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Abstract: Road networks are the main source of mortality for many species. Amphibians, which are
in global decline, are the most road-killed fauna group, due to their activity patterns and preferred
habitats. Many different methodologies have been applied in modeling the relationship between
environment and road-kills events, such as logistic regression. Here, we compared the performance
of five regression techniques to relate amphibians’ road-kill frequency to environmental variables.
For this, we surveyed three country roads in northern Portugal in search of road-killed amphibians.
To explain the presence of road-kills, we selected a set of environmental variables important for
the presence of amphibians and the occurrence of road-kills. We compared the performances
of five modeling techniques: (i) generalized linear models, (ii) generalized additive models, (iii)
random forest, (iv) boosted regression trees, and (v) geographically weighted regression. The
boosted regression trees and geographically weighted regression techniques performed the best,
with a percentage of deviance explained between 61.8% and 76.6% and between 55.3% and 66.7%,
respectively. Moreover, the geographically weighted regression showed a great advantage over the
other techniques, as it allows mapping local parameter coefficients as well as local model performance
(pseudo-R2). The results suggest that geographically weighted regression is a useful tool for road-kill
modeling, as well as to better visualize and map the spatial variability of the models.

Keywords: ecological niche modeling; geographically weighted regression; logistic regression; road
ecology; spatial regression; wildlife-vehicle collision

1. Introduction

Road networks fragment landscapes globally [1,2]. These linear infrastructures
affect wildlife by promoting barrier effects, changes in distribution patterns or direct
mortality [3–5]. Amphibians are the most road-killed fauna group, due to their activity
patterns and preferred habitats [6–9]. Beyond that, amphibians do not perceive the risks
associated with roads [10], with some species being more affected than others, such as
the ones with higher vagility [6] or with the tendency to paralyze when facing a moving
vehicle [11]. At a global level, amphibians are in critical decline [12], and road density and
traffic expansion are major facilitators [13,14]. For instance, in a study in Southern Portugal,
amphibians constituted up to 70% of the road-killed vertebrates found during the rainy
season [15]. To mitigate road mortality, it is crucial to understand the factors influencing
the occurrence and spatial location of road-kills, which are usually clustered in time and
space, not occurring randomly [16]. Animal road-kills levels depend on many different
factors, namely road characteristics, weather conditions, surrounding vegetation, proximity
to water points, traffic, and species ecological traits [7,9,16–22]. Species abundance is also
highly important for the determination of road-kill patterns [23,24], yet this type of data is
very difficult to obtain, namely in amphibians [7,9].
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Road-kills are frequently very difficult to model, due to the excessive number of zeros
and the clustered distribution of mortality events [25]. Many different methodologies have
been applied to model the relationship between environmental features and the number of
road-kills, such as logistic regression and ecological niche modeling [9,16,22,26,27]. These
analyses often involve non-spatial modeling methods such as generalized linear models
(e.g., [28]). However, important variables frequently have spatial correlation, exhibiting
non-stationarity along the road [29,30]. Therefore, modeling methods should include spa-
tial relationships within the study area: indeed, most conventional methods do not include
the spatial location of road-kills [29]. These non-spatial methods assume that each variable
has one fixed coefficient for the entire geographical area [31] and generally only produce
average and global parameter estimates [32]. Thus, spatial regression methods such as
geographically weighted regression (GWR) are a good alternative. This technique may
resolve issues with spatial heterogeneity and non-stationarity in modeling [29,33]. GWR
has other advantages over other non-spatial modeling methodologies [31,32,34]: allows
different relationships between the road-kills and environmental variables to vary within
the study area, and provides local parameter estimates in addition to global estimates [33].
This method has been proved effective to forecast human accident impacts [35,36] and is
increasingly being applied in ecological studies [29,34,37–40], but little in road ecology.

In this study we compared the performances of five regression techniques in modeling
amphibian road-kills: (i) generalized linear models (GLM), (ii) generalized additive models
(GAM), (iii) random forest (RF), (iv) boosted regression trees (BRT), and (v) geographically
weighted regression (GWR). Specifically, the objectives of this study were: (1) to address
the relationship between amphibian road-kills and environmental variables; (2) to evaluate
the performance of the five techniques using model predicted values and residuals, and (3)
to spatially visualize the performance of the models in terms of the distribution of positive
and negative residuals. We highlighted the main steps of the proposed research in Figure 1.
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Figure 1. Main steps of the research process for comparing the performance of five regression
techniques in modeling amphibian road-kills. GLM: generalized linear models; GAM: generalized
additive models; RF: random forest; BRT: boosted regression trees; GWR: geographically weighted
regression; AUC: area under the curve.

There is still no scientific consensus on what modeling method may better support
conservation actions, namely, to prioritize road segments for the establishment of mitigation
measures or to organize more intensive monitoring on those segments [26]. Our study
shows an alternative technique for modeling road-kills, as well as for exploring the data
along the roads. To our knowledge, this is the first study aiming to use spatial regression
analysis to model the frequency of animal road-kills.
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2. Materials and Methods
2.1. Road-Kills’ Data

We collected data on amphibian road-kills in northern Portugal (Braga district, Figure 2),
between February and June 2014. This region has a high diversity of amphibians [41,42].
However, it is a very populated region with a large and dense road network. The landscape is
dominated by eucalyptus and pine forests, agricultural lands, and small natural/broadleaved
forests. We selected three two-way country roads, with 27 to 40 km in length and moderate
traffic. These types of country roads host the highest levels of amphibian mortality [43].
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Figure 2. Study area with the three surveyed roads (R1, R2 and R3) in northern Portugal.

We conducted six surveys by car per road (totaling 18) in search of road-killed amphib-
ians, at a maximum speed of 20 km/h [7,8,44]. We sampled early in the morning after rainy
nights with temperatures not lower than 6–8 ◦C [7,8,45]. We recorded amphibians’ posi-
tions with a 2–3 m accuracy GPS receiver, removing all carcasses from the road afterwards
to avoid attracting scavengers [46]. For each road, we calculated the abundance kilometer
index (AKI), which expresses the ratio of the total number of road-killed amphibians
observed in a road by the total length of the road [47].

2.2. Environmental Data

We divided each surveyed road into sections of 250 m based on species’ dispersal
data [45,48,49]. We assigned 11 environmental variables to each road segment (Table 1).
Variables were selected considering the habitat preferences of amphibians that facilitate the
occurrence of road-kills [6–9].

We tested for correlation and excluded variables with a Pearson correlation higher
than 0.75. When pairs of variables were correlated, we chose the variable more ecologically
meaningful [16]. We selected five environmental variables: distance to urban areas, distance
to broadleaved forests, distance to coniferous forests, distance to water bodies, and slope.
Environmental variables were prepared using QGIS 2.14.1.
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Table 1. Description, units, and source of the eleven environmental variables.

Variable Description Unit Source

Distance to urban areas Linear distance to the closest urban and artificial
surface m Corine Land Cover (v2012)

Distance to irrigated land Linear distance to the closest permanently irrigated
land m Corine Land Cover (v2012)

Distance to agricultural areas
Linear distance to the closest agricultural areas, mainly

composed of vineyards, pastures, annual crops, and
complex cultivation patterns

m Corine Land Cover (v2012)

Distance to broadleaved forests Linear distance to the closest broad-leaved forest,
mainly composed of trees, some shrubs, and bushes m Corine Land Cover (v2012)

Distance to coniferous forests Linear distance to the closest coniferous forest, mainly
composed of trees, shrubs, and bushes m Corine Land Cover (v2012)

Distance to mixed forests Linear distance to the closest mixed forest m Corine Land Cover (v2012)

Distance to shrubs
Linear distance to scrub or herbaceous vegetation

associations, mainly composed of natural grasslands,
moors and heathland, and transitional woodland shrub

m Corine Land Cover (v2012)

Distance to open areas
Linear distance to open spaces with little or no

vegetation, composed of bare rocks, sparsely vegetated
areas, and burnt areas

m Corine Land Cover (v2012)

Distance to water bodies Linear distance to the closest water body m Corine Land Cover (v2012)

Fires Frequency of forest fires between 1975 and 2013 - ICNF, Territórios ardidos
1975–2013

Slope Slope range (maximum–minimum) - Sistema Nacional de Informação
Geográfica—DGT

2.3. Modeling Techniques

We counted the number of amphibian road-kills per road section to create a database
of road-kill frequency. We performed a 10-fold cross-validation by generating ten different
datasets in order to avoid an excessive number of absences. In each dataset, we divided
the segments with or without presences into ten groups: nine groups were used to train
the model and one for testing it. In this way, we obtained ten different datasets with
nine training sections without road-kills and nine with road-kills, and two test groups,
one without road-kills and one with road-kills. For the absences, we randomly selected
different road segments without presences for each dataset [22], limiting the number of
absence segments to the same number of presences. This methodology is useful to avoid
the zero-inflation problem [50]. The ten datasets included road segments of all the three
surveyed roads. Results were the average of the ten model replicates.

We used five presence-absence regression techniques: generalized linear model (GLM),
generalized additive model (GAM), random forest (RF), boosted regression tree (BRT),
and geographically weighted regression (GWR). The first four techniques are non-spatial
regression analyses: GLM, a parametric generalization of ordinary linear regression al-
lowing error distributions other than a normal distribution [51]; GAM, a more flexible
and non-parametric method where the linear predictor depends on smooth functions of
predictor variables [51]; RF, an ensemble machine learning method for classification and
regression that operates by constructing decision trees [52]; and BRT, a machine learning
that can model functions and interactions between variables without making assumptions
about the shape of fitted functions and is immune to the effects of outliers and inclusion of
irrelevant variables [53]. Both GLM and GAM are extensions of linear models: GLM can
be used when the features do not follow normal distributions; GAM can be used when
the relationships between variables are not linear [51]. RF consists of multiple individual
decision trees: it splits the data multiple times by bootstrap according to a threshold,
creating different subsets of the dataset [52]. Both RF and BRT fit many decision trees
to improve model accuracy, but in RF each occurrence has an equal probability of being
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selected in subsequent samples while in BRT the input data are weighted in subsequent
trees [52,53]. Thus, BRT combines decision trees with boosting methods, with the previ-
ously poorly modeled data having a higher probability of being selected in the new tree [53].
Non-spatial regression analyses assume that each explanatory response is constant across
geographic space (i.e., there is one regression coefficient for each variable, for the entire
study area), exhibiting spatial stationarity [34]. However, environmental features may vary
across geographic space (spatial non-stationarity) which may lead to inaccurate model
predictions [54]. This spatial heterogeneity often results from the interaction between
different environmental factors [54]. On the other hand, spatial analysis techniques such
as the GWR allow the spatial variation of the relationships between independent and
dependent variables [33]. The GWR is a spatial local form of linear regression, allowing the
measurement and mapping of local models. This method fits an ordinary least-squares
regression around a regression point, in which the data closer to this point is weighted
more heavily [33,55]. In all methods, we used the road-kill frequencies as the response
variable and the five environmental variables as explanatory variables, with a Gaussian
distribution for the non-spatial analyses, when applicable.

For GAMs, we set a maximum of four splines (k = 4), in order to limit the complexity
of the smoothers describing the explanatory variables and to prevent over-fitted models.
For BRT models, we set the parameters based on the small sample size: learning rate (lr) as
0.001, tree complexity (tc) as 3, and bag fraction as 0.5 [53]. The learning rate determines
the contribution of each tree to the growing model, the tree complexity determines the
complexity of variables interactions, and the bag fraction controls the stochasticity [53]. We
optimized the parameters in order to reach a minimum of 1000 trees for each model [53,56].
For GWR, a different bandwidth for each target location is calculated. A moving window
with a predetermined bandwidth and a spatial weighting kernel function allows the
estimation of the intercept and coefficients for the explanatory variables of each road
segment. Each observation within the local window is weighted based on its proximity
to the center of that window [34]. We determined the bandwidth using the adaptive
golden section search method [33] based on the Akaike information criterion (AICc, with a
correction for finite sample sizes). We selected the Poisson model type and the Adaptive
Bisquare spatial kernel type, which is suitable for unevenly distributed points [57].

To assess model performance, we used three cross-validation criteria to compare
fitted with observed values [58]: the index of agreement (a refined Willmott’s index of
agreement [59]), the area under the receiver operator curve (AUC), and the percentage
of deviance explained. Index of agreement is an error estimator that varies from 0 to 1 (1
means a perfect prediction) [59]. The AUC measures the ability of each model to correctly
discriminate between presences and absences of road-kills, ranging between 0 and 1. The
AUC is equal to the probability that a randomly chosen presence occurrence will be ranked
higher than a randomly chosen absence [60]. The percentage of deviance explained was
calculated as follows: (null deviance – residual deviance)/null deviance. We also compared
parameter estimates and significances of the average model in each technique [29].

The spatial distribution of mean model residuals was assessed and displayed for the
two techniques with the best model performance. We measured residuals as the difference

between observed and fitted values (y − ˆ
y) . We standardized the residuals on a scale of

−1 to 1, in order to compare the values between techniques. Regarding the GWR results,
we also mapped the local pseudo-R2, indicating model performance in specific locations,
and the significant parameter coefficients of the environmental variables [29]. In order to
map only the significant estimates, we applied a significant threshold of 95% to mask out
points where the relationship between road-kills and environmental variables were not
significant (coefficient points with p-value > 0.05 were excluded) [61].

The GWR analysis was implemented in both GWR4.0 and MGWR 2.2 [57]. All the
other non-spatial modeling techniques and statistical analyses were carried out using
R 3.4.4 [62] using the packages mgcv, randomForest and dismo. Maps were displayed with
QGIS 2.14.1.
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3. Results

We recorded a total of 343 road-killed amphibians in the three study roads (Table 2).
The abundance kilometer index (AKI) for each road and survey ranged between 0.00 and
2.52 amphibians/km, with a mean AKI for all surveys and roads of 0.56 amphibians/km.

Table 2. Selected road locations, number of road segments (and total segments length), number of road segments with
road-kills, number of road-killed amphibians, and mean computed abundance kilometer index (AKI; number of road-killed
amphibians per kilometer).

ROAD Location Road Segments Segments with Road-Kills Road-Kills Mean AKI (ind/km)

R1 Barcelos 111 (27.70 km) 17 89 0.54

R2 Guimarães 143 (35.70 km) 42 171 0.80

R3 Gerês 157 (39.10 km) 24 83 0.35

TOTAL = 411 (102.50 km) 83 343 MEAN = 0.56

According to the selected criteria for evaluating model performance, the two regres-
sion techniques performing worse were the generalized linear models (GLM) and random
forest (RF), followed by the generalized additive models (GAM) (Table 3). The boosted
regression trees (BRT) and geographically weighted regression (GWR) performed the best
and close to each other. The GLM models explained between 21.0% and 27.0% of deviance
while the GAMs had a deviance explained between 41.7% and 53.1%. The BRT models
performed well overall, with a deviance explained between 61.8% and 76.6%. Models
obtained with the GWR technique had also good performance, with the analysis explaining
between 55.3% and 66.7% of deviance.

Table 3. Mean model performances using three criteria: mean index of agreement (Wilmott’s D test), mean AUC and
mean percentage of deviance explained calculated for each of the five techniques (GLM, GAM, RF, BRT, GWR). Between
brackets, the lowest and highest value obtained in the ten models with each method. In bold, the two best-classified methods
in each criterion.

Methods Index of Agreement AUC Deviance Explained (%)

GLM 0.567
(0.554–0.586)

0.812
(0.787–0.831)

22.9
(21.0–27.0)

GAM 0.635
(0.618–0.655)

0.843
(0.822–0.871)

48.4
(41.7–53.1)

RF 0.593
(0.577–0.610)

0.817
(0.794–0.840) -

BRT 0.755
(0.699–0.792)

0.933
(0.900–0.961)

70.8
(61.8–76.6)

GWR 0.700
(0.675–0.719)

0.881
(0.860–0.902)

61.9
(55.3–66.7)

In GLMs, all variables were highly significant (Supplementary Materials, Table S1).
In GAMs, almost all variables were also highly significant, and the response curves were
slightly negative for all variables (Supplementary Materials, Table S2 and Figure S1). In RF
and BRT, the most important variable was the slope (in nine models with both methods)
(Supplementary Materials, Tables S3 and S4). In BRT models the response curves were
not clear, so we cannot state whether there were positive or negative relations. In GWR,
the most significant variable was the distance to coniferous forests (significant negative
relation in nine average models) (Supplementary Materials, Table S5). Moreover, in GWR,
all variables had a significant local coefficient in more than one road segment.

Regarding the spatial distribution of mean residuals, the GWR showed overall better
spatial patterns over the BRT (with higher correct predictions, (i.e., residuals very close to
zero) (Figure 3). The BRT created 46.3% of negative residuals, 19.1% of correct predictions
and 37.0% of positive residuals; the GWR created 43.2% of negative residuals, 26.5% of
correct predictions and 32.7% of positive residuals.
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GWR performance varied over the study area, as indicated by the map of local
pseudo-R2, with a mean value of 0.58. (Figure 4). The roads R1 and R2 presented more
constant pseudo-R2 values along the roads, while the road R3 had greater variability
between road segments.

The spatial distribution of significant coefficients of GWR models showed that the
relationship between environmental variables and road-kills also changed with the location.
Despite the distance to urban areas and distance to broadleaved forests of the average
model being almost always non-significant, in some locations of the study roads, these
variables significantly influenced the models. For instance, the variable distance to urban
areas had a significant positive influence on roads R1 and R2 and a significant negative
influence on road R3 (Figure 5). The opposite happens with the variable distance to
broadleaved forests, which demonstrates a significant negative relationship in roads R1
and R2 and significant positive relation in roads R3 (Figure 5).
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4. Discussion

Our results highlight the difficulty of modelling the frequency of road-kills, with
overall great variability between models and modeling methods. The BRT and GWR
techniques showed better model performance and predictive power in comparison to
the other tested techniques. There is no single technique that will perform best in all
circumstances [63]: each method has its advantages that are useful in specific cases. In the
case of modeling road-kills, we believe that both BRT and GWR are good approaches and
should be tested. When choosing a non-spatial regression technique (such as BRT), it is
of great benefit to explore and visualize the data using GWR. BRT provides a useful table
of the relative influence of each variable, but not for the coefficients and significance of
variables. Instead, this technique provides a response curve of each environmental variable,
which is in our case of difficult interpretation. The BRT performed better in the three
performance criteria used, yet the GWR provided a higher percentage of correct predictions
(26.5% of residuals very close to zero). Both techniques created higher percentages of
negative residuals in comparison to positive residuals, meaning that models overestimated
more often than underestimated the number of road-kills.

All techniques provided similar results between each model replica, with small per-
formance variability (e.g., deviance explained of BRT between 61.8% and 76.6% or index of
agreement of GLM between 0.554 and 0.586) which could mean that the obtained results
are trustworthy. Regarding the two techniques that performed poorest, the RF has some
advantages over GLM, such as higher adaptability to evolve with the data [64], but lacks
several important information, as it does not provide a measure of deviance. RF (as well
as BRT) can be used as modeling or exploratory tools for searching the most important
variables. Similar to BRT, GAM provides a response curve of each variable included in the
model, and also the significance of each variable, but does not provide a coefficient. Most
of the response curves of our GAM models were slightly negative but almost flat, which
hinder the visualization of a clear relationship between road-kills and environmental vari-
ables. Moreover, GAM models are often over-fitted, due to the introduction of smoothing
splines to fit non-linear relationships [65,66]. All the non-spatial methods we tested here
have been proved useful for the modeling of road-kills in previous studies. For instance,
Sillero et al. [22] efficiently addressed the influence of landscape factors on amphibian
road-kill levels in Slovenia using GLM; Wright et al. [67] used GAM to characterize the
seasonal trends in hedgehog roadkill levels; Grilo et al. [68] predicted road-kill rates of
mammals and birds in Europe using RF; and Ascensão et al. [56] used BRT to relate road
mortality levels of mammals with environmental variables in Brazil.

Spatial approaches (GWR) have several advantages over non-spatial analyses: GWR
helps in the visualization of spatial variability within the study area, allows the evaluation
of spatially clustered data [34,69], and allows mapping local parameter coefficients as well
as local model diagnostics (obtained through local pseudo-R2) to visualize and interpret
the spatial non-stationarity. Other ecological studies found a better performance of GWR
in comparison with least squares regression [34,40], GLM [39,70], and GAM [39,61,66,70].
Mellin et al. [55] suggested the use of local spatial weights implemented in other modeling
methods such as boosted regression trees for ecological modeling. In GWR, the ability to
map parameter coefficients allows the identification of missing values or factors associated
with non-stationarity [54]. Some variables might be important or might have a certain
effect in some regions and not in others. For instance, in our models, we noticed that
the variable distance to urban areas had positive local coefficients in roads R1 and R2
(more urbanized areas, closer to the coast) and negative coefficients in road R3 (a greener
area, close to a national park; Figure 5). The variable distance to broadleaved forests
showed the opposite effect (Figure 5). This result is interesting, in light of the effect of
landscape urbanization in road-kill rates [24]: in more urbanized regions, the amphibians
might get road-killed more often closer to natural forests while in more natural regions,
amphibians might get road-killed more often closer to urban areas. GWR is also useful to
explore and visualize the data [34]. We noticed that the road R2 got the poorest explanatory
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performance (some locations with low local pseudo-R2; Figure 3) but also some points with
the highest performance. This may be revealing some underlying biased effect in this road
or that some important explanatory variable is missing. Moreover, using the information
provided by the distribution of residuals and the local pseudo-R2 values, we may be able
to identify the areas that are not providing trustworthy results and further investigate
the reasons.

North Portugal is a densely fragmented, urbanized, and populated region [71]. Con-
sequently, we registered a mean number of 0.56 road-killed amphibians per kilometer.
This is a very low value considering that in Southern Portugal the mean abundance of
road-killed amphibians is around 4.8 ind/km [72] but corresponds to similar levels of
road-kills found in a previous study in northern Portugal (Matos et al. [9]: approximately
0.45 ind/km for the surveys taking place between February and May 2011). Another
study in Southern Portugal registered a very different value of road-killed amphibians per
kilometer (Mestre et al. [21]: 0.14 ind/km); however, this study took place over two years
and covered almost all the seasonal variability (between September and May). The density
of road-killed amphibians we obtained in our study in north Portugal is similar as well to
the one described for the Salamanca region, Spain (0.23 ind/km), which also took place
during spring [7]. Amphibian populations near our study roads have not been quantified;
thus, we do not know how road-kill intensity is really affecting those populations. These
populations may have been extinguished near roads with great urbanization, suffering
over long-time high rates of road-kills [24]. Although the number of road-killed animals
on roads is highly variable within roads, seasons, and days [26,73], the low number of
road-killed amphibians found in this study is somewhat alarming.

5. Conclusions

In summary, our results suggest that GWR is a useful tool for modeling road-kills,
as well as to better explore, visualize, and map the spatial variability of the models. We
recommend using GWR for modeling road-kill events, as their driving factors are not
stationary across space. An extension of this comparison between techniques to model
amphibian road-kills would be desirable, namely including a larger dataset and including
other variables related to traffic and species abundance. Finally, our study will contribute to
better understand the influence of non-stationary environmental variables in the occurrence
of road-kills, which might help to better apply mitigation measures.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijgi10050343/s1, Figure S1: Response curves of the five explanatory variables of the GAM
model with the best performance; Table S1: Coefficient estimates and significance of environmental
variables in each one of the 10 models calculated with GLM; Table S2: p-values and significance of
environmental variables in each one of the 10 models calculated with GAM; Table S3: Importance of
environmental variables in each one of the 10 models calculated with RF; Table S4: Relative influence
(%) of environmental variables in each one of the 10 models calculated with BRT; Table S5: Mean
estimated coefficients and significance of environmental variables in each one of the 10 models
calculated with GWR.
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