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Abstract: Geo-social media data are widely used as a data source to model populations and pro-
cesses in a variety of contexts. However, if the data do not adequately represent the population
they are drawn from, analysis results will be biased. Unaddressed, these biases may lead to false
interpretations and conclusions. In this paper, we propose a generic methodology for investigating
the representativeness of geo-social media data for population groups of similar statistical predictive
power based on reference data. The groups are designed to be spatially coherent regions with similar
prediction errors. Based on these units, we investigate the influence of different socio-demographic
covariates on the representativeness. We perform experiments based on over 1.6 billion tweets and
90 socio-demographic covariates. We demonstrate that Twitter data representativeness varies strongly
over time and space. Our results show that densely populated areas tend to be underrepresented
consistently in non-spatial models. Over time, some covariates like the number of people aged
20 years exhibit highly different effects on the prediction models, whereas others are much more
stable. The spatial effects can most frequently be explained using spatial error models, indicating
spatially related errors that indicate the necessity of additional covariates. Finally, we provide hints
for interpreting the results of our approach for researchers using the concepts presented in this paper.

Keywords: geo-social media; Twitter; representativeness; spatial analysis; statistical correlations;
temporal snapshots

1. Introduction

When using geolocated social media data as a source for academic studies, researchers
have to be aware of the caveats of using such data. Uncertainties and biases may cause
a range of limitations when using geolocated Twitter data [1], both technically and for
geospatial analysis in a broader context, such as privacy, semantics, handling and pro-
cessing of large data volumes, as well as the issue of trust, or lack thereof in geo-social
media [2]. Despite these shortcomings, Twitter has been proven to be a valuable data
source in a variety of contexts, such as epidemiology [3–5], stock market predictions [6],
predictions of political affiliation [7], the assessment of refugee movement [8], disaster
management [9,10], the analysis of mobility patterns [11], or the assessment of emotional
responses in urban research [12,13]. The reasons for using user-generated data as a surro-
gate variable rather than measuring a phenomenon of interest directly include resource
and time constraints and ethical concerns. For example, in cases of geo-social media aided
emergency management [14,15], some traditional data acquisition methods lack the re-
quired timeliness or would require dangerous in-situ measurements. In other cases, effects
cannot be directly measured in the first place, but are embedded in user-generated text as
latent information such as emotions [16] or crime risk [17].

There is a fundamental premise that unites these studies that is, in some instances,
silently taken for granted: The collected geo-social media data represent the modeled
population adequately enough to allow for inferring information about it. In this context,
the concept of representativeness stands for a measure that expresses how well data from a

ISPRS Int. J. Geo-Inf. 2021, 10, 323. https://doi.org/10.3390/ijgi10050323 https://www.mdpi.com/journal/ijgi

https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0001-5029-2425
https://orcid.org/0000-0002-2233-6926
https://orcid.org/0000-0003-0619-0098
https://orcid.org/0000-0003-0390-5094
https://www.mdpi.com/article/10.3390/ijgi10050323?type=check_update&version=1
https://doi.org/10.3390/ijgi10050323
https://doi.org/10.3390/ijgi10050323
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijgi10050323
https://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2021, 10, 323 2 of 18

given area are suited to stand in for the underlying population. Auxiliary data about the
population can be incorporated to increase the robustness of the measure.

The number of studies that were successful in validating their obtained results show
that Twitter as a data source is certainly useful. However, given its highly heterogeneous
usage patterns in terms of demography, socioeconomic status and geography, the degree
of representativeness for a given set of tweets changes with its particular co-located covari-
ates [18,19]. This problem becomes relevant when the population under investigation is
only a subset like a certain demographic or age group of the total population. The severity
of this bias can be assessed by interpreting Twitter users’ text data and deriving information
about their occupation and other socioeconomic characteristics [20,21]. The geographic
context of where the Twitter data were produced is also of importance, as urban areas are
represented disproportionally stronger than rural areas [22].

In this paper, we provide insights into how to evaluate the representativeness of
geographic Twitter data on the raster level and, leaning on the principles of the geon
paradigm [23], extend the explanatory value of our results by providing spatially contigu-
ous regions of similar representation errors. The value of our results lies in the knowledge
about whether using Twitter data as a proxy for the population living in a given study area
has the potential to yield adequate results. We delineate spatially contiguous regions of
high spatial autocorrelation of errors that are achieved with spatially consistent predictor
variables. The result are areas of equal representativeness. We show that the resulting
regions vary across space in their quantitative and qualitative characteristics, representing
not only differences in prediction quality, but also in suitable predictor variables. Studying
their characteristics and distributions, we gain insights into the processes that lead to an
area being representative of a population. By doing so, we show that it can be misleading to
have fixed assumptions about the population modeled by the Twitter data. In the research
presented in this paper, we address the following research questions:

• How can we measure the representativeness of Twitter data?
• Are geo-social media data representative for different socio-demographic subgroups

and over time?
• How do spatial relationships impact the representativeness of spatially homoge-

neous regions?

2. Related Work

The concept of representativeness heuristics was originally defined as the apparent
probability of an object A belonging to a class B, or an event A being generated by a
process B [24]. If A is reasonably representative of B, it must therefore be possible to derive
information about B from observations of A. We borrow this definition and translate it
from the field of psychology to our context in the way that by using Twitter data (A),
or some derivative thereof, as proxy for a process under investigation (B), we are able to
draw information about B from observations of A. In the case of this study, we investigate
the representativeness of Twitter data (A) of different socioeconomic groups within a
population (B).

Methods and limitations of previous efforts to assess the quality of the representative-
ness of user-generated data have been discussed recently [25–27]. The prediction error of
the number Twitter users on the United States (US) county level can be explained using
geographically weighted regression models and socioeconomic variables [28].

In public opinion mining, the problem of inadequate representativeness of results
obtained from geo-social media can also be addressed by integrating results of a smaller
opinion poll with known participant demographics and adjusting the results [29]. A similar
approach suggests mitigating representativeness problems by measures such as qualitative
analysis of a subset of the data in question or the integration of knowledge from the
platform providers in the analysis process where possible [30]. Gender differences between
the users of a geo-social media and the local demographics can be explored and accounted
for using spatial autocorrelation methods, although this requires information about the
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geo-social media user’s gender [31]. Gender differences can also be used to partly explain
political affiliations and therefore be used as a correction factor when deriving public
political opinions from Twitter data [32].

One way to integrate a larger number of covariates is via logistic regression modeling.
This approach can also give insights into the preferred geo-social media of different user
groups [33] From previous work, there are three general approaches emerging for assessing
the problem geo-social media representativeness: (1) evaluating representativeness of
contributors; (2) evaluating the completeness of the data; and (3) comparing geo-social
media data to reference data [34]. The requirement for method (3) is the need for suitable
reference data. In our study design we can use available geographic and socio-demographic
data as reference. This makes the approach a good fit for our study.

We see the main research gap in the work listed above in the gap between the quanti-
tative and qualitative interpretation of prediction results. Evaluating prediction results in
spatially contiguous groups of high similarity allows us to evaluate the impact of covariates
in a useful context. It therefore ultimately aids the interpretability of results. We address
this gap by providing methods to explore how different covariates impact predictions over
time. Under the assumption that the Twitter data somewhat robustly represent the same
portion of a population over time, we would expect little variation in yearly prediction
models. We show that this is not always the case and therefore argue in favor of new in-
vestigations of the idiosyncrasies of different prediction models. Additionally, we provide
insights into the spatial characteristics of the prediction results, thereby highlighting the
importance of geographic context of the data. We aim to do so by providing geons, that
is, spatially contiguous coherent units that allow quantitative interpretation and of the un-
derlying covariates and their spatial idiosyncrasies. Further, we show how to perform the
analyses using data of fine spatial granularity, while presenting the results in aggregated,
easily interpretable regions.

3. Data and Preprocessing

The Twitter data used in our study comprise eight years of data collected in the
conterminous US via the Twitter REST and streaming application programming interfaces
(API) [35]. The bounding box of the collected data covers 24.50° N–49.38° N and 66.75° W–
124.73° W. We considered only tweets with a point coordinate as their geographic reference.
We aggregated into a regular rectangular raster with a cell size of 1 km2 by summing up
the number of tweets within each cell, grouped by year.

Table 1 gives an overview of the number of individual cells containing tweets, the num-
ber of tweets and some summary statistics aggregated on the raster level. All data include
a timestamp and a geographic point location defined by a pair of coordinates. The point
location of a tweet is provided by the user, usually as a GPS position. The number of tweets
varies strongly over time. Potential causes for this effect are changes in Twitter’s data
distribution model, such as the removal of precise geotagging in 2019 [36], restrictions in
the number of available tweets via the API or shifts in user behavior. The strong changes in
standard deviation are also worth noting, since they appear to have a significant effect on
the global prediction quality.

Table 1. Descriptive statistics of Twitter data.

Year Cells with Tweets Total Tweets Standard Deviation Mean Max

2012 5,092,338 120,135,793 19.766 0.797 18,092
2013 8,971,021 412,529,263 60.19 2.736 58,895
2014 10,023,936 744,336,685 112.596 4.937 353,192
2015 5,666,472 227,973,154 62.037 1.512 212,263
2016 1,262,552 28,636,933 31.6 0.19 174,234
2017 1,427,898 60,904,272 81.053 0.404 507,648
2018 1,012,888 27,358,711 40.978 0.181 299,381
2019 669,675 9,209,156 14.632 0.061 92,500
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For the covariates under examination, we combined data from different sources. We
obtained the census data from the Integrated Public Use Microdata Series National Historical
Geographic Information System [37] from the 2011 and 2017 American Community Survey.
The data include 90 variables about the population’s age, sex, socioeconomic status, race,
and educational attainment on the county level, with the individual demographic variables
listed in Table 2. We also included the Euclidean distance to the nearest city. The population
raster on a 30 arc second scale are taken from the Gridded Population of the World (GPW),
v4 dataset [38]. Point data of city locations with ≥100,000 inhabitants are taken from the
United States Census Bureau (https://www.census.gov/programs-surveys/geography.
html accessed on 7 May 2021). These points act as reference points when calculating the
euclidean distance to the closest city of a raster cell.

Table 2. Grouped overview over used demographic raster data.

Education Ethnic Group Female/Male Age Groups Income

1st Grade Asian Under 5 Years Less than $10,000
2nd Grade Black 5 to 9 Years $10,000 to $14,999
3rd Grade Hawaiian 10 to 14 Years $15,000 to $19,999
4th Grade Native 15 to 17 Years $20,000 to $24,999
5th Grade White 18 and 19 Years $25,000 to $29,999
6th Grade 20 Years $30,000 to $34,999
7th Grade 21 Years $35,000 to $39,999
8th Grade 22 to 24 Years $40,000 to $44,999
9th Grade 25 to 29 Years $45,000 to $49,999

10th Grade 30 to 34 Years $50,000 to $59,999
11th Grade 35 to 39 Years $60,000 to $74,999

12th Grade—no Diploma 40 to 44 Years $75,000 to $99,999
Associate’s Degree 45 to 49 Years $100,000 to $124,999
Bachelor’s Degree 50 to 54 Years $125,000 to $149,999

GED or Alternative Credential 55 to 59 Years $150,000 to $199,999
Kindergarten 60 and 61 Years $200,000 or more

Master’s Degree 62 to 64 Years
No Schooling Completed 65 and 66 Years

Nursery School 67 to 69 Years
Professional School Degree 70 to 74 Years

Regular high School diploma 75 to 79 Years
Some College—1 or more Years—no Degree 80 to 84 Years

Some College—less than 1 Year 85 Years and over

In this study, we use socio-demographic data on the county level. The county’s
shapes are highly heterogeneous and their surface areas vary by a factor of almost 1000.
They also contain no information about the large spatial variation of population density.
This contributes to the modifiable areal unit problem (MAUP), which can strongly affect
multivariate analysis, because simply by changing unit area’s sizes and shapes, spatial
models can produce significantly varying results [39]. Because of the heterogeneity of
the county areas, the MAUP is likely to have an influence on our results. To lessen the
influence of arbitrarily shaped administrative units on the results, we disaggregated the
data to regular grids based on GPW population raster data. Figure 1 illustrates the process
of zonal disaggregation we performed on county level data to break it down to the raster
level. Given an input feature (a) and a population raster (b), we divide the population
raster based on the features of (a). We then normalize the raster values such that each zone
has a raster sum of 1 (d). Multiplying the normalized raster values with the feature values
of (a) results in a disaggregated version of the original features (e). A side effect of this
approach is that the resulting rasters share the population raster’s spatial variability, which
may lead a to misrepresentation of some variables.

https://www.census.gov/programs-surveys/geography.html
https://www.census.gov/programs-surveys/geography.html
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Figure 1. Zonal disaggregation process. Input features (a) and population raster (b) are overlaid
(c), and the population raster cells normalized by feature (d) before multiplying with the individual
feature’s population numbers (e).

We also needed to aggregate the Twitter data to the raster level. Starting with raw
point data from Twitter we identified automatically generated tweets from chat bots and
removed them. We did so in an iterative manual process in which we selected random
samples of the whole data set and sorted them by the post frequency of their users. If we
identified a user who generated large amounts of tweets with obvious traits of automatically
generated content, such as highly repetitive text, advertisements or random strings of text,
we removed all tweets of that user from the data. We repeated the process until we were
not able to identify any more automatically generated content. This process eliminated
approximately ten percent of tweets. We then overlaid a raster grid with the same extent
and cell size of the other data sets and summed up the number of tweets per cell.

To model the distance to the closest larger city for each cell, we calculated the Euclidean
distance of the cell to the next city of the United States Census Bureau point data of cities
with ≥100,000 inhabitants.

The preprocessed population and Twitter data are both represented as sparse rasters
which are not identical in their spatial structure. We mitigated this problem in our ex-
periments by imputation. Each cell stack represents one observation. When merging the
population and Twitter data, the presence and absence of a value in a given cell results
in four combinations for each cell stack. Within the boundaries of the conterminous US,
the overlap of cells with values present in both layers is about 3.8%, cells with only popula-
tion data are 68.0%, cells with only Twitter data are 0.2% and cells with no data at all are
28.0%. If none or both of the layers contain a value, the data can be used as is. If only one
value exists, the counterpart is set to the value 0. We use this strategy to account for Twitter
usage in unpopulated areas. Figure 2 shows an example of how the cell combinations can
be distributed. The clustered pixels containing population and Twitter data are a typical
footprint of an urban area. The vast majority of the remaining area is almost entirely
divided into populated and unpopulated area, both without any Twitter data. There are
only marginal areas scattered throughout the study area that contain Twitter data but no
population. In the map, they only appear as individual pixels.

Figure 2. Twitter and Population Data distribution.
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4. Methods

We operate on the premise that if we are able to predict the number of tweets in a given
area based on data about the local population, the number of tweets in conclusion can be
employed as a proxy of that population and is therefore representative of it. The acceptable
error, and therefore the boundary of representativeness, for such predictions is highly
dependent on the use case, however. An example for an application with high error
tolerance would be the mere detection of human presence in a study area, in which the
number of people are not of primary interest. Applications with the aim of providing
quantitative information about a population in the study area, however, would typically
operate with a lower error tolerance.

The implication of successful tests in this study is that Twitter as a data source provides
data with which it is reasonable to project observations made in the data onto the real
world. We use generalized linear regression models (GLM) with the number of tweets as the
dependent variable and data describing demographics, population numbers, and income
as independent variables. Thereby, we predict the number of tweets based on co-located
variables describing the local population. We compare the attained results from the models
with the validation data and calculate the resulting local and global prediction errors.

4.1. Generalized Linear Models

We fit the data to a generalized linear regression model with the number of tweets as
dependent variable and the geographic and demographic data as independent variables.
The model assumes a Poisson distribution for the number of tweets, which reflects our
assumption of the data being produced in a constant and independent process. We justify
this design decision based on different distribution shapes to which we fitted the Twitter
count data using maximum likelihood estimation. Visual interpretation of the resulting
curves in Figure 3 show the good fit of the Poisson distribution versus the rest. Because of
the high number of predictor variables modeling the population, we were expecting strong
multicollinearity among some of them. To substantiate this presumption, we calculated the
Kendall rank correlation coefficient τ and the variance inflation factor (VIF) [40]. We found
consistently high values for both τ and VIF, confirming our expectations. The main negative
effects of this characteristic are the danger of overfitting the model and misjudgement
when interpreting the explanatory value of individual variables.

We mitigated these effects by employing the least absolute shrinkage and selection op-
erator (lasso) regularization [41,42] to penalize and remove regression coefficients based on
the residual sum of squared errors (RSS) of the model. As discussed in [43], this introduces
bias to the regression model with the benefit of reducing its variance, therefore resulting
in a model less prone to overfitting. This method requires defining a tuning parameter λ
for dimensioning the shrinkage penalty. The optimal value for λ can be approximated by
minimizing the RSS using k-fold cross-validation [44]. The precision with which we can
approximate λ increases with k; as does computation time with O(n), so linearly. We chose
k = 10 as a reasonable trade-off between optimizing λ and computational effort.

The lasso method requires a training and testing dataset to fit a model and deter-
mine its error. With n observations per year, we chose the number of training data to be
ntrain = bn× 0.7c and the number of testing data to be ntest = n− ntrain. The training data
are a uniformly distributed, randomly drawn sample without replacements of n.
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Figure 3. Probability densities of observed and fitted tweet counts. The observed counts and Poisson
fit are discrete, the other curves are continuous.

4.2. Identification of Representativeness Groups

The resulting regression models can be used to predict the number of tweets for
individual cells. The data used in this study are not necessarily spatially contiguous,
meaning that there are numerous cells that are in close proximity, but not direct neighbours.
Also, by splitting the data into testing and training cells through random sampling, some
contiguous patches of cells are broken up into sparse groups of individual cells that
are not spatially contiguous anymore. If the input data for the model are not spatially
contiguous, the results are neither. This is problematic, because we use a cell’s direct spatial
neighbourhood to determine their self-similarity. To mitigate this problem, we interpolate
the introduced gaps in the data. Specifically, we interpolate the prediction error, based on
which we quantify the self-similarity. To achieve this, we apply a buffer around the sparse
data regions and interpolate the prediction error within the buffered regions using inverse
distance weighting (IDW) [45]. The resulting regions are restricted in space by the buffer
threshold, but do not adhere to any administrative regions. We use the Getis-Ord G∗i [46]
statistic of the prediction error within the individual regions to identify subregions of
similar prediction errors. Because the G∗i statistic results in a z-score, we can categorize the
bottom and top five percent values as subregions of significant under- and overprediction,
respectively. We refer to these spatially coherent regions of similar prediction error as
representativeness groups (RG). To aid the qualitative interpretation of prediction errors,
we calculate the correlation coefficients between the total number of tweets and the values
of the different covariates separated by year and RG. An analysis of variance (ANOVA)
between the RG confirms that the inter-group differences are significant.

4.3. Spatial Models

The next step is to explore whether there are spatial effects governing the distribution
of prediction errors in the RG. For each region in an RG, we have the number of tweets and
the originally identified covariates in a given year. Fitting the data in to spatial lag, spatial
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error [47] and linear regression models allows us to determine if and how spatial effects
play a role in their representativeness. Given that we have three RG, eight years of data and
three models, we end up computing and evaluating 72 models for this use case. The spatial
models require a definition of neighbourhood. As most of the regions are disjoint, we chose
a fixed distance as neighbourhood criterion. We chose the distance parameter by plotting
the relative number of isolated regions as a function of distance and determining a visible
“elbow” in the plot, similar to the method of determining a suitable neighbourhood for
clustering [48]. Figure 4 shows the number of contiguous regions calculated for different
distances. The vertical line indicates the 200,000 m mark that we chose based on the plot.

Figure 4. The degree of isolation denotes the relative number of regions that are not connected to any
other. The distance was increased in steps of 10,000 m.

The spatial lag model is defined as y = ρW + Xβ + ε, where y is the dependent
variable, ρ denotes the factor weighing the spatial neighbourhood W, Xβ are the dependent
variables and ε is the error term. A higher, significant value of ρ indicates a spatial lag.
The spatial error model on the other hand fits the data to y = Xβ + λWε + ξ. Here,
λ denotes the factor determining the spatial effect, but it scales the errors of a region’s
neighbourhood instead of the predicted value. ξ is the remaining error in the model
not associated with the neighbouring errors. Note that despite representing different
concepts, both the regularization parameter of the lasso method introduced above and
the spatial error model parameter are typically denoted with λ. Further methodological
and implementation details can be found in [49,50], respectively. We use the coefficient of
determination R2 and the Akaike information criterion (AIC) [51] to compare the different
models and determine the most appropriate ones. The R2 can take values 0 ≤ R2 ≤ 1.
With increasing predictive power of the model, R2 converges towards 1. Similarly, the AIC
can be used to compare multiple models fitted to the same data. It penalizes both the
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information loss and the number of parameters of statistical models, which in turn result
in a higher AIC. Depending on which models show the best fit, we can make statements
about the relationship of covariates, tweets and spatial relations of regions.

5. Results
5.1. Generalized Linear Models

Each model contains a number of variables that were used as predictors. Figure 5
shows how frequently the different predictor variables were used in the generalized
regression models. The low number of predictor variables indicates that most models were
simplified significantly by the lasso process. The strong decimation of predictor variables
is expected because of the high values for τ and the VIF calculated above. For ease
of interpretation, we placed the individual parameters into demographic, educational,
geographical and income categories. Apart from the model intercept, that each model has
by definition, the most frequent predictor category are education and demography. Only
two variables of the income category are used. On the one hand, this is surprising given
that income is typically seen as a strong predictor of tweet numbers, on the other hand,
the strong multicollinearity in the data may lead to the exclusion of expected predictors
in the regularization process. The Euclidean distance to the closest city appears in three
models as the only geographical variable in the otherwise non-spatial models.

Figure 5. Predictors most frequently included in the regression models. The color coded categories
were added to aid interpretation.

After training and validating the models, we assessed their predictive power by run-
ning them against testing data and calculating R2 and the root-mean-square error (RMSE)
of the results. Table 3 shows some information about the GLM, their prediction errors and
the number of independent variables used in the regression model after regularization.
The individual variables are shown in Figure 7. Note that cases with only one predictor, it
is not possible to calculate for R2 because the prediction model can only produce a single
response value which is the intercept of the model. The same is true for cases with very
low values for λ, as is the case in years 2015 and 2017. The models perform very well
for predicting the overall number of tweets, as indicated by the small relative differences
between expected total and predicted total number of tweets. The RMSE confirms the
small divergence in the prediction of tweet counts. However, the R2 values are extremely
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small, which indicates that the GLM do not appropriately model the data distribution.
Because the distribution is largely governed by spatial effects, such as the population
density, we need to address the GLM’s shortcomings using spatial models.

Table 3. GLM regression prediction results.

Year RMSE R2 Expected Total Predicted Total Number of Coefficients

2012 951 0.048 25,332,967 24,852,308 4
2013 2614 0.048 88,051,737 85,525,985 4
2014 998,033 <0.001 164,234,436 540,682,220 4
2015 2444 — 51,360,339 51,035,748 2
2016 978 0.032 6,642,233 6,601,880 9
2017 1744 — 13,396,969 14,401,348 2
2018 3083 0.001 5,950,256 6,869,526 7
2019 562 0.01 2,131,888 2,240,683 33

5.2. Identification of Representativeness Groups

To explore the spatial effects in the data, we determined subregions of similar repre-
sentativeness. The initial delineation using a spatial buffer resulted in a set of 92 regions.
By calculating the G∗i statistic of the individual cells, we determined clusters of spatially
coherent similar prediction error values within the regions. We selected the cells containing
the bottom and top five percent of G∗i values as the ares of low and high representativeness,
respectively. Figure 6 shows an overview of these subregions and more detailed zoom
of the States Colorado (A) and North Carolina (B) to showcase the results in more detail.
To represent the results of the entire study period, the map shows which RG appeared
most frequently in each cell. For better interpretation, state capitals and cities above
100,000 inhabitants are added as dark grey dots. Areas drawn in red represent regions
where the actual number of tweets was higher than predicted. This effect is pertinent in
areas with high population numbers such as the densely populated coastal areas, but also
large cities inland. Areas of overrepresentation are often situated in the proximity of large
metropolitan areas, but also as individual regions. North Carolina exhibits a typical pattern
of underrepresentation in highly populated areas, indicating that the number of modeled
tweets is smaller than observed.

Figure 6. All identified subregions accumulated over the entire study period. The states of Colorado
(A) and North Carolina (B) are highlighted to show the results in more detail.
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Calculating the grouped regional correlation coefficients between the covariates and
the number of tweets results in the metrics shown in Figure 7. From top to bottom,
the figure shows, for every year, the correlation coefficient between the number of tweets
and covariates that were integrated in the respective model. For each year and covariate,
there are three color coded results, representing the RG. The RG appear to be consistently
grouped. This is an indicator that the RG are an appropriate tool to split the data into
groups that differ in representativeness, but are also consistent in their covariates. Using
ANOVA to confirm this visual impression, under the null hypothesis that there is no
significant difference in the group means, yields an F-value of 20.3 (the critical value for
p = 0.001 is 7.2).

Figure 7. Correlations of grouped parameters and number of tweets, separated by RG and year. All
p-values are <0.001.
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5.3. Spatial Models

To explore the relations between the RG, we compare effect sizes predicted by different
spatial and non-spatial models. For each year and RG, we fitted a spatial lag, a spatial
error and a linear regression model to predict the number of tweets from the covariates
identified by the respective year’s GLM. Table 4 shows the different spatial and linear model
parameter estimations. For reasons of space, the RG are encoded numerically. We can see
that, for the 24 possible combinations of year and RG, the spatial error model is the most
appropriate one 12 times, the linear regression model ten times and the spatial lag model
only two times. We can also see that especially RG 1 and 3, so the underrepresentative and
overrepresentative ones are most consistently linked with the spatial error model (ten out
of 16 times), whereas the linear regression model is the best fit for five out of eight data
sets in the medium RG. It is worth noting, however, that the differences in AIC and R2 are
relatively small overall.

Table 4. Parameter estimates and evaluation metrics of spatial error, spatal lag and linear regression models. The best
models per year and representativeness group are highlighted in bold. RG 1, 2 and 3 are short for the underrepresentation,
medium and overrepresentation groups.

RG Model Coefficient 2012 2013 2014 2015 2016 2017 2018 2019

AIC 6081.755 5540.812 5239.346 4801.256 7892.029 7847.887 7969.655 9373.843
R2 0.938 0.971 0.967 0.703 0.720 0.572 0.624 0.724Error
λ 0.335 *** 0.167 . 0.165 * 0.108 0.094 0.230 ** 0.074 0.125

AIC 6098.419 5542.700 5243.832 4801.227 7893.525 7852.876 7970.497 9375.581
R2 0.934 0.971 0.966 0.703 0.719 0.565 0.623 0.723Lag
ρ 0.044 0.035 −0.003 −0.072 0.019 0.089 0.003 0.012

AIC 6097.567 5541.856 5241.849 4800.470 7891.649 7852.607 7968.502 9373.627

1

Linear R2 0.933 0.971 0.966 0.701 0.719 0.563 0.623 0.723

AIC 23,401.764 30,610.640 30,912.852 29,584.225 26,246.104 34,212.154 31,644.926 20,700.685
R2 0.982 0.987 0.991 0.924 0.993 0.759 0.967 0.999Error
λ 0.083 0.023 −0.129 0.083 0.139 0.041 0.059 0.129

AIC 23,402.197 30,610.687 30,914.882 29,584.730 26,248.464 34,212.282 31,645.362 20,699.040
R2 0.982 0.987 0.991 0.924 0.993 0.759 0.967 0.999Lag
ρ −0.009 0.002 −0.003 0.022 0.003 0.007 −0.001 0.007 .

AIC 23,400.489 30,608.704 30,912.981 29,582.894 26,246.496 34,210.290 31,643.364 20,700.583

2

Linear R2 0.982 0.987 0.991 0.924 0.993 0.759 0.967 0.999

AIC 5769.676 7075.781 7130.653 5702.140 2452.646 2250.300 2857.766 5035.856
R2 0.780 0.834 0.898 0.510 0.879 0.454 0.831 0.973Error
λ 0.206 * 0.221 ** 0.283 ** 0.264 ** 0.190 . 0.101 0.167 0.813 ***

AIC 5774.082 7082.438 7134.592 5706.999 2455.472 2250.380 2854.669 5167.299
R2 0.778 0.831 0.897 0.502 0.877 0.453 0.833 0.963Lag
ρ −0.070 0.026 0.105 * 0.150 . 0.038 −0.075 0.158 * 0.069 *

AIC 5773.817 7080.692 7139.220 5708.123 2454.115 2248.910 2857.908 5169.773

3

Linear R2 0.776 0.831 0.895 0.497 0.877 0.452 0.829 0.963
Note: *** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1.

We can extract the individual parameter estimates from the 24 best models above
and compare them to address the question of which covariates play a stronger role in the
different RG. Figure 8 shows the different covariates’ parameter estimations on the x axis
and the covariate names, grouped by year, on the y axis. The figure is therefore a more
granular representation of all models shown in bold in Table 4.
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Figure 8. Effect size estimates for the covariates of the best performing models, separated by RG
and year.

Each individual datum in the figure represents the parameter estimate for a single
covariate of the most appropriate model for a given RG and year. The significant absolute
value of a covariate indicates the effect size on the dependent variable, the number of
tweets. Its sign indicates whether high or low values of the covariate lead to higher or
lower values for the dependent variable. The figure can therefore be used to interpret the
role of individual covariates in the prediction models. A negative value indicates that the
respective covariate within its RG and year is lower than expected, a positive one indicates
the opposite.

The figure shows a number of noteworthy effects. There is a large discrepancy to
Figure 7, which appears much more grouped. As above, we can quantify this observation
using ANOVA. We can confirm the visual impression, under the null hypothesis that the
group means do not differ significantly, with an F-value of 1.0 (critical value for p = 0.001 is
7.2) and show that for the parameters the clear separation by RG is not evident anymore
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on this level. On the contrary, especially for 2019, the under- and overrepresentative RG
appear to be almost divergent. We conclude from this that the different RG alone are
not granular enough to adequately explain the number of predicted tweets and therefore
warrants closer examination of individual covariates. Looking at individual parameters
and their values, the very lowest parameters are consistently the ones associated with a
young age, such as Kindergarten and first grade education levels, especially in the years
2012 through 2014. Assuming that Twitter users abide by the company’s terms of service
(https://twitter.com/en/tos accessed on 7 May 2021), they would be at least 13 years old
by definition, which would be one way to explain the strong effect. However, the effect
seems to change in later years and seems to be stronger divided by RG. Another effect that
was to be expected is that the distance to the nearest city is close to cancelled out based on
the maps shown above. There are also covariates with a consistently high association with
prediction quality, such as college attendance and age groups in their twenties. Aside from
the parameters themselves, an important observation is the fact that many parameters are
unstable throughout the years. This makes it evident that the overall question of whether a
set of data is representative of a population is more than a mere yes/no one.

6. Discussion

The GLM results show that the non-spatial models alone are not suitable for adequate
predictions beyond the total number of tweets. Even though for the total number of tweets,
the predictions produce errors in an overall acceptable magnitude, the consistently low
R2 values indicate that the real and predicted data differ strongly in their distribution.
However, composing RG and fitting spatial lag and error models allows us to explore the
spatial characteristics of prediction results in a more accessible form. The results confirm
the significant spatial relationships among the RG, in most cases in spatial error models.
The predominance of spatial error models in the results suggest the presence of spatially
clustered unknown covariates that would benefit the model. In case of linear models
explaining the RG, the data within the specific RG are not strongly dependent on their
spatial neighbourhood. In the remaining results, where the spatial lag model is most
appropriate, the covariates of an RG in the model are significantly linked to the covariates
in neighbouring RG.

We show that Twitter data can be grouped by their representativeness, which helps
in interpreting prediction results and in reducing erroneous interpretations. Given a set
of Twitter data and covariates, we show how to calculate and interpret RG. The methods
are not limited to Twitter data, but can be applied to any dataset for which a reasonable
amount of data points and adequate covariates are available. The choice of five percent as
cutoff values for the confidence intervals of different RG is largely arbitrary. The method
itself is not limited to any number of RG, but three groups make for interpretable results
while still being able to convey a lot the complexity of the underlying data. The large
number of spatial error models among the best performing ones may indicate inadequacies
in the underlying data. This could be explained by the relatively high multicollinearity in
the covariates. Despite being having a large number of covariates, their high similarity
limits their explanatory power.

Our preprocessing routine for zonal disaggregation of the county-level variables
assumes an equal distribution of each variable within the county, which may lead to
misrepresentations of different groups within the county. The process biases the covariates’
distributions within a county towards the distribution of the population number and
therefore increases the multicollinearity. This in turn leads to stronger penalties in the
lasso regularization, thereby impacting the explanatory power of our results. On one hand,
this approach adds an error term to our models, but on the other hand, we see this as an
acceptable trade off in order to make use of the high resolution of the input data and to
counteract the MAUP imposed by county boundaries.

The input data for the prediction models are in parts interpolated using IDW to fill
gaps between cells introduced by the random sampling process for model training. A risk

https://twitter.com/en/tos
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of this process is the possibility of obscuring outliers in the data, if the interpolation occurs
in an outlier cell.

The exclusive usage of georeferenced tweets in this study eliminates the majority of
tweets from the population. This leads to a selection bias of unknown magnitude. However,
this selection is necessary, because the spatial nature of the tweet representativeness is at
the focus of this study. As a consequence, the models presented in the study only apply to
georeferenced tweets.

Another important aspect of using geotagged data is that the study adheres to ade-
quate privacy by design guidelines [52,53] to protect the users who contributed the data.

The data from 2014 contains by far the highest number of tweets and also its distribu-
tion and descriptive metrics differ strongly from the other years. We speculate that this
is the reason for the models to perform particularly poorly for this year. Possible causes
for this outlier are changes in Twitter’s API, great overall user activity on the platform
or changes in Twitter user groups. The latter would also explain the larger number of
identified geographic and socio-demographic parameters in the GLM in the years after
2015. Another aspect of the data that could influence on the results is the input data’s
internal structure. For example, the male and female age groups are binned with highly
variable age intervals. Small, equal interval bins could allow for more detailed insights
within the RG.

As Twitter discontinued their precise geotagging functionality that this work is built
on in favour of a point-of-interest location scheme, future studies of a similar study design
need to account for the difference in location precision. This could either be achieved by
procuring data from a different, more precise source or by developing methods to account
for the difference in data quality.

This should also be a reminder to practitioners who rely on the availability of a single
data source, especially in the case of a private company which gives no data availability
and quality guarantees, should be carefully considered.

7. Conclusions and Outlook

We addressed the first research question by introducing the RG as a concept to make
prediction errors and the differences in covariates interpretable for users. Utilizing this
concept in our use case, we showed that covariates predicting the number of tweets are
qualitatively and quantitatively highly variable over time.

The model estimates resulting from the 24 most appropriate spatial models show how
differently socioeconomic groups are represented within their RG and over time. One effect
in these results pertaining to the second research question is the fact that some individual
socio-demographic subgroups are represented differently over time. For example the
Kindergarten or 1st Grade covariates, which vary strongly depending on the year, whereas
the Distance to City is very stable in comparison. This effect also becomes clear when
considering that some of the socio-demographic variables are temporally dependent.
For example, if the 1st Grade variable was identified as significant in 2014, it would be
reasonable to expect the 2nd Grade variable to be significant in 2015, the 3rd Grade in 2016
and so on. These observations lead to the conclusion, that the representativeness of many
covariates can vary quite significantly. Therefore, practitioners should carefully evaluate
existing models and assumptions from older models when applying them to new data.

The results of the different spatial models pertain to the third research question. We
showed that, depending on RG and year, most RG can be most appropriately explained
using spatial error models. However, some RG can also be explained using linear or spatial
lag models. This knowledge can inform the decision process of whether it is appropriate to
use the present data for predictions or there is need to identify additional covariates. It can
also strengthen the decision of whether using a spatial model for predictions is appropriate.

Other strains of research in a similar direction could include comparative studies with
other communication platforms than Twitter, for example cell phone connection, credit
card usage or other platforms of geo-social media data. One shortcoming in our work is its
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limited geographic extent. Using only part of the US as a study region limits its significance
to mostly that area. Twitter-based studies are conducted all over the world, however, which
warrants similarly designed studies in other regions of the world as well. It will, however,
hardly be possible to reproduce this exact study design, because it relies on demographic
data which varies in availability, thematic composition, and reliability across the world.
A suitable candidate for a similar study across several countries could be the European
Union. Because of the largely homogenized geodata infrastructure [54], setting up a large
comparative study across the entire area would be feasible.
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