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Abstract: Inertial navigation is a crucial part of vehicle navigation systems in complex and covert
surroundings. To address the low accuracy of vehicle inertial navigation in multifaced and covert
surroundings, in this study, we proposed an inertial navigation error estimation based on an adaptive
neuro fuzzy inference system (ANFIS) which can quickly and accurately output the position error of
a vehicle end-to-end. The new system was tested using both single-sequence and multi-sequence
data collected from a vehicle by the KITTI dataset. The results were compared with an inertial
navigation system (INS) position solution method, artificial neural networks (ANNs) method, and
a long short-term memory (LSTM) method. Test results indicated that the accumulative position
errors in single sequence and multi-sequences experiments decreased from 9.83% and 4.14% to
0.45% and 0.61% by using ANFIS, respectively, which were significantly less than those of the other
three approaches. This result suggests that the ANFIS can considerably improve the positioning
accuracy of inertial navigation, which has significance for vehicle inertial navigation in complex and
covert surroundings.

Keywords: INS solution; vehicle navigation; ANFIS; error estimation; ANNs; accumulative position
error; LSTM

1. Introduction

With the increasing requirements of vehicle navigation accuracy, improving vehicle
navigation performance is a popular research topic. The commonly used sensors in
navigation include GPS (global positioning system), INS (inertial navigation system),
camera, odometer, lidar, etc. [1]. However, in complex and covert surroundings such as
indoors, underground, in forests, and even in celestial bodies, GPSs can hardly provide
continuous and accurate positioning. As a low-cost relative positioning sensor not affected
by topography and surroundings, INS has played an important role in calculating vehicle
poses [2]. An inertial measurement unit (IMU) is the hardware of an INS. Compared
with GPS measurement technology, an IMU is hardly impacted by complex surroundings
and has the advantage of high sampling rates. However, the position calculated by the
accelerometers and gyroscopes accumulate errors over time. The common solution is to use
GPS and INS integration for loosely coupled and tightly coupled [3]. Moreover, cameras,
odometers, lidars, and other light- and sound-sensitive sensors are often used for integrated
navigation and positioning, with INSs used for indoors, underground, the moon, planets,
and other complex surroundings where GPS is not applicable [4–6]; this is expensive and
computationally complicated. When the GPS signal is blocked for a long time without
the aid of other sensors, the error of the position obtained by an INS is most likely to
be large, which is the major problem to be solved in this study. In this case, a machine
learning method can be used to compensate for the error. Currently, the commonly used
solutions are the utilizing of artificial neural networks [7], delayed neural networks [8],
adaptive neural fuzzy inference system (ANFIS) [9,10], and other neural networks [11]
to estimate the errors of the integrated system consisting of GPSs, IMUs, odometers, and
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other sensors which can output more accurate positioning results in real-time or quasi-
real-time. However, these methods require additional sensors, which generally increase
training time. There are also some studies in the literature about IMU de-noising by using
machine learning methods [12–14]. Some studies estimate the position and velocity errors
end-to-end by only using an IMU when GPS outages occur; this is attempted mainly
using artificial neural networks (ANNs) [15], recurrent neural networks (RNNs) [16], long
short-term memory (LSTM) [17], convolutional neural networks (CNNs) [18], support
vector machines (SVM) [19], and other machine learning algorithms [20–22]. As the high
data collection frequency of the INS, these methods lead to the long training time of the
model. Generally, machine learning is employed to estimate and correct the accumulative
error in the position or velocity of the IMU; however, the main issues of the method are its
low accuracy and long training time.

An accumulative error in the position of the IMU estimation model based on an
adaptive neuro fuzzy inference system is proposed in this study to address the above
problems. Using only INS observations, this model could effectively reduce the algorithmic
complexity and shorten the training time compared with other machine learning methods.
It can obtain the position of vehicles in complex and covert surroundings where GPS
signals are missing or are not available for an extended period. In addition, a Karlsruhe
Institute of Technology and Toyota Technological Institute (KITTI) unrectified raw dataset
was used to validate the results of the new algorithm, and the differential GPS data of
the dataset were used as the reference position to learn the position error of the INS
solution and predict the subsequent position error. Experimental results indicated that
the proposed model can estimate and correct the position error of the INS solution with
high accuracy. The improvements made in this study can be summarized in three points:
(i) Compared with other articles in the literature [9,10,23–29], time stamps were used as
the inputs, which can shuffle date in this time-series problem and enhance the robustness
of the training model. (ii) This study uses ANFIS to estimate the IMU error over an
extended period. In contrast, GPS/IMU integration is widely used to estimate the carrier
trajectory by using ANFIS within a short time of GPS outage [10,23–28]. (iii) Considering
that the error will increase after two-dimensional integration, the position error was directly
estimated without de-noising [14]. The findings of this study have theoretical and practical
significance for improving the positioning accuracy of vehicles’ inertial navigation in
complex and covert surroundings and provide technical support for vehicle navigation in
complex surroundings.

2. Methods

In this section, the algorithm of the INS solution and ANFIS is presented. The princi-
ples, basic equations, and information flow are briefly introduced.

2.1. INS Solution

An INS can be either a gimbaled inertial navigation system (GINS) or a strapdown
inertial navigation system (SINS), depending on the availability of a physical platform.
SINSs were the main focus of this study for calculating the position of the vehicles [30].
An IMU is a component of an inertial navigation system, generally composed of a three-
axis gyroscope and a three-axis accelerometer. Under a given initial condition, only the
observations of an IMU can be calculated to estimate the position, velocity, and acceleration
of the vehicle in the body coordinate system (b system) of the vehicle or a geographic
coordinate system (n system).

2.1.1. Inertial Navigation Observation Model

As an IMU is directly installed on the vehicle of a SINS, its accelerometer and gyro-
scope can record the motion information of the vehicle, and the coordinate system of the
measurements is in the b system. Let the observations of the IMU at a particular moment be

L = L̃ + δ (1)
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where L is the vector of the 6-D observations from the accelerometer and gyroscope; L̃ is
the true value of L; and δ is the error of L, which can be expressed as

δ = δimu + δini + δcal + δels (2)

where δimu is the IMU error, which mainly contains the zero offset of the accelerometer,
the zero drift of the gyroscope, the temperature drift of the two sensors, and the reading
error caused by the special motion state; δini is the initialization error, including the initial
alignment and calibration error of the IMU; δcal is the calculation error, including the
initial condition error and higher-order term error of the integration; and δels includes all
other errors.

2.1.2. Position Calculation by Using INS Observations

INS is not a Lyapunov stable system due to the non-linear and dynamic estimation
system used for the INS solution. As a result, any minuscule external interference may
change the error propagation. In this study, instead of performing error compensation
under the initial conditions, the above errors were modeled as a whole, and the observations
of the IMU were directly used to estimate the vehicle’s pose. Let

L =
[

Acc Gyr
]T (3)

where Acc is the observations of the 3-D accelerometers, including the acceleration of the
vehicle and the gravitational acceleration G in the n system; Gyr is the observations of the
3-D gyroscopes in the b system. Then, the acceleration of the vehicle in the n system can be
obtained from the following transformation

fn = RT
nb Acc − G (4)

where
Rnb = Rx( f )Ry(θ)Rz(ψ) (5)

is the orthogonal matrix denoting the transformation from the n system to the b system;
ϕ, θ, and ψ are the angles of roll, pitch, and yaw angles, respectively, which are also the
observations of the IMU gyroscopes, i.e., Gyr = [ϕ θ ψ]T

By integrating the acceleration of the vehicle in Equation (4), the velocity of the vehicle
at the moment t in the n system can be obtained by

Vt
n = V0

n +
∫ t

0
f t
ndt (6)

where V0
n is the velocity of the vehicle at the initial time. Then, the position of the vehicle at

time t can be derived as

Xt
n = X0

n +
∫ t

0
Vt

ndt (7)

where X0
n is the position of the vehicle in the n system at the initial time.

Since the b system moves with the vehicle, to express the motion state of the vehicle
relative to the surroundings, the pose of the vehicle at the initial time in the b system is
called the b0 system and, similarly to Equations (4)–(7), the position of the vehicle at time t
in the b0 system can be obtained by

Xt
b = X0

b + V0
b t +

∫ ∫ t

0
R0

nb f t
ndt2 (8)

where Xt
b is the vehicle’s position in the b0 system at time t; R0

nb is the rotation matrix from
the n system to the b0 system at the initial time.
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To describe the position and posture of the vehicle, a homogeneous matrix is used:

Tt
b =

[
(Rt

nb)
T Xt

n
0 1

]
(9)

where Tt
b is defined as the transformation matrix at time t, which is a special Euclidean

group. Let

Pt
b =

(
T0

b

)−1
Tt

b (10)

be the pose matrix, and Pt
b =

[
R0

nb
(

Rt
nb
)T R0

nb
(
Xt

n − X0
n
)
; 0 1

]
. The first term of the matrix

is the vehicle’s attitude at time t relative to the initial time, and the second term is the
vehicle’s position at time t relative to the initial time.

2.2. ANFIS and Its Structure

The ANFIS is an ANN-based on a fuzzy inference system (FIS). It is, in fact, the
integration of neural networks and fuzzy logic; hence it has the advantages of both and is
introduced below.

2.2.1. Fuzzy Inference System

A fuzzy inference system is a system with crisp inputs and outputs, and the theory of
fuzzy logic is its primary calculation tool. It imitates comprehensive human inference to
cope with fuzzy information that is arduous to be solved by conventional mathematical
methods and is mainly applied to resolve non-linear mapping issues [31]. It has been
widely applied in unravel sequential signal processing, pattern recognition, automatic
control, image processing, and other fields [32,33]. A fuzzy inference system is mainly
composed of a fuzzification interface, a fuzzy rule base, a fuzzy inference method, and a
defuzzification interface. The relationship between these modules is shown in Figure 1.
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Figure 1. Structure of a fuzzy inference system.

The fuzzification interface is used to apply a membership function (MF) for converting
the crisp inputs into a fuzzy set. The fuzzy set at the crisp value should have a high
membership degree, and the fuzzification result should have the capability to perform
anti-jamming. Commonly used membership functions are the triangular function, the
trapezoidal function, the Gaussian membership function, and the generalized bell-shaped
membership function [34]. In this study, the Gaussian membership function was adopted,
and its membership function value of the j-th input value of the i-th rule is defined as

g
(

xj, ci
j, σi

j

)
= e

− 1
2 (

xj−ci
j

σi
j

)

2

(11)

where x is the crisp input; c represents the center of the membership function curve; σ
is the width of the membership function. The defuzzification interface is to determine a
crisp value that can best represent the fuzzy set. The fuzzy rule base is ordinarily defined
as the fuzzy if-then rules, which simulate the inference mechanism of humans making
judgments in uncertain and inaccurate surroundings. The other modules of the FIS serve
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the fuzzy rule base to make more effective judgments. The i-th rule denoted by Ri is usually
expressed as

Ri : IF x1 is Ai
1, x2 is Ai

2, · · · , xn is Ai
n, THEN yi is Bi (12)

where x = [ x1 x2 . . . xn ]. is the vector of the input values; y is the output value;
A is the fuzzy set obtained by Equation (11); B is the polynomial related to x. The fuzzy
inference method performs reasoning operations on fuzzy rules, and common approaches
include the Mamdani inference method, the Larsen inference method, the Zadeh inference
method, the T-S (Takagi–Sugeno) inference method, etc. [35]. Assuming that the number of
rules set by the inference system is m, the fuzzy factor can be defined as

ωi =
n

∏
j=1

g
(

xj, ci
j, σi

j

)
(13)

The output can be obtained from the weighted mean formula as follows

yi =

(
m

∑
i=1

ωiBi

)
/

(
m

∑
i=1

ωi

)
(14)

2.2.2. Artificial Neural Networks

ANN [36] is a mathematical model that imitates the structure and function of biological
neural networks to solve non-linear problems [37]. ANN aims to obtain the activation
function value of each neuron and the weights between the neurons of adjacent network
layers when the cost function value is minimized.

The cost function of the back propagation algorithm (BP algorithm) is

J(Θ) =
1
n

(
n

∑
i=1

K

∑
k=1

(
hΘ

(
xi
)k

− yk
)2
)
+

λ

2n

L

∑
l=1

Sl

∑
j=1

Sl+1

∑
m=1

(
θl

mj

)2

(15)

where n is the total number of training samples; K is the output dimension, the second
term of J(Θ) is the L2 regular term; λ is the regularization coefficient; L is the number
of the network layers; sl is the number of the neurons in the l layer; hΘ (xi) gives the
output of the neural network; y denotes the target value of the samples; θl

mj represents
the connection weight between the j-th neuron in the l-th layer and the m-th neuron in
the (l + 1)-th layer. The phenomenon of over-fitting can be circumvented by introducing
the regularization term into the cost function, while matrix irreversibility can be avoided
with the regularization term (when λ > 0) when solving the minimum cost function.
Commonly used methods include the gradient descent method, the quasi-Newton method,
the conjugate gradient method [38], and heuristic methods such as genetic and simulated
annealing algorithms [39] to calculate the cost function. This study used the quasi-Newton
BFGS algorithm to calculate the minimum cost function [40]. Compared with the traditional
gradient descent method, its convergence is faster at the minimum value, and it is easier
to achieve the global optimal value. Compared to the Newton method, it simplifies the
complexity of the operation because it does not need to calculate the Hessian matrix.

The number of hidden layers and the number of neurons in the hidden layer are the
main parameters that affect the accuracy and complexity of the model. It is generally argued
that an appropriate increase in the number of hidden layers for the time sequence issues can
decrease the model error, but an excessively high hidden layer will increase this error. In
the BP algorithm, the gradient value decreases as the number of the hidden layers increases
and gradually approaches zero, resulting in a vanishing gradient problem [41]. The number
of the hidden layers’ nodes is usually determined using empirical formulas [42,43], but
the empirical formulas are often only applicable to some conditions. An evolutionary
algorithm was employed in this study to establish the number of the nodes in the hidden
layers [44]. To address the issue of different models due to different random seeds in the
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initialization of neural networks, in this study, we applied multiple training to acquire the
average value of training results.

2.2.3. Estimation of the Accumulative Error in the Position of INS Based on an ANFIS

The first ANFIS was proposed in 1993 and has been applied in different fields [45–47].
Typical networks contain five layers [48]. The structure of the accumulative error estimation
of INS based on an ANFIS designed in this study is shown in Figure 2. The system
consists of a training module and a prediction module. The former can be used in open
surroundings while the latter is used in covert surroundings. The training module and
prediction module errors are obtained from GPS data in this study; alternatively, those
errors can be replaced by other sensors such as lidars or cameras in special surroundings.
At the training stage, the system inputs are

(X, y) =
[
ax, ay, az, gx, gy, gz, t, ∆x, ∆y

]
(16)

where the first seven terms on the right-hand side of the equation represent the trained
terms denoted by X, and the last two terms represent the target terms denoted by y;
the dimension of each term is the number of the training samples; ax, ay, and az are the
measured values of accelerometers; gx, gy, and gz are the measured values of gyroscopes;
t is the time series; ∆x and ∆y are the accumulative error of the INS in the b0 system,
calculated by

∆x, ∆y = ximu − xtrue, yimu − ytrue (17)

where xtrue and ytrue denote the true position of the vehicle, which can be obtained from
precise sensors in suitable surroundings. In this study, the reference position of the vehicle
is obtained from differential GPS observations, and ximu and yimu denote Pt

b(1, 4) and
Pt

b(2, 4) in Equation (10), respectively. After training with the ANFIS, the system obtains a
y for each group of X input in the prediction stage.
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After subtractive clustering is used to generate the Takagi–Sugeno fuzzy inference
system [49], the network structure of the algorithm in the accumulative position error
estimation of the INS is shown in Figure 3. There are five layers in the network, and the
first layer is the input and fuzzification layer. In this study, the Gaussian membership
function in Equation (11) was employed to fuzzy the input data. The crisp input value
turns to membership degree between 0–1 after fuzzification. The second layer receives the
membership degree and applies Equation (13) to calculate the fuzzy factors of each rule.
The third layer normalizes the fuzzy factors of each rule through

O3i =
ωi

∑m
i=1 ωi

(18)
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where m is the number of rules; O3i is the output of the third layer, which represents the
trigger weight of rule i in all rules. The results of the fourth layer calculation rule are

O4i = O3i · Bi (19)

where Bi is derived from Equation (12), which is generally a first-order polynomial of the
input data; O4i is the output of the fourth layer. The fifth layer outputs the results of the
system, using Equation (14) to compute the weighted average of all the rules to defuzzify.
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The calculating time of ANFIS is faster than ANN since the BFGS solution mode and
FIS generated by subtractive clustering are efficient and rapid.

3. Experiments and Results

Public datasets are utilized for training and predicting one sequence data in different
sessions and multi-sequence data. The position error of an INS solution, the position
error predicted by the ANN model, and the position error predicted by the ANFIS were
compared. Furthermore, LSTM, which is an advanced and improved method based on
RNN [11,13,50,51], was compared with ANFIS in the position error prediction.

3.1. Introduction to KITTI

The KITTI dataset was jointly collected by KIT of Germany and TRI-NA, and is
currently one of the world’s largest computer vision algorithm evaluation datasets. The
sensors include video cameras, laser scanners, GPS, and INS on urban roads, country roads,
and expressways [52,53]. The unrectified raw data of GPS and INS in the dataset were used
for experiments. Using the IMU data as the observations and the GPS measurements as the
reference, the frequency of both observations in the unrectified raw data is 100 Hz.

All data were downloaded from the official website of KITTI. In the downloaded file,
the dataformat.txt file contains the GPS and IMU format data, while the timestamps.txt file
contains the time stamps. The files under the oxts/data/folder contain all observations,
with filenames indicating the data count, and each file contains 30 values. Values-related
properties are shown in Table 1. The latitude, longitude, and altitude are the positions
in the WGS-84 coordinate system observed by GPS, and the roll, pitch, and yaw are the
vehicle attitude angles observed by the gyroscope. The forward acceleration, leftward
acceleration, and upward acceleration are the accelerations of the vehicle observed by the
accelerometers in the b0 system, and the time stamp is the observation time of the data,
which are stored in the timestamps.txt folder.
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Table 1. Attribute related to values used. LIF means the list of the value in the file.

Value Unit LIF Remarks

Latitude deg 1
WGS-84Longitude deg 2

Altitude m 3

Roll rad 4 (−π–π)
Pitch rad 5 (−1/2π–1/2π)
Yaw rad 6 (−π–π)

Forward acceleration m/s2 12
b systemLeftward acceleration m/s2 13

Upward acceleration m/s2 14

Time stamp s / timestamp.txt

3.2. Process and Result Analysis

Sequences 20110930_drive_0018 (09300018), 20110930_drive_0033 (09300033), and
20110930_drive_0034 (09300034), which are the unrectified raw data in the residential
category, were used in the experiments. The single-sequence position error estimation
model was applied based on the 09300018-sequence, and the multi-sequences position
error estimation model was employed from three sequences. Some issues were found in
that there are repeated observations and missing observations in parts of the unrectified
raw observations. To ensure that the observations were not interfered with by humans
to a great extent, the processing method included deleting the repeated observations and
not interpolating the missing sessions. Since the time stamp file corresponds strictly to
the original observation file, the repeated session was also deleted when using the time
stamp file.

The positions of the vehicle in the b0 system and the n system were calculated by
Equations (4)–(10). The coordinate conversion on the GPS data was simultaneously per-
formed to attain the reference position value of the vehicle in the b0 system and the
n system,

[x y z]Tb = R1 ·
(
[lat lon alt]TWGS−84 − [lat0 lon0 alt0]

T
WGS−84

)
(20)

[x y z]Tn = R2 ·
(
[lat lon alt]TWGS−84 − [lat0 lon0 alt0]

T
WGS−84

)
(21)

where R1, R2 are the rotation matrices, and the specific expression can be referred to as the
reference [54,55]. It is stipulated that the X- and Y-directions of the b0 system are the right
direction and the forward direction of the initial motion of the vehicle, respectively, while
the X- and Y-directions of the n system correspond to the east and north directions of the
vehicle. Since the ground truth in the Z-direction has a large error in the KITTI dataset,
which can be provided by the observations of the cameras, this study did not consider the
motion in the Z-direction.

3.2.1. Single-Sequence Position Error Estimation Model

In the 09300018-sequence data, the X-Y trajectory and the east-north trajectory using
the INS solution relative to the reference trajectory of the vehicle in the b0 system and the n
system are shown in Figure 4a,b, respectively, in which the red line represents the reference
trajectory and the black line represents the INS solution trajectory. The track discontinuity
is the missing observations session after deleting the IMU repeated observations. It can be
seen from Figure 4 that, due to the accumulative position error of INS, the INS solution
trajectory is distinct from the reference trajectory, and the difference between the two
trajectories at the end point is 135.65 m.
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Figure 4. Reference trajectory and INS solution trajectory: (a) trajectory in b0 system; (b) trajectory in
the n system.

In this study, the strategy of using ANFIS, ANN, and LSTM for single-sequence
position error estimation is to use half of the total observations as the training sample to
predict the position error of the other half of the observations, and contrast the accuracy
of the three models for accumulative position error prediction of the INS in the b0 system
and the n system, respectively. The data of the training part represent the moment where
GPS is available, and the data of the prediction part simulate the vehicle in complex and
covert surroundings.

In the training stage, subtractive clustering is used to generate FIS. Using the training
data and the corresponding reference data as the input and setting some parameters, the
ANFIS structure can be built. In addition, the parameters which include the optimization
method, the maximum epoch, the error goal, and the initial step size should be identified.
Digitals of the trained model by using ANFIS and LSTM in this experiment can be found
at: https://github.com/robNavLoc/IMU-error-prediction-based-on-ANFIS (accessed on
31 May 2021). Training results are shown in Table 2. It can be seen that, due to the fuzzy
logical system, the training results of the ANFIS are better than the results of the LSTM.

Table 2. Training results of the LSTM and ANFIS methods.

LSTM ANFIS

Direction X Y East North X Y East North
MSE 0.00045 3.9 0.09 2.9 0.0017 0.0079 0.0039 0.0088

RMSE 0.02 1.97 0.30 1.70 0.04 0.09 0.06 0.09

https://github.com/robNavLoc/IMU-error-prediction-based-on-ANFIS
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In the prediction stage, the vehicle runs 1052.9 m in 129.31 s. The position error
estimated by the ANN, ANFIS, LSTM, and the INS solution versus time is shown in
Figure 5. The green line, blue line, red line, and black line represent the accumulative
position error of the ANFIS model, the LSTM model, the ANN model, and INS solution,
respectively. Figure 5a–d exhibit the prediction position error in X-direction, Y-direction,
east direction, and north direction, respectively. The mean square error (MSE), the root
mean square error (RMSE), and the accumulative position error of each curve shown in
Figure 5 in the b0 system and the n system are shown in Tables 3 and 4, respectively.
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Table 3. Error statistics of three algorithms in the b0 system.

IMU Solution ANN LSTM ANFIS

X Y X Y X Y X Y
MSE 4.46 3351.00 100.15 345.45 25.19 109.86 1.90 16.85

RMSE 2.11 57.89 10.01 18.59 5.02 10.48 1.38 4.11
Accumulative Error 9.83% 3.59% 1.77% 0.45%

Distance 1052.9 m

Table 4. Error statistics of three algorithms in the n system.

IMU Solution ANN LSTM ANFIS

East North East North East North East North
MSE 113.67 3280.96 145.43 529.14 155.43 62.23 1.71 13.16

RMSE 10.66 57.28 12.06 23.00 12.47 7.89 1.31 3.63
Accumulative Error 9.83% 5.34% 2.33% 0.43%

Distance 1052.9 m

Figure 5a,b shows that the vehicle’s error in the Y-direction was much higher than
in the X-direction. When the ANN model and LSTM model were used to predict and
correct the accumulative position error of INS, they showed the effective result in the
Y-direction, but the position errors in the X-direction were larger, which may be caused
by the insufficient training samples of the ANN model. ANFIS performs far better than
the ANN model in the X- and Y-directions and virtually restored the true position of the
vehicle. Similar results can be seen in Figure 5c,d that ANFIS had a smaller predicting
error than the INS solution and ANN. Moreover, the prediction accuracy of ANFIS is better
than LSTM.

As seen from Tables 3 and 4, to a certain extent, ANN improved the Y-direction and
north direction accuracy, and MSE was decreased to 10.3% and 16.1% of the position error,
respectively, but it increased the X-direction and the east direction errors. In total, the
accumulative errors decreased from 9.83% to 3.59% and 5.34% in the b0 and the n systems,
respectively. Similar to the ANN, the LSTM decreased the error of the Y-direction and
increased the X-direction, which ultimately results in a reduction in error from 9.83% to
1.77% and 2.33% in the b0 system and the n systems, respectively. Compared with the ANN,
the LSTM, and the INS solution, the error predicted by the ANFIS was lower. Compared
with the INS solution, the RMSE in the X-direction and the east direction using ANFIS
was reduced to 65.4% and 12.3%, respectively, and the RMSE of the Y-direction and the
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north direction using ANFIS was correspondingly reduced to 7.1% and 6.3%, respectively.
Overall, the accumulative errors were reduced from 9.83% to 0.45% and 0.43% in the b0
and the n systems, respectively. It shows that the vehicle trajectory obtained by ANFIS has
a superior fitting degree with the reference trajectory.

By comprehensively comparing Figure 5a–d and Tables 3 and 4, the results calculated
by ANN and LSTM in the b0 system are better than those in the n system. This was due to
the SINS being installed on the vehicle and observations being attained from the sensors in
the b system. However, this conclusion is not apparent when using ANFIS, so the following
experiment only show the results under the b0 system.

The reference trajectory of the vehicle, the trajectory corrected by the ANFIS, and the
INS solution trajectory of the corresponding time are shown in Figure 6, where Figure 6a,b
shows the vehicle trajectories of the b0 and n systems, respectively. It can be seen that
ANFIS performed well in the estimation of the accumulative position error of INS, which
largely corrects the vehicle position deviation caused by the accumulative position error
of INS.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 12 of 18 
 

 

ANN, the LSTM, and the INS solution, the error predicted by the ANFIS was lower. Com-

pared with the INS solution, the RMSE in the X-direction and the east direction using 

ANFIS was reduced to 65.4% and 12.3%, respectively, and the RMSE of the Y-direction 

and the north direction using ANFIS was correspondingly reduced to 7.1% and 6.3%, re-

spectively. Overall, the accumulative errors were reduced from 9.83% to 0.45% and 0.43% 

in the b0 and the n systems, respectively. It shows that the vehicle trajectory obtained by 

ANFIS has a superior fitting degree with the reference trajectory. 

By comprehensively comparing Figures 5a–d and Tables 3 and 4, the results calcu-

lated by ANN and LSTM in the b0 system are better than those in the n system. This was 

due to the SINS being installed on the vehicle and observations being attained from the 

sensors in the b system. However, this conclusion is not apparent when using ANFIS, so 

the following experiment only show the results under the b0 system. 

The reference trajectory of the vehicle, the trajectory corrected by the ANFIS, and the 

INS solution trajectory of the corresponding time are shown in Figure 6, where Figure 6a,b 

shows the vehicle trajectories of the b0 and n systems, respectively. It can be seen that 

ANFIS performed well in the estimation of the accumulative position error of INS, which 

largely corrects the vehicle position deviation caused by the accumulative position error 

of INS. 

 

(a) 

 

(b) 

Figure 6. Comparison of INS solution trajectory, ANFIS trajectory, and true trajectory: (a) trajectory 

in the b0 system; (b)trajectory in the n system. 

3.2.2. Multi-Sequences Position Error Estimation Model 

The error accumulation curves of sequences 09300018, 09300033, 09300034 in the b0 

system are shown in Figure 7, where Figure 7a,b shows the error accumulation curve in 

the X- and Y-directions, respectively. The black, red, and green lines indicate the 09300018, 

09300033, 09300034 curves, respectively. The information of each sequence is shown in 

Figure 6. Comparison of INS solution trajectory, ANFIS trajectory, and true trajectory: (a) trajectory
in the b0 system; (b)trajectory in the n system.

3.2.2. Multi-Sequences Position Error Estimation Model

The error accumulation curves of sequences 09300018, 09300033, 09300034 in the b0
system are shown in Figure 7, where Figure 7a,b shows the error accumulation curve in
the X- and Y-directions, respectively. The black, red, and green lines indicate the 09300018,
09300033, 09300034 curves, respectively. The information of each sequence is shown in
Table 5. As shown in Figure 7 and Table 5, the accumulation of each curve of error over
time between curves shows different change trends, but they were gradually increasing
overall, and the accumulative position error in each sequence has some correlation with the
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driving time; thus, the position error of an entire sequence could be predicted by similar
sequences [18].
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Table 5. Information of each sequence.

Sequence Driving Time/s Driving Distance/m Accumulative Error

09300018 260.29 1925.87 7.04%
09300033 154.07 1623.47 4.14%
09300034 127.53 919.89 3.84%

In this study, the strategy of using ANFIS for multi-sequences error estimation is to
use the 09300018 and 09300034 observations and errors as training samples to predict the
error of the 09300033 observations and compare the error prediction accuracy of the INS
solution and the ANFIS in the b0 system. Similarly, the data of the training part represent
the moment when the GPS is available, and the data of the prediction part simulate the
vehicle in complex and covert surroundings.

Similar to the single-sequence, the subtractive clustering method was also used in the
multi-sequences experiment to generate FIS, and then the training data and reference data
were used to generate the training model. As the time series were included in the training
inputs, the data of the sequences can be shuffled to satisfy randomness. Digitals of the
trained model in this experiment can be found on the same website.

In the prediction stage, the driven time and distance of the vehicle in each sequence
are shown in Table 5. The curve of the position error predicted by ANFIS and calculated
by IMU is shown in Figure 8. The red line and black line represent the predicted position
error of the INS by using the ANFIS model and the INS solution, respectively. Figure 8a,b
shows the error in the X- and Y-directions in the b0 system of the vehicle, respectively. The
mean square error (MSE), the root mean square error (RMSE), and the accumulative error
of each trajectory in the b0 system were calculated as shown in Table 6.
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Figure 8. Error accumulation curve of two algorithms: (a) X-direction position error; (b) Y-direction
position error.

Table 6. Error statistics of two algorithms.

IMU Solution ANFIS

X Y X Y
MSE 288.33 865.53 54.25 143.41

RMSE 16.98 29.42 7.37 11.98
Accumulative Error 4.14% 0.61%

Distance 1623.47 m

It can be seen from Figure 8a,b that the accumulative position error of INS increased
sharply over time, while the ANFIS error did not show a cumulative trend. In the initial
stage of vehicle moving, ANFIS did not perform well in predicting errors due to the low
INS solution error in the initial stage and the weak correlation of the error in the different
road sections, leading to the fluctuation of ANFIS error prediction. Between 100–120 s
of vehicle moving, the findings were not ideal because of the complex road conditions.
However, overall, ANFIS could correct the accumulative position error of INS to a large
extent. It can be seen from Table 6, compared to the INS solution, the MSE of the ANFIS
algorithm in the X- and Y-directions was greatly decreased, and the accumulative error w
was decreased from 4.1% to 0.6%.

The reference trajectory of the vehicle, the trajectory corrected by the ANFIS estimation
INS solution error, and the INS solution trajectory of the corresponding time are shown in
Figure 9.
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Through the above two experiments, a single-sequence can predict the accumulative
position error of INS more accurately because of its continuity of motion, which almost
restores the true location information of the vehicle. Due to the independent observation of
each road section in multi-sequences, the correlation of the error of the INS at the initial
stage was weak and had a high error. After a long driving period, the error of the INS in
different road sections was strongly correlated, and the error was decreased.

4. Discussion

The results showed that the proposed ANFIS effectively reduced the position error of
the vehicle in the single-sequence experiment and multi-sequences experiment. However,
because fewer sequences were used, the result of the multi-sequences experiment did not
perform as well as using CNN [18].

The trajectory in an upward direction was not considered in the experiments because
the ground truth provided by the KITTI dataset occasionally had large errors in the Z-
direction. Future work will involve training a model by using other datasets and collect
data under more difficult conditions.

The LSTM method decreased the position error to a large extent but did not perform
as well as ANFIS. The reason may be that the vehicle stopped for a few seconds, breaking
the continuity of the time-series problem.

Due to the small INS solution error in the initial stage of the multi sequences experi-
ment, the error predicted by ANFIS was often higher than that of the INS solution error
at this stage, and the effect was worse on the road section with more bends. To address
this, future work should adjust the input values of the ANFIS model in the initial stage
and increase the training set of winding roads.

5. Conclusions

In this study, a model for estimating the accumulative position error of the INS based
on ANFIS, which can quickly and accurately output the position error of a vehicle end-to-
end, is proposed. The new system was employed to estimate and correct the accumulative
position error of the INS to obtain the accurate position information of a vehicle in complex
and covert surroundings where other sensors do not work consistently. The proposed
method was verified using the KITTI dataset, and results indicated that the accumulative
position error was decreased to 0.45% and 0.61% in single-sequence and multi-sequences
experiments by using ANFIS, respectively; this was significantly less than those of the
other three approaches. This result suggests that the ANFIS could considerably improve
the positioning accuracy of inertial navigation, which has significance for vehicle inertial
navigation in complex and covert surroundings.
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