure 10 compares the results qualitatively. Since
LRT in Nanjing runs through the Qixia, Zhucheng, and Jiangning districts, the simulation
results of these three districts will be emphasized in this study. As shown in Figure 10, the
spatial structure of the patches in the simulated map by LRT is very similar to the actual
growth map, as indicated by a more evident conversion of farmland to construction land
(see red boxes in Figure 10).
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4.5. Comparison of CA Simulation between with/without Considering Spatiotemporal
Heterogeneity of LRT Influence

The advantage of incorporating the spatiotemporal heterogeneity of LRT influence
into the CA model is demonstrated through the LU change simulation with a comparative
study with the linear relationship in space and time [40]. Figure 11 compares the simulated
results of the proposed model with a linear model for different buffer zones. In a simple
comparison, each farmland in each ring was converted into construction land under the
force of linear mode. The relative error rates between the actual and simulated urban LU
results in 2005 for different rings are shown in Table 6. It could be seen that the relative
growth rate of the construction LU in most rings obtained by linear mode was excessively
higher than that of the spatial structure with actual ones, as indicated by the higher relative
error values. Table 6 also indicates that the proposed model can provide less accuracy than
the linear model in the increasing growth rate of construction LU change within 1000 to
1400 m. The main reason for this is that the growth rate of the construction LU within this
stage may be compatible with the linear growth mode, implying that the spatiotemporal
heterogeneity of the LRT influence for dynamic LU change can be modeled by multiple
fitting decay functions, benefiting from the similar work on the neighborhood influence of
the LU change [54,56]. As a result, the results essentially indicate that the proposed model
incorporated the spatiotemporal heterogeneity of the LRT influence could be utilized to
simulate the heterogeneity LUC development.



ISPRS Int. J. Geo-Inf. 2021, 10, 308 15 of 19ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 16 of 20 

 

 

 
Figure 11. Detailed comparison of the simulated results near the LRT line. (a) Classic linear model, 
(b) the proposed model. 

Table 6. The relative error rates between the actual and simulated urban LU results in 2005 for 
different rings. 

Distance (m) 
Relative Error 

Distance (m) 
Relative Error 

Ours Linear Ours Linear 
0–200 1.74%  5.11% 1600–1800 7.69% 18.74% 

200–400 1.78%  4.31% 1800–2000 5.25% 22.66% 
400–600 1.23%  8.09% 2000–2200 4.67% 23.24% 
600–800 0.37% 14.30% 2200–2400 3.89% 22.78% 

800–1000 6.83% 12.64% 2400–2600 0.81% 26.08% 
1000–1200 8.38%  7.03% 2600–2800 2.99% 21.23% 
1200–1400 9.79%  6.16% 2800–3000 5.21% 11.55% 
1400–1600 8.16% 11.68% 3000–3200 5.32% 10.23% 

To more clearly express the information of errors in Table 6 and investigate the 
causes, Figure 12 (in red boxes) illustrates that the proposed model provides a slightly 
lower growth rate of the construction land than the actual one in the different buffer zones. 
Like many traditional methods [22,31,33], the LRT’s effect on the LU development was 
verified in this study using the hypothesis that the LRT influence is the same within the 
same buffer. Affected by the spatial location difference, even if some LU blocks have sim-
ilar distances to LRT, they obtain heterogeneous LRT influence. For example, according 
to studies performed by Liu et al. [57] and Todes et al. [58], the LRT in the city center has 
little influence on the spatial form, while the urban space expansion is most active sur-
rounding the LRT in the urban fringe, and the land development surrounding the periph-
eral urban part is asymmetrical in space. Hence, even though the blocks have similar dis-
tances to LRT, the effect type (aggregation or spillover effect) and the LRT strengths on 
them may still be different. The study area in the next stage of this research was employed 
to obtain more robust results, while extending in the next stage of this research. 
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Table 6. The relative error rates between the actual and simulated urban LU results in 2005 for
different rings.

Distance (m)
Relative Error

Distance (m)
Relative Error

Ours Linear Ours Linear

0–200 1.74% 5.11% 1600–1800 7.69% 18.74%
200–400 1.78% 4.31% 1800–2000 5.25% 22.66%
400–600 1.23% 8.09% 2000–2200 4.67% 23.24%
600–800 0.37% 14.30% 2200–2400 3.89% 22.78%

800–1000 6.83% 12.64% 2400–2600 0.81% 26.08%
1000–1200 8.38% 7.03% 2600–2800 2.99% 21.23%
1200–1400 9.79% 6.16% 2800–3000 5.21% 11.55%
1400–1600 8.16% 11.68% 3000–3200 5.32% 10.23%

To more clearly express the information of errors in Table 6 and investigate the causes,
Figure 12 (in red boxes) illustrates that the proposed model provides a slightly lower
growth rate of the construction land than the actual one in the different buffer zones. Like
many traditional methods [22,31,33], the LRT’s effect on the LU development was verified
in this study using the hypothesis that the LRT influence is the same within the same
buffer. Affected by the spatial location difference, even if some LU blocks have similar
distances to LRT, they obtain heterogeneous LRT influence. For example, according to
studies performed by Liu et al. [57] and Todes et al. [58], the LRT in the city center has little
influence on the spatial form, while the urban space expansion is most active surrounding
the LRT in the urban fringe, and the land development surrounding the peripheral urban
part is asymmetrical in space. Hence, even though the blocks have similar distances to LRT,
the effect type (aggregation or spillover effect) and the LRT strengths on them may still be
different. The study area in the next stage of this research was employed to obtain more
robust results, while extending in the next stage of this research.
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This study investigates the interactions between rail transit and LUC to capture the
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translated into the effect function in CA modelling and simulation goals. In the current
work, the distance decay function was utilized to investigate the impact of LRT on LUC.
The main change trends of each LU type (mainly from farmland to construction land) over
different stages can be explained by time and space. The cellular automata (CA) model
incorporated with LRT impact was finally established and implemented for simulating the
LUC in Nanjing city, China.

The fitting decay function (i.e., Gauss distribution) was utilized for analyzing the
spatiotemporal heterogeneity of LRT influence. The LRT leads to considerable impacts
within the 200–1800 m range. A very sharp effect decline could be observed when the
distance comes to 1.4 km~2 km, and finally drops slowly after 2 km. This relationship was
then considered in the CA-based LUC simulation.

The proposed method provides a promising performance with the FoM values gen-
erally higher than 0.24. A comparison between CA simulation with and without LRT
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pattern significantly decrease through the LRT model. FOM focuses on the change in
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line was considered in this study. Thus, a superior understanding of the interactions
between an LRT network and LU change will be explored in future work.

Author Contributions: Conceptualization, Jie Zhu; algorithm, Jiaming Na and Jie Zhu; process
the data, Jie Zhu and Shaoning Di; writing—original draft preparation Jiaming Na and Jie Zhu;
writ-ing—review and editing, Jiazhu Zheng, Hu Ding and Lingfei Ma; funding acquisition, Jie Zhu
and Hu Ding. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the talent research start-up funding project of
Nanjing Forestry University (No. GXL2018049), the foundation of Key Lab of Virtual Geographic



ISPRS Int. J. Geo-Inf. 2021, 10, 308 17 of 19

Environment (Nanjing Normal University), Ministry of Education (No. 2020VGE04), and the National
Natural Science Foundation of China (No. 42001329).

Data Availability Statement: Data from this research will be available upon request to the authors.

Acknowledgments: The authors sincerely thank the comments from anonymous reviewers and
members of the editorial team.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Clarke, K.C.; Hoppen, S.; Gaydos, L. A self-modifying cellular automaton model of historical urbanization in the San Francisco

Bay area. Environ. Plan. B Plan. Des. 1997, 24, 247–261. [CrossRef]
2. Verburg, P.H.; de Nijs, T.C.; van Eck, J.R.; Visser, H.; de Jong, K. A method to analyse neighbourhood characteristics of land use

patterns. Comput. Environ. Urban Syst. 2004, 28, 667–690. [CrossRef]
3. Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE 2011, 6, e23777.

[CrossRef] [PubMed]
4. Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating

multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [CrossRef]
5. Wu, F. Calibration of stochastic cellular automata: The application to rural-urban land conversions. Int. J. Geogr. Inf. Sci. 2002, 16,

795–818. [CrossRef]
6. Pontius, R.G.; Boersma, W.; Castella, J.-C.; Clarke, K.; de Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.

Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [CrossRef]
7. Liu, Y. Modelling sustainable urban growth in a rapidly urbanising region using a fuzzy-constrained cellular automata approach.

Int. J. Geogr. Inf. Sci. 2012, 26, 151–167. [CrossRef]
8. Rafiee, R.; Mahiny, A.S.; Khorasani, N.; Darvishsefat, A.A.; Danekar, A. Simulating urban growth in Mashad City, Iran through

the SLEUTH model (UGM). Cities 2009, 26, 19–26. [CrossRef]
9. Feng, Y. Modeling dynamic urban land-use change with geographical cellular automata and generalized pattern search-optimized

rules. Int. J. Geogr. Inf. Sci. 2017, 31, 1198–1219.
10. Zhu, J.; Sun, Y.; Song, S.; Yang, J.; Ding, H. Cellular automata for simulating land-use change with a constrained irregular space

representation: A case study in Nanjing city, China. Environ. Plan. B Urban Anal. City Sci. 2020. [CrossRef]
11. National Bureau of Statistics of China. Communiqué of the National Bureau of Statistics of People’s Republic of China on Major Figures of

the 2010 Population Census; National Bureau of Statistics of China: Beijing, China, 2011.
12. Cervero, R.; Dai, D. BRT TOD: Leveraging transit oriented development with bus rapid transit investments. Transp. Policy 2014,

36, 127–138. [CrossRef]
13. Yang, P.; Wei, C. Metro-city planning practice: Wuhan example (in Chinese). Planners 2016, 32, 5–10.
14. Wang, X.-F.; Xu, J.-G.; Li, Y.-F. Potential influences of rail transportation construction to land use differentiation in Nanjing. Hum.

Geogr 2005, 20, 112–116.
15. Zhang, M.; Wang, L. The impacts of mass transit on land development in China: The case of Beijing. Res. Transp. Econ. 2013, 40,

124–133. [CrossRef]
16. Thapa, R.B.; Murayama, Y. Drivers of urban growth in the Kathmandu valley, Nepal: Examining the efficacy of the analytic

hierarchy process. Appl. Geogr. 2010, 30, 70–83. [CrossRef]
17. Duranton, G.; Turner, M.A. Urban growth and transportation. Rev. Econ. Stud. 2012, 79, 1407–1440. [CrossRef]
18. Joshi, H.; Guhathakurta, S.; Konjevod, G.; Crittenden, J.; Li, K. Simulating the effect of light rail on urban growth in Phoenix: An

application of the UrbanSim modeling environment. J. Urban Technol. 2006, 13, 91–111. [CrossRef]
19. Pacheco-Raguz, J.F. Assessing the impacts of Light Rail Transit on urban land in Manila. J. Transp. Land Use 2010, 3, 113–138.

[CrossRef]
20. Bardaka, E.; Delgado, M.S.; Florax, R.J. Causal identification of transit-induced gentrification and spatial spillover effects: The

case of the Denver light rail. J. Transp. Geogr. 2018, 71, 15–31. [CrossRef]
21. Wang, J.; Feng, Y.; Ye, Z.; Tong, X.; Wang, R.; Gao, C.; Chen, S.; Lei, Z.; Liu, S.; Jin, Y. Simulating the effect of urban light rail transit

on urban development by coupling cellular automata and conjugate gradients. Geocarto Int. 2020, 1–19. [CrossRef]
22. Ratner, K.A.; Goetz, A.R. The reshaping of land use and urban form in Denver through transit-oriented development. Cities 2013,

30, 31–46. [CrossRef]
23. Calvo, F.; de Oña, J.; Arán, F. Impact of the Madrid subway on population settlement and land use. Land Use Policy 2013, 31,

627–639. [CrossRef]
24. Mokadi, E.; Mitsova, D.; Wang, X. Projecting the impacts of a proposed streetcar system on the urban core land redevelopment:

The case of Cincinnati, Ohio. Cities 2013, 35, 136–146. [CrossRef]
25. Comber, S.; Arribas-Bel, D. “Waiting on the train”: The anticipatory (causal) effects of Crossrail in Ealing. J. Transp. Geogr. 2017,

64, 13–22. [CrossRef]

http://doi.org/10.1068/b240247
http://doi.org/10.1016/j.compenvurbsys.2003.07.001
http://doi.org/10.1371/journal.pone.0023777
http://www.ncbi.nlm.nih.gov/pubmed/21876770
http://doi.org/10.1016/j.landurbplan.2017.09.019
http://doi.org/10.1080/13658810210157769
http://doi.org/10.1007/s00168-007-0138-2
http://doi.org/10.1080/13658816.2011.577434
http://doi.org/10.1016/j.cities.2008.11.005
http://doi.org/10.1177/2399808320949889
http://doi.org/10.1016/j.tranpol.2014.08.001
http://doi.org/10.1016/j.retrec.2012.06.039
http://doi.org/10.1016/j.apgeog.2009.10.002
http://doi.org/10.1093/restud/rds010
http://doi.org/10.1080/10630730600872096
http://doi.org/10.5198/jtlu.v3i1.13
http://doi.org/10.1016/j.jtrangeo.2018.06.025
http://doi.org/10.1080/10106049.2020.1810329
http://doi.org/10.1016/j.cities.2012.08.007
http://doi.org/10.1016/j.landusepol.2012.09.008
http://doi.org/10.1016/j.cities.2013.07.005
http://doi.org/10.1016/j.jtrangeo.2017.08.004


ISPRS Int. J. Geo-Inf. 2021, 10, 308 18 of 19

26. Pan, H.; Zhang, M. Rail transit impacts on land use: Evidence from Shanghai, China. Transp. Res. Rec. 2008, 2048, 16–25.
[CrossRef]

27. Bhattacharjee, S.; Goetz, A.R. The rail transit system and land use change in the Denver metro region. J. Transp. Geogr. 2016, 54,
440–450. [CrossRef]

28. Ahmad, S.; Avtar, R.; Sethi, M.; Surjan, A. Delhi’s land cover change in post transit era. Cities 2016, 50, 111–118. [CrossRef]
29. Iacono, M.J.; Levinson, D.M. Predicting land use change: How much does transportation matter? Transp. Res. Rec. 2009, 2119,

130–136. [CrossRef]
30. Hurst, N.B.; West, S.E. Public transit and urban redevelopment: The effect of light rail transit on land use in Minneapolis,

Minnesota. Reg. Sci. Urban Econ. 2014, 46, 57–72. [CrossRef]
31. Golub, A.; Guhathakurta, S.; Sollapuram, B. Spatial and temporal capitalization effects of light rail in Phoenix: From conception,

planning, and construction to operation. J. Plan. Educ. Res. 2012, 32, 415–429. [CrossRef]
32. Cervero, R. Linking urban transport and land use in developing countries. J. Transp. Land Use 2013, 6, 7–24. [CrossRef]
33. Tan, Z.; Li, S.; Li, X.; Liu, X.; Chen, Y.; Li, W. Spatio-temporal effects of urban rail transit on complex land-use change. Acta Geogr.

Sinica 2017, 72, 850–862.
34. Li, S.; Liu, X.; Li, Z.; Wu, Z.; Yan, Z.; Chen, Y.; Gao, F. Spatial and temporal dynamics of urban expansion along the Guangzhou–

Foshan inter-city rail transit corridor, China. Sustainability 2018, 10, 593. [CrossRef]
35. Zhang, H.; Li, X.; Liu, X.; Chen, Y.; Ou, J.; Niu, N.; Jin, Y.; Shi, H. Will the Development of a High-Speed Railway Have Impacts on

Land Use Patterns in China? Ann. Am. Assoc. Geogr. 2019, 109, 979–1005. [CrossRef]
36. Rodriguez, D.A.; Vergel-Tovar, E.; Camargo, W.F. Land development impacts of BRT in a sample of stops in Quito and Bogotá.

Transp. Policy 2016, 51, 4–14. [CrossRef]
37. Aljoufie, M.; Brussel, M.; Zuidgeest, M.; van Delden, H.; van Maarseveen, M. Integrated analysis of land-use and transport policy

interventions. Transp. Plan. Technol. 2016, 39, 329–357. [CrossRef]
38. Lin, J.; Chen, T.; Han, Q. Simulating and predicting the impacts of light rail transit systems on urban land use by using cellular

automata: A case study of Dongguan, China. Sustainability 2018, 10, 1293. [CrossRef]
39. Zhao, L.; Shen, L. The impacts of rail transit on future urban land use development: A case study in Wuhan, China. Transp. Policy

2019, 81, 396–405. [CrossRef]
40. Yang, J.; Shi, F.; Sun, Y.; Zhu, J. A cellular automata model constrained by spatiotemporal heterogeneity of the urban development

strategy for simulating land-use change: A case study in Nanjing City, China. Sustainability 2019, 11, 4012. [CrossRef]
41. Li, X.; Yang, Q.; Liu, X. Discovering and evaluating urban signatures for simulating compact development using cellular automata.

Landsc. Urban Plan. 2008, 86, 177–186. [CrossRef]
42. Li, X.; Lin, J.; Chen, Y.; Liu, X.; Ai, B. Calibrating cellular automata based on landscape metrics by using genetic algorithms. Int. J.

Geogr. Inf. Sci. 2013, 27, 594–613. [CrossRef]
43. Ayazli, I.E.; Kilic, F.; Lauf, S.; Demir, H.; Kleinschmit, B. Simulating urban growth driven by transportation networks: A case

study of the Istanbul third bridge. Land Use Policy 2015, 49, 332–340. [CrossRef]
44. Willigers, J.; Van Wee, B. High-speed rail and office location choices. A stated choice experiment for the Netherlands. J. Transp.

Geogr. 2011, 19, 745–754. [CrossRef]
45. Murakami, J.; Cervero, R. High-Speed Rail and Economic Development: Business Agglomerations and Policy Implications; University of

California Transportation Center: Berkeley, CA, USA, 2012.
46. Garmendia, M.; Romero, V.; Ureña, J.M.D.; Coronado, J.M.; Vickerman, R. High-speed rail opportunities around metropolitan

regions: Madrid and London. J. Infrastruct. Syst. 2012, 18, 305–313. [CrossRef]
47. Cao, M.; Bennett, S.J.; Shen, Q.; Xu, R. A bat-inspired approach to define transition rules for a cellular automaton model used to

simulate urban expansion. Int. J. Geogr. Inf. Sci. 2016, 30, 1961–1979. [CrossRef]
48. Luo, J.; Wei, Y.D. Modeling spatial variations of urban growth patterns in Chinese cities: The case of Nanjing. Landsc. Urban Plan.

2009, 91, 51–64. [CrossRef]
49. Shu, B.; Bakker, M.M.; Zhang, H.; Li, Y.; Qin, W.; Carsjens, G.J. Modeling urban expansion by using variable weights logistic

cellular automata: A case study of Nanjing, China. Int. J. Geogr. Inf. Sci. 2017, 31, 1314–1333. [CrossRef]
50. Omrani, H.; Tayyebi, A.; Pijanowski, B. Integrating the multi-label land-use concept and cellular automata with the artificial

neural network-based land transformation model: An integrated ML-CA-LTM modeling framework. GIScience Remote Sens. 2017,
54, 283–304. [CrossRef]

51. Guerra, E.; Cervero, R.; Tischler, D. Half-mile circle: Does it best represent transit station catchments? Transp. Res. Rec. 2012, 2276,
101–109. [CrossRef]

52. Cao, X.J.; Porter-Nelson, D. Real estate development in anticipation of the Green Line light rail transit in St. Paul. Transp. Policy
2016, 51, 24–32. [CrossRef]

53. Kwoka, G.J.; Boschmann, E.E.; Goetz, A.R. The impact of transit station areas on the travel behaviors of workers in Denver,
Colorado. Transp. Res. Part A Policy Pract. 2015, 80, 277–287. [CrossRef]

54. Barreira-González, P.; Gómez-Delgado, M.; Aguilera-Benavente, F. From raster to vector cellular automata models: A new
approach to simulate urban growth with the help of graph theory. Comput. Environ. Urban Syst. 2015, 54, 119–131. [CrossRef]

55. Wu, H.; Zhou, L.; Chi, X.; Li, Y.; Sun, Y. Quantifying and analyzing neighborhood configuration characteristics to cellular
automata for land use simulation considering data source error. Earth Sci. Inform. 2012, 5, 77–86. [CrossRef]

http://doi.org/10.3141/2048-03
http://doi.org/10.1016/j.jtrangeo.2016.02.004
http://doi.org/10.1016/j.cities.2015.09.003
http://doi.org/10.3141/2119-16
http://doi.org/10.1016/j.regsciurbeco.2014.02.002
http://doi.org/10.1177/0739456X12455523
http://doi.org/10.5198/jtlu.v6i1.425
http://doi.org/10.3390/su10030593
http://doi.org/10.1001/jama.2019.10347
http://doi.org/10.1016/j.tranpol.2015.10.002
http://doi.org/10.1080/03081060.2016.1160578
http://doi.org/10.3390/su10041293
http://doi.org/10.1016/j.tranpol.2018.05.004
http://doi.org/10.3390/su11154012
http://doi.org/10.1016/j.landurbplan.2008.02.005
http://doi.org/10.1080/13658816.2012.698391
http://doi.org/10.1016/j.landusepol.2015.08.016
http://doi.org/10.1016/j.jtrangeo.2010.09.002
http://doi.org/10.1061/(ASCE)IS.1943-555X.0000104
http://doi.org/10.1080/13658816.2016.1151521
http://doi.org/10.1016/j.landurbplan.2008.11.010
http://doi.org/10.1080/13658816.2017.1283505
http://doi.org/10.1080/15481603.2016.1265706
http://doi.org/10.3141/2276-12
http://doi.org/10.1016/j.tranpol.2016.01.007
http://doi.org/10.1016/j.tra.2015.08.004
http://doi.org/10.1016/j.compenvurbsys.2015.07.004
http://doi.org/10.1007/s12145-012-0097-8


ISPRS Int. J. Geo-Inf. 2021, 10, 308 19 of 19

56. Feng, Y.; Tong, X. Incorporation of spatial heterogeneity-weighted neighborhood into cellular automata for dynamic urban
growth simulation. GIScience Remote Sens. 2019, 56, 1024–1045. [CrossRef]

57. Jing, L. Research on the Urban Land-Use along the High-Capacity Rail Rapid Transit Line—A Case Study of Wuhan No. 2 Rail
Transit Line. Ph.D. Thesis, Huazhong University of Science of Technology, Wuhan, China, 2005.

58. Todes, A. Urban growth and strategic spatial planning in Johannesburg, South Africa. Cities 2012, 29, 158–165. [CrossRef]

http://doi.org/10.1080/15481603.2019.1603187
http://doi.org/10.1016/j.cities.2011.08.004

	Introduction 
	Study Area and Materials 
	Methodology 
	Basic Ideas of the Proposed CA Model 
	Transition Potential (T) and Constraint (Con) Establishment 
	Topographic Constraint (Contopo ) 
	Planning Restriction Constraint (Conplanning ) 
	Distance Factor (Pdistance ) 
	LRT Construction Factor (PLRT ) 
	Final Transition Probability 

	Other Model Parameter Setting 
	Neighborhood (N) 
	Transition Possibility Threshold (Pthreshold ) 
	Iteration Ending Condition 

	Model Performance Assessment 

	Results and Discussions 
	CA Transition Rule Result 
	Distance Factor 
	LRT Factor 

	Model Parameter Result 
	Transition Possibility Threshold Result 
	Iteration Ending Condition Result by Markov Chain 

	LUC Simulation Results 
	Comparison of CA Simulation between with/without Considering LRT Influence Factor 
	Comparison of CA Simulation between with/without Considering Spatiotemporal Heterogeneity of LRT Influence 

	Conclusions 
	References

