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Abstract: Indoor evacuation efficiency heavily relies on the connectivity status of navigation networks.
During disastrous situations, the spreading of hazards (e.g., fires, plumes) significantly influences
indoor navigation networks’ status. Nevertheless, current research concentrates on utilizing classical
statistical methods to analyze this status and lacks the flexibility to evaluate the increasingly disastrous
scope’s influence. We propose an evaluation method combining 3D spatial geometric distance and
topology for emergency evacuations to address this issue. Within this method, we offer a set of
indices to describe the nodes’ status and the entire network under emergencies. These indices can
help emergency responders quickly identify vulnerable nodes and areas in the network, facilitating
the generation of evacuation plans and improving evacuation efficiency. We apply this method to
analyze the fire evacuation efficiency and resilience of two experiment buildings’ indoor networks.
Experimental results show a strong influence on the network’s spatial connectivity on the evacuation
efficiency under disaster situations.

Keywords: 3D; indoor evacuation network; spatial influence; robustness; isolation

1. Introduction

Emergency evacuation is a process in which people in dangerous areas have to be
guided or transported to safe places. It plays an essential part in crisis management,
saving people’s lives and property. Since the occurrences of some notable emergency
events, such as terrorist attacks on 11 September 2001 and the 2005 London bombing
(which occurred in indoor environments), increased attention has been paid to indoor
emergency evacuation [1–4]. We could classify the practical usages of this type of research
into three categories: (1) to optimize the spatial designs of indoor environments; (2) to
improve the configurations of the emergency response facilitates (exit lights, fire hose) for
firefighting; (3) to assist with generating evaluation plans.

Indoor emergency evacuation is a complex phenomenon influenced by many factors,
such as human awareness and interactions, hazard spread, and indoor environments.
With the increased interest in indoor emergencies in recent years, many researchers have
conducted studies to study the influences of these factors on evacuation efficiency in indoor
environments during emergencies. The authors of [2] proposed an agent simulation model
that combines human behaviors to predict the spatial accessibility of a specific building
under fire disaster situations. The authors of [1] combined 3D spatial neighboring with
topological relationships to implement a CA-based building evacuation simulation sys-
tem. In [3], the authors applied a multigrid model to study the pedestrian evacuation
process under blind conditions and discovered several critical characteristics of the evac-
uees. The study in [5] checked potential bioterrorism attacks on subway stations and
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inspected the influences of hazardous materials on the evacuees. However, the studies
mentioned above mainly focused on human behaviors and interactions during evacuations.
To the best of our knowledge, few works have evaluated spatial units’ connectivity in 3D
environments for indoor emergency evacuation.

2. Related Works

An important aspect related to indoor emergency evacuation is navigation. During
emergencies, various obstacles (e.g., fires, floods, and plumes) can affect road networks,
and people in dangerous places need guidance to reach safe areas [6]. Unlike outdoor
navigation, indoor navigation occurs in 3D spaces and requires both the topological and
geometric 3D information of route planning environments. Many efforts have shed light
on developing models and methods for the efficient representation of 3D data for indoor
navigation purposes [7–11]. In recent decades, with the increased attention paid to in-
door emergencies, many researchers have directed their interests to indoor navigation
in disastrous situations and have developed new models and methods to support routing
in indoor environments. The studies in [12–15] systematically exploited a 3D graph net-
work model integrated with the metric distance measure to help emergency responders
and evacuees determine the safest egress paths quickly. The authors of [16] fully applied
a three-dimensional geometric network to compute evacuation routes for evacuees and
generated two types of “almost-optimal” and “almost feasible” solutions considering time
constraints. However, these above works only addressed route generation in different
disaster situations, and few researchers have paid attention to analyzing the robustness of
networks affected by hazards. Because 3D networks play a major role in the generation
of indoor routes, there is also a need to analyze the indoor routing network understudy’s
status to facilitate route calculations during emergencies.

Network representations have been used in various fields to model real-world prob-
lems, such as social networks, traffic networks, and power networks. Researchers have
developed a rich set of methods to address these problems and analyze networks for
various purposes [17,18]. The authors of [19] proposed multiple centrality assessment
systems to evaluate the nature of a network from a primal perspective. This system can
show the metric distances and other indices of the centrality features of the studied graphs.
For general cases regarding network connectivity statuses, References [20,21] explored
some essential characteristics and dynamics for urban street network gridlocks and devel-
oped a model to reproduce hysteresis and network gridlocks. They applied the developed
model to significant city networks and discovered some phenomena from the whole net-
work’s perspective. In [22], the authors proposed a robustness analysis model based on
short-term variations in supplies. This model is efficient for demonstrating the vulnerabili-
ties of specific networks. In [23], the authors conducted a systematic structural vulnerability
analysis for a large-scale power grid structure according to complex network principles.
This model can identify the vulnerable spots in a network. The authors of [24–26] studied
the community structures existing in several large networks and the influences of their ef-
fects during random and infectious attacks. In [27,28], the authors investigated the impacts
of illness carriers among a complex network and found that the most influential spreaders
are the nodes that have the highest k-decomposition values instead of the considerable
connectivity values suggested by the classical evaluation methods. Although these exist-
ing network studies have provided insights into navigation networks’ evaluation from
a topological aspect, they lack consideration for 3D geometric information, limiting their
applicability concerning the analysis of indoor navigation networks.

In this study, we investigate the evaluation of networks for indoor emergencies and
propose a method to analyze networks’ robustness under emergencies. In this method,
we use the 3D spatial distance as the edge weight for the generation of navigation paths and
consider both the network topology and 3D spatial distance in the network analysis. The 3D
spatial distance usage allows us to evaluate the given 3D network more realistically and
holistically. Furthermore, we introduce hazard models to evaluate the connectivity status
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of the indoor network. Thus, by integrating hazard models, we can estimate the influence
of hazards on the network structure over time (i.e., by dynamically dividing the main net-
work into isolated subnetworks) and update the weights of edges in the indoor navigation
network. We propose a set of indices for the evaluation of nodes and the whole network.
These indices can help us examine the network’s status in a 3D environment affected by
hazards and identify vulnerable nodes and edges, facilitating the generation of evacuation
plans for indoor emergencies. We organize the rest of this paper as follows: in Section 3.1,
we present the indices proposed for the connectivity analysis of 3D indoor navigation
networks. In Sections 3.2–3.4, we take a fire event as an example and present our method
to study the isolation phenomena of an indoor network affected by fires. In these sections,
we carry out experiments and test our method with two buildings’ datasets. Section 3.5 de-
scribes our experiments and Section 4 presents the experiments results. Finally, in Section 5,
we provide our conclusions and suggest future research directions.

In the next part, we present a set of indices that define network connectivity at
the global and local levels. At the global level, we use selected indices to examine the con-
nection efficiency of the entire network. We evaluate the connection effectiveness for
the neighborhood of specifically studied graphs and estimate the local influences of the con-
sidered neighboring nodes or edges at the local level. The developed indices use nodes as
fundamental elements for examining purposes and integrating spatial correlations with
nearby objects to describe the same spatial characteristics in the indoor navigation network.
We generally elaborate on the classical indices that play the function of measuring the graph
statuses below:

A. Gamma index

The gamma index is a measure of connectivity that considers the relationship between
the number of observed links and possible links. The value of gamma is between 0 and 1,
where a value of 1 indicates a completely connected network, which would be extremely
unlikely in reality. We use this index to measure the progression of a network over time.

B. General transitivity

Transitivity is the overall probability of having its adjacent nodes be interconnected,
thus revealing tightly connected communities. We use the measure of general transitivity
that is calculated by the average clustering coefficient for all nodes.

C. Average node path length

The average shortest path length is a measure of efficiency representing the average
number of steps needed to reach two distant nodes in the graph. The lower the result is,
the more efficient the network in providing ease of circulation. In this paper, we use a node
as the unit of measuring the average path length.

D. Graph diameter

The graph diameter is the length of the shortest path between the most distanced nodes
of a graph. It measures the extent of a graph and the topological length between two nodes.

E. Local connectivity

Connectivity is the minimum number of deletion elements to separate the remaining
nodes into isolated sub-graphs. We introduce the concept of local connectivity generated
by the arithmetic mean of all nodes’ connectivity values.

3. Research Methodology
3.1. The Proposed Method

In the following part, we show the six indices definitions of the proposed method for
network evaluation. The first index is the clustering coefficient and an indicator for de-
scribing the spatial influence of removing a specific node in the network. The second index
is the average cost of local neighbor node counts and depicts the number of neighboring
nodes of a specific node covered by the ordinary node distance scope. The third index
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is the 3D spatial distance, which describes a neighboring node’s spatial closeness from
a specific node, and so it is a spatial influence indicator for this source node. The fourth
index is the meaningful result count used to depict the mean count for the generated
path result. The path results mentioned in this paper are all generated by the Dijkstra
algorithm. The fifth index is the average time cost of pathfinding and describes the general
case of the time cost spent on the pathfinding process. The last index is the average length
of the path used to demonstrate the general distances of output paths; two sub-indices
implement it: the average path lengths measured by the node distance and spatial distance.
Moreover, in Equations (1)–(9), we use the symbol v to represent a specific node; the symbol
e to represent an edge; the symbol V to represent the complete node set; and the symbols p
and P to represent the generated path and complete path set in the corresponding graph,
respectively. Table 1 summarizes the index symbols used in this paper.

Table 1. Index symbols of the proposed method.

Symbol Meaning

v the current considering node
V the complete node set
Vi the node i’s neighboring node set

euw the edge collection formed by nodes u and w in the set Vi
u w the nodes other than the considering node
E the complete edge set
|e| the edge e’s length
kv the size of the set Vi
n the number of considering nodes

SDvw the spatial distance between selected nodes v and w
Q the total average number of nodes outside the SD scope

SD the average spatial distance between all selected nodes
Qv the number of nodes outside the SD scope for the considering node
Cv the regional connectivity index for the specific node
Cl the average regional connectivity index of all nodes

Taop the average time cost of successfully generating evacuation paths
Tp the average time cost of a specific generated evacuation path
Np the node number of a specific evacuation path
p the current evacuation path of the considering node
P the complete evacuation path set
t the time cost of generating an evacuation path

Cr
the meaningful result count for a specific test successfully generating evacuation
paths

Cm
the average meaningful result count of all tests successfully generating
evacuation paths

Czero
the zero set of the meaningful result count for tests unsuccessfully generating
evacuation paths

Cnull
the null set of the meaningful result count for tests unsuccessfully generating
evacuation paths

I the node number of the complete node set
Laop the average length of generated evacuation paths
Lp the length for a specific generated evacuation path

NDp the average node distance of generated evacuation paths
NDvivi−1 the node distance between two nodes vi and vi−1

SDp the average spatial distance of generated evacuation paths
SDvivi−1 the spatial distance between two nodes vi and vi−1

A. Node clustering coefficient

Equation (1) produces the clustering coefficient for a specific node v. To compute this
index, we first calculate the number of edges in node v’s neighboring node-set Vi after
the deletion of node v from the navigation network. euw represents the edge collection
formed by nodes u and w in the set Vi. kv is the size of set Vi, which equals the number
of nodes in this set. This index illustrates the influence of a selected node on the entire
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navigation network. Since this index’s value represents the importance of the considered
node in the system, a larger value means that this node’s deletion would have a lesser
impact on the system’s passing efficiency.

Cv =
|{euw : u, w ∈ Vi, euw ∈ E}|

kv(kv − 1)/2
(1)

B. The average cost of the local connectivity index

When calculating the average cost of the regional connectivity index for all nodes
in the network, we aim to measure the node deletion process’s average influence level
in the system. This value indicates a general perspective of the neighborhood clustering
status in Equation (2).

Cl =
1
n ∑

v∈V
(Cv) (2)

C. 3D spatial distance and spatial closeness of a neighboring node

Aiming to demonstrate the considered navigation network’s 3D spatial distribution,
we introduce two coefficients generated by Equations (3) and (4). In Equation (3), SDvw
represents the 3D distance between any two connected nodes v and w in the navigation
network, and |e| represents the number of edges in the same system. The average spatial
distance cost of edge SD shows the mean travel distance for existing edges. Currently,
these edges are undirected; we will consider directed edges in future work.

SD =
1
|e| ∑

v,w∈V,v 6=w
SDvw (3)

Equation (4) generates a quantitative index Q for illustrating the spatial closeness of
neighboring nodes in the navigation network, and two steps accomplish the computation of
this index computation. The first step computes the number of nodes spread in the spatial
scope around the considered node v. In detail, this scope is a 3D ball formed by using
the 3D coordinates of v as the center and the value generated by Equation (3) as the radius
SD. In other words, there are the nodes with spatial distances SDvw smaller than SD, where
w represents any neighboring node of the current considered node v. After setting up
covering balls, we generate an adjacent set of Qv that contains every ball’s covering nodes.
Then, in the second step, we calculate the arithmetic mean Q for the entire navigation
network with the previously defined Qv values for all nodes by dividing this sum by
the total node number n.

Q =
1
n ∑

v,w∈V,v 6=w,SDvw<SD
(Qv) (4)

D. Meaningful result count

Let us first define a result count Cr that originates from calculating the meaningful
evacuation paths passing a specific node marked with the label t. Therefore, the meaningful
result counts, Cm, equals the sum of elements Cr neither in the zero nor null set (Czero ∪Cnull)
that either cover the case of the considered node as the evacuation target or the case in which
there is no accessible, safe evacuation path to the target node. Moreover, these values
mostly come from a test that cannot generate any meaningful evacuation path or exceeds
each path generation process’s time threshold.

Cm = ∑
t/∈(Czero∪Cnull)

(Cr) (5)
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E. The average time cost of path finding

The average time cost Taop of pathfinding is the mean value among every specific type
of path generating principle for the compared methods. Moreover, it is the average sum
(generated by subdividing the path node number Np) of the time cost Tp for each path p
in the complete evacuation path set P.

Taop =
1

Np
∑
p∈P

(Tp) (6)

F. Average length of generated paths

The average length of path finding Laop is the average value (generated by subdi-
viding the path node number Np) of the generated path distance Lp for each successfully
generated path p in the complete path search set P. This value is introduced to reflect
the effect of applying different optimization principles for our solution. For each path
p = {v1, . . . , vi, vi+1, . . . , vI}, p ∈ P, I is the number of nodes along path p, and we use two
distance types: the node distance and spatial distance; thus, the following two subsections
describe these two distances for the average length of a path in detail.

Laop =
1

Np
∑
p∈P

(Lp) (7)

1. The node distance NDp is the count NDvivi−1 of every successive node pair along
a path and is measured in counts (Equation (8)). Moreover, it reflects how the gener-
ated evacuation path traverses many critical nodes. Here, vi denotes a node in the com-
plete node set I for the generated path p.

NDp =
I

∑
i=2

NDvivi−1 (8)

2. The spatial distance SDp is the sum of the spatial distances SDvivi−1 of every two suc-
cessive nodes along a path measured in meters (Equation (9)). It shows the geometric
space that is covered by the generated evacuation path. Here, vi denotes a node of
the complete node set I for the generated path p.

SDp =
I

∑
i=2

SDvivi−1 (9)

3.2. Isolation Study and Recovery of the Spatial Navigation Network for a Spreading Fire

Unlike the static environments of typical navigation situations, evacuation navigation
must take the dynamics of the spreading hazards into account. As a threat develops, many
edges and nodes in the navigation network become affected and unavailable. This situation
can deteriorate when the threats block all main egresses. Under this circumstance, many
isolated subnetworks can emerge due to their egress routes becoming blocked, and we call
this situation the isolation of the navigation network.

The isolation phenomenon can significantly hinder evacuation efficiency, and under
extreme situations, it can even paralyze the entire evacuation network due to the unavail-
ability of all safe egress routes. Nevertheless, emergency responders can apply ladders
or personnel lowering devices to construct new egress paths. Therefore, the resilience
of the navigation network for evacuation purposes is also crucial. From our perspective,
we can split fire disasters’ primary development process into three phases: the ignition
phase, the entire development phase, and the egress closure phase. These phases have
different spatial influences on the navigation network. In the first phase, only the fire source
and its nearby surrounding region are inaccessible. In the second phase, fire development
is severe, and it paralyzes a large part of the navigation network. In the final stage, hazards
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block most critical nodes in the navigation network, and no safe egress paths are available.
We are currently only considering a particular ignition position and carefully studying
the multiple ignition positions in future work. Furthermore, we would also conclude
the difference of the fire resistance features of various building and furniture materials, for
example, plastic, wood, and paint, in future research on the fire spreading models.

3.3. Estimation of the Spread of Fire in a 3D Navigation Network

As previously mentioned, the spread of a fire has a spatial influence on the navigation
network. We can describe this process by marking the passage statuses of nodes covered by
the hazard, such as transit areas filled with fire plumes and flames, as blocked. Therefore,
a fire model must estimate fires’ spatial influence on the navigation network and obtain
information about the building’s navigation conditions during disasters.

In this study, we use a fire model (Equation (10)) to estimate the fire’s spatial influence
during the full development phase. In this equation, x0, y0, and z0 represent the fire source’s
initial coordinates; sx, sy, and sz represent the speed of the spread of the developing fire
across three axes. t0 represents the starting time of the current phase, and t represents
the present time. xmin and xmax represent the current minimum and maximum coverage of
the fire along the X-axis. The same explanation also applies to ymin and ymax for the Y-axis
and zmin and zmax for the Z-axis. Here, t represents the development time for the fire event.

xmin = x0 − sx × (t− t0)
xmax = x0 + sx × (t− t0)
ymin = y0 − sy × (t− t0)
ymax = y0 + sy × (t− t0)
zmin = z0 − sz × (t− t0)
zmax = z0 + sz × (t− t0)

(10)

3.4. Pre-Measures for the Recovery Analysis of an Indoor Navigation Network

As discussed at the beginning of Section 3, the spread of a disaster can reorganize
the original navigation network. This phenomenon can demonstrate the isolation between
several nodes and their neighbors due to the blockage of their connecting edges by hazards.
This situation can result in two critical issues affecting navigation operations. The first
issue is to find the minimum influence paths between these nodes, which are generated by
checking the Laop values from Section 2 and are named as isolated subnetworks. The second
issue is to use the smallest number of nodes possible to address the dynamically deterio-
rating navigation network. To address these two issues, we rely on the spatial sorting of
nodes across both the primary and isolated subnetworks, and these nodes are the same as
the nodes in the building structure’s skeletal framework. We have not discussed furniture,
fixtures, and equipment (FF&E) in the current research stage due to the lack of reliable data
for these objects. Moreover, according to the sorting results, only some sorted nodes are
introduced to generate minimum influence paths across the navigation network.

3.4.1. Spatial Sorting of Nodes

We can choose different principles for sorting nodes, such as sorting them by their
node distances to the fire region or their spatial distances to the fire region and applying
them in this study. In our opinion, the most critical issue for evacuation navigation is to
determine the effect of the 3D spatial distance weights on the network. Therefore, we set
different groups of nodes by evaluating the node distances to the fire region and the fire
region’s spatial distances. We demonstrate this concept in Figure 1. There are 26 nodes to
search for the emergency evacuation solutions in this figure. We optimize the evacuation
searching process by assigning different priorities to the 22 nodes (the 4 nodes in isolated-
region 1 are filtered out due to disaster coverage), as shown in Table 2. Next, we take nodes
C and F as examples to explain the sorting principle. Because node C connects isolated
region 1 with the minimum depth 1 to node J, the ’node distance’ for node C from isolated
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region 1 is 1. Following this principle, node F’s ’node distance’ is also 1 for isolated regions
1 and 3. Therefore, we can receive the sorted region S1’ composed of nodes C, F, G, H,
and I. We can finally generate three sorted regions: S1, S3, and S5, with node distances of 1
to the isolated-region 1. Thus, we select these regions with higher priorities than those of
other sorted regions with node distances larger than 1 to isolated-region 1 in Figure 2.

A

E I
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T

U

V

B
H

C

D

G

F
K

L

N
O

S
Z Y

X
W

I1

1

I2

I3

I4

Figure 1. An example of spatial grouping mechanism for an evacuation network.

Table 2. Index and attribute value of the navigation graphs for the experiment buildings.

Node Belong to Isolated Subnetwork Node Distance Connect with Subnetwork Sorted-Region

C I2 1 I1 S1
F I2 1 I1,I3 S1
G I2 1 I1 S1
H I2 1 I1 S1
I I2 1 I3 S1
A I2 2 Empty set S2
B I2 2 Empty set S2
D I2 3 Empty set S2
E I2 2 Empty set S2
L I3 1 I1,I2 S3
P I3 1 I1,I4 S3
M I3 2 I1,I3 S4
N I3 3 I1 S4
O I3 2 I1 S4
S I4 1 I1 S5
T I4 1 I1 S5
U I4 1 I1,3 S5
V I4 2 Empty set S6
W I4 3 Empty set S6
X I4 2 Empty set S6
Y I4 3 Empty set S6
Z I4 2 Empty set S6
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3.4.2. Partial Selection of Nodes for Path Finding

For the spatial sorting of nodes, we arrange the sequence of nodes by a specific stan-
dard, such as the node distance to the fire region, and we fetch only the nodes relevant
to the pathfinding process. For this purpose, we utilize the first 20% of the sorted nodes
for evacuation path generation according to the Pareto principle [29]. Additionally, we in-
troduce the 10%, 50%, and 80% cases of all nodes as the comparison group. The purpose
of using a different number of nodes during navigation is to balance the volume of node
data and the accuracy of the generated evacuation paths. When the number of nodes
is extensive, using all nodes in the evacuation path generation is not optimal for saving
time. Using the necessary number of nodes for the required computation is a wiser option.
To this end, we can only select the exact number of nodes by fully understanding which of
the nodes are crucial during evacuation path generation operations.

Figure 2. An example of spatial grouping result for an evacuation network. The dotted lines indicate the isolated networks
that are directly influenced by the fire in I1 (in gray); the dashed lines indicate the isolated networks that will be potentially
influenced by the fire in I1 (in gray).

3.5. Introduction of the Studied Buildings

We evaluate our method with the datasets of two buildings. The first is a building
at the Henan University of Urban Construction (HUUC) (Figure 3). The other one is
the Meiluocheng (MLC) building (Figure 4). The first building is located on Longxiang
Road, Xincheng District, Pingdingshan, China, and comprises three sub-buildings, named
parts A, B, and C (part A in the north, part B in the middle, and part C in the south).
All three parts are connected by corridors distributed along the west and east wings.
The HUUC building has four floors and is currently the primary teaching and research
facility occupied by the school of surveying and urban spatial information. Therefore,
evaluating this building’s navigation network connectivity can reduce the risk of losing
a life when facing fire events. The MLC building is on Zhaojiabang Road in Xuhui District,
Shanghai, China; it has eight floors in the main structure and is famous for its giant glass
ball, a landmark of Shanghai City.
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First, we establish the two test buildings’ graphs by applying middle axis extraction
and key node extraction to the doors, corners, and stairs. Next, we set the fire sources with
the following settings: we place the fire source at one node at a time and traverse the entire
navigation network after all simulations, and the initial phase for the fire emergency is
phase 2. In this phase, the accessibility of the neighbor nodes within a specific range
of the fire source is disabled. We set this scope with parameters defined in the SFPE
handbook [30] under normal fire spreading conditions: the fire-affected areas increase with
a speed of 0.0015 m/s for 280 s and with a developing rate of 0.30 m/s for 140 s. The exit
nodes for the MLC building are nodes 1111, 111,122, 111,164, 111,155, and 111,158. The exit
nodes for the HUUC building are nodes 15, 16, 22, 25, 26, and 37.

As demonstrated in Figure 5, the navigation graph of the HUUC building clearly
shows its four-layer distribution and three-part spatial division. Additionally, we can
observe that part A contains many small spatial subdivisions, part B has the most intensive
spatial connections among the three parts, and part C has the largest span of distributed
objects. We can explain this spatial phenomenon as follows: part A contains many midsized
classrooms for fewer than 50 students to use. Part B has many school offices, staff conference
rooms, bathrooms, and two lecture halls. From Figure 6, we can see that the MLC building
has two main groups of navigation nodes and another group to connect them. Additionally,
due to the fire safety code, many egress routes lie around these groups of nodes to quickly
evacuate customers and employees during emergencies.

Figure 3. South view of the 3D model for the Henan University of Urban Construction (HUUC) building.
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Figure 4. A graphic demonstration of the 3D model for the Meiluocheng (MLC) building.

Figure 5. East view of the navigation graph for the HUUC building.

Figure 6. Navigation network demonstration for the MLC building.
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3.6. Experimental Configuration

We aim to introduce four new characteristic indices for the studied navigation graph:
the number of edges outside the 3D covering ball formed by using SD as the radius and
the current node as the center, the number of edges inside this ball, the sum of the nodes
outside this ball, and the sum of the nodes inside this ball. These four indices illustrate
the edge weights compared with SD and the node quantity relative to the average length,
and they show the experimental navigation graph’s spatial distribution features. In ad-
dition to the above indices, we provide additional IDs to identify multiple pathfinding
results for the two experimental buildings. We use these IDs with the four levels of nodes
searching percentage to design the main practical scheme, which we use to demonstrate
the search time efficiency and egress path quality achieved by considering the 3D evacua-
tion network’s spatial weights.

4. Experimental Results
4.1. Existing Index Analysis of the Studied Buildings

We generate the attribute values of the experimental buildings in Table 3 and the clas-
sical values according to the existing methods (we describe these methods in detail across
Duan’s and Porta’s studies [19,24]). The first two lines of this table illustrate networks
with comparatively low ratios between nodes and edges. The gamma index shows that
these two networks have smaller numbers of edges than a fully connected system based
on the same number of nodes. The transitivity values of these two networks are quite dif-
ferent. The value is over 0.2 for the HUUC building, but for the MLC building, the amount
is quite small (less than 0.0041). This transitivity value difference means that the former
building can connect the neighbor nodes more than the latter building. The average path
length (Laop) describes that there are less than ten nodes for the ordinary path across the en-
tire network for the HUUC building, and this means that its Laop is short; this value for
the MLC building is over 20 nodes, which means that its Laop is long. The graph diameter
here depicts the longest path distance covering more than 200 nodes, and it is a significantly
large value for the MLC building. The local connectivity (Cl) for the HUUC building is
approximately 0.8, and for the MLC building, it is approximately 0.7; both of these values
are less than 1. These local connectivity values mean that the average influence of removing
a single node is minimal. In other words, removing any node may not affect the primary
network structure. Interestingly, the above features generated by the traditional network
analysis method counter common sense for navigation analysis purposes. Although build-
ing exits’ spatial distribution significantly affects evacuation efficiency, many traditional
network features ignore this phenomenon, whereas our proposed method reflects this exit
neighboring phenomenon.

Table 3. Index and attribute values of the navigation graphs for the experimental buildings.

Index Name HUUC MLC Unit

Number of Nodes 256 841 N/A
Number of edges 324 943 N/A
Gamma index 0.009926 0.002669 N/A
Transitivity 0.2006221 0.004065041 N/A
Average node path length 9.834926 20.803516 Nodes
Graph diameter 20 202.824722 Nodes
Local connectivity 0.8203 0.7063 N/A
Average spatial distance (SD) 4.22410244 3.349026 Metre
Number of edges with distance larger than SD 54 266 N/A
Number of edges with distance smaller than SD 270 677 N/A
Number of nodes with distance larger than SD 254 839 N/A
Number of nodes with distance smaller than SD (Q) 2 2 N/A
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Figures 7 and 8 show spatial views and statistical views, which we generate by
combining the last four rows of Table 3, to supplement the spatial relationships beyond
the pure graph feature view. As shown in Figures 7 and 8, these 3D scenes demonstrate
the average distances between the values in the row “average spatial distance (SD)”, which
we generate by calculating the arithmetic averages of the SDs for the whole navigation
network, of Table 3 and the actual spatial distributions of the nodes and edges. We can
perceive that most MLC and HUUC buildings’ nodes only cover the nearest neighbors
within SD. This situation continues for edges in the HUUC building, which is proven
by less than 20% of its edges shorter than SD. However, nearly one-third of the edges
in the MLC building are more extended than SD.

Figure 7. The scope of the average node spatial distance for the HUUC building.

Figure 8. The scope of the average node spatial distance for the MLC building.
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4.2. Proposed Spatial Index Analysis of the Studied Buildings

Table 4 summarizes the results from the studied buildings’ calculation using the pro-
posed indices. We provide bar plots for the numbers of valid paths in the experiment
buildings (Cm) (Figure 9), and we observe that this number is significant for the MLC
building—over 600 under most circumstances. The meaningful result values for the HUUC
building are slightly small because fire events can significantly hinder the indoor naviga-
tion network’s overall connectivity status compared to that of the MLC building under
the same spatial setting. In Figure 10, the SD values between nodes and exits for vari-
ous tests are quite different. Under most circumstances, the typical SDs are below 10 m
for both buildings; however, this is not the case for the classical evacuation path genera-
tion. For both structures, the traditional process of searching through all nodes generates
comparatively large SDs, and this situation also appears in the row “spatial sorted/node
path/first percentage search” of Table 4. We can attribute the former case to the ignorance
of the spatial weights in the path generation process. This ignorance leads to a significant
increase in the SD of the MLC building to approximately 40 m and a similar increase of
around 10 m in the HUUC building. We can explain the latter increase by the ignorance of
the spatial weights during the pathfinding process when we only consider node distances;
the choice of a smaller number of nodes along the egress path that crosses the fire disaster
regions thus leads to a significant increase in the spatial weights along the generated egress
path. We can explain that this situation does not appear for other settings of the node usage
percentage as follows: the 20%, 50%, and 80% settings in the fourth column of Table 3 are
sufficiently large to allow the pathfinding process to take comparatively safe and short
node paths to egress; thus, the pathfinding process cannot receive prominent benefits by
increasing the searching scope.

Table 4. Indices and attribute values of the navigation graphs for the studied buildings.

ID Search Option Experiment Area Percentage of Using Nodes

AA Classical method/node search MLC 100%
AB Classical method/spatial search MLC 100%
AC Spatial sorted/node path/first percentage search MLC 10%
AD Spatial sorted/spatial path/first percentage search MLC 10%
AE Node sorted/node path/first percentage search MLC 10%
AF Node sorted/spatial path/first percentage search MLC 10%
AG Spatial sorted/node path/second percentage search MLC 20%
AH Spatial sorted/spatial path/second percentage search MLC 20%
AI Node sorted/node path/second percentage search MLC 20%
AJ Node sorted/spatial path/second percentage search MLC 20%
AK Spatial sorted/node path/third percentage search MLC 50%
AL Spatial sorted/spatial path/third percentage search MLC 50%
AM Node sorted/node path/third percentage search MLC 50%
AN Node sorted/spatial path/third percentage search MLC 50%
AO Spatial sorted/node path/fourth percentage search MLC 80%
AP Spatial sorted/spatial path/fourth percentage search MLC 80%
AQ Node sorted/node path/fourth percentage search MLC 80%
AR Node sorted/spatial path/fourth percentage search MLC 80%
AS Classical method/node search HUUC 100%
AT Classical method/spatial search HUUC 100%
AU Spatial sorted/node path/first percentage search HUUC 10%
AV Spatial sorted/spatial path/first percentage search HUUC 10%
AW Node sorted/node path/first percentage search HUUC 10%
AX Node sorted/spatial path/first percentage search HUUC 10%
AY Spatial sorted/node path/second percentage search HUUC 20%
AZ Spatial sorted/spatial path/second percentage search HUUC 20%
BA Node sorted/node path/second percentage search HUUC 20%
BB Node sorted/spatial path/second percentage search HUUC 20%
BC Spatial sorted/node path/third percentage search HUUC 50%
BD Node sorted/node path/third percentage search HUUC 50%
BE Spatial sorted/spatial path/third percentage search HUUC 50%
BF Node sorted/spatial path/third percentage search HUUC 50%
BG Spatial sorted/node path/fourth percentage search HUUC 80%
BH Spatial sorted/spatial path/forth percentage search HUUC 80%
BI Node sorted/node path/fourth percentage search HUUC 80%
BJ Node sorted/spatial path/fourth percentage search HUUC 80%
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Figure 9. Numbers of valid paths for two studied buildings with different percentage settings of using nodes.
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Figure 10. Average spatial distance values for two studied buildings with different percentage settings of using nodes.
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In Figure 11, the average time costs (Taop) for the HUUC building under different
circumstances follow the trend that a search time increase accompanies the percentage
setting increase, and the search time achieved while considering the spatial weights is
shorter than that yielded by finding the spatial influences under nodes sorted without
considering the spatial weights. Nevertheless, the node sorting process that utilizes the spa-
tial weights alters this trend. The situation compensates this benefit that the time cost of
obtaining results while considering the spatial weights is still higher than that of getting
the results without considering the spatial weights; the time cost decreases with the first,
second, and third percentage settings but not with the fourth percentage setting. We may
attribute this phenomenon to the small total number of nodes in the HUUC building,
and the spread of the fire almost paralyzes the central part of its whole navigation net-
work. Therefore, under the first three percentage settings, the pathfinding process stops at
an early search stage, and the search time thus decreases. When the node search percentage
is 80%, the pathfinding program can generate an egress path, and the time cost increases.
The situation in Figure 12 is quite different from that in Figure 11. For the MLC building,
the average time cost continually increases as the percentage of nodes used increases and
the introduction of spatial weights during the node sorting process. A few exceptions
appear: the time cost of the third percentage setting for node sorting without introducing
spatial weights is slightly shorter than that of the other percentage settings. We attribute
this to the percentage increase from 20% to 50%, which helps the pathfinding program
bypass the fire influence regions and thus leads to a slight rise in time spent. For the long-
term high cost of the first percentage setting with the node sorting method including
spatial weights, the reason for this occurrence could be that the 10% node selection setting
is inefficient for the pathfinding program to generate available egress paths and causes
a significant time increase compared to other settings.

In Figure 13, the SDs of the methods considering the different percentages of nodes
used are almost the same as expected: the usage of the node sorting method significantly
reduces the average spatial distance for the generated path. Only one exception appears:
the non-sorted classical result for the HUUC building is shorter than the result obtained
with the first percentage setting. This exception can attribute to the limited number of
nodes in this building. Therefore, when a fire spreads, only a few nodes are available for
pathfinding. The number of possible egress paths is limited; thus, classical methods that
only consider node paths can still generate a spatial distance-optimized result. Figure 14
shows the reduction ratio of the path result distance between the generated node-centered
path and the spatial-centered path. We observe that the reduction ratio is small across all
the HUUC building results, except the classical method and the first percentage setting
considering the node sorting process’s spatial weights. We can explain this exception by
the small number of nodes in the HUUC building; thus, the pathfinding program produces
the spatial weight-centered path without considering the spatial weight element. However,
the reduction ratio case for the MLC building is different: the reduction ratios for all
situations are easily perceived. The reduction ratio is significant when the spatial path
distance generated by nonspatial weight methods is also long, and this ratio is small when
the SD is short.

Generally, illustrations from a graph perspective demonstrate the connectivity fea-
tures of the main network structure but may contradict a real building-based navigation
network’s spatial distribution. Nonetheless, we can mitigate this gap by introducing spa-
tial weights. Moreover, we observe that navigation networks’ spatial views can show
the spatial distribution trends of the experimental buildings and network connectivities.
Additional spatial elements, such as the spatial intensities of nodes and edges in navigation
networks, can be introduced into the graph analysis in future work.
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Figure 11. The search time costs of the HUUC building with different node usage percentage settings.
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Figure 12. The search time costs of the MLC building with different node usage percentage settings.
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Figure 13. Average path spatial distances of the two studied buildings with different node usage percentage settings.
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Figure 14. Distance reduction ratios of the two studied buildings with different node usage percentage settings.
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5. Conclusions and Future Works

In this paper, we have proposed a method to evaluate indoor navigation networks’
connectivity for emergency evacuations. We have defined a set of indices to describe
navigation networks’ statuses during disasters from the graph view and the spatial metric
perspective. In this method, we use both the 3D geometric distance measure and the fire
spread model, and this allows us to estimate the fires’ influences on the neighboring clusters
of accessible nodes in the 3D network. We can link the isolated groups of accessible nodes
through the spatial sorting of nodes, facilitating the process of generating and selecting
the minimum-risk evacuation paths and reducing the search time cost.

We suggest several directions for future research: First, currently, a simple fire model
is used in this paper to estimate the influence of fires on indoor networks. The model breaks
down the continuous fire spreading process into discrete steps and assumes that the fire
spreads with a static speed in all directions. In the next step, we can drive a more complex
fire simulation model (e.g., [31]) by real-time data and better predict how fires spread to
estimate the influence of fires on indoor environments. Second, heuristic routing methods
such as A*, which can consider the proposed indices, will also be developed to generate
feasible and safe routes in disastrous situations. Third, we will improve the definitions of
the index by considering human behaviors. During emergencies, the network’s connectivity
status is affected by hazards and influenced by evacuees’ movements, which could result
in congestion at specific nodes and edges. Therefore, there is also a need to integrate
the human factor in the network robustness analysis. Finally, we may apply our network
robustness evaluation method to flooding and other emergency evacuation networks after
a thorough investigation of the considered network features.
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