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Abstract: Hive Box is a company that operates a network of express unattended collection and
delivery points (UCDPs) in China. Hive Box distribution enhances community-based end-to-end
delivery services and low-carbon city logistics. It is argued that UCDPs compared with attended
collection and delivery points (ACDPs) should be considered for further investigation. Therefore,
the present study employed kernel density estimation, spatial autocorrelation analysis, and geo-
graphically weighted regression to investigate the spatial heterogeneity of Hive Box distribution
across Guangzhou. Hive Box location data were collected from smartphone apps. The results were
as follows: (1) the kernel density declined from the city center toward the outskirts, and showed
point-like spatial agglomerations in the city center; (2) the Moran’s I index analysis showed that Hive
Box distribution exhibited spatial agglomeration from a global perspective and geographic variations
in locality in space; the heterogeneity of urban–rural differences implies the uneven development
of Hive Box distribution in Guangzhou; and (3) the factors influencing Hive Box distribution were
multilevel, and their effects were complex and varied across regions. These results shed light on the
agglomeration and heterogeneity characteristics of the spatial distribution and influencing factors of
Hive Boxes. For an enhanced community-based end-to-end delivery service, this study suggested
the identification of the geographic variations of Hive Box distribution and the combined effects of
multiple factors in intensifying the infrastructure of unattended locker points.

Keywords: last-mile logistics; end-to-end delivery service; collection and delivery point (CDP); smart
locker; Hive Box; geographically weighted regression (GWR); Guangzhou

1. Introduction

With the rapid development of e-commerce and city logistics, collection and delivery
points (CDPs, often called pickup points) have become a crucial alternative solution for
end-to-end delivery services, solving last-mile logistical problems caused by home delivery
failures [1]. Two types of CDPs exist: unattended CDPs (UCDPs) and attended CDPs
(ACDPs).

A study revealed that CDPs increase delivery efficiency by reducing the number
of failed home deliveries, and thus, they have gained popularity in many European
countries, such as France, the United Kingdom, and the Netherlands [2]. For example, in
France, pickup points were found to account for approximately 20% of parcel deliveries to
households [3]. In China, to promote the efficiency of last-mile logistics, many third-party
logistics service providers (hereinafter “3PLs”) and the government are involved in the
development of end-to-end delivery services. Cainiao Station (which operates ACDPs) and
Hive Box (which operates UCDPs) have become increasingly important 3PLs. Currently,
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Cainiao Station has established more than 40,000 community-based service stations across
China, and Hive Box operates more than 150,000 parcel lockers; this covers over 100 cities,
and more than 9,000,000 parcels are delivered to such lockers daily [4]. In its 5-year
economic development plans, the Chinese government has expressed a great ambition
to promote the deployment of end-to-end delivery services in communities, universities,
business centers, subway stations, and elsewhere [5,6].

Confronted with complex geographical spaces and the spread of end consumers,
those involved in last-mile logistics encounter problems of delivery failure, high end-to-end
distribution costs, low delivery service quality, poor delivery timeliness, low convenience of
pickup, serious environmental pollution, and the inability to meet the diversified needs of
end consumers [7,8]. These problems have become a bottleneck restricting the high-quality
development of e-commerce and low-carbon logistics. An alternative method for solving
last-mile problems is to shorten the distance between CDPs and end consumers, from the
“last mile” to the “last 500 m,” then to the last 100 m, and even to the last 50 m [1]. Thus,
the location and distribution of CDPs have aroused research interest worldwide [9–11].
UCDPs have more advantages over ACDPs in terms of shortening the distance between
CDPs and end consumers, thus achieving the last 100 m in city logistics. This is due to
their small size, which enables them to be placed in any unit without the need to consider
rent or staffing concerns

Thus far, studies have analyzed the site selection and location, spatial distribution, and
accessibility and usability of ACDPs, especially Cainiao Stations and China Post Stations in
Chinese cities; however, little is known about the identification and geographic variations of
UCDPs [3]. Therefore, the main goals of this study were to identify the spatial distribution
characteristics and influencing factors of unattended locker points.

The remainder of this paper is organized as follows. First, a brief review of the recent
literature on CDPs was conducted, followed by the methodology, results and discussion
of the research. In the final section, conclusions, policy implications, limitations, and
directions for future research are discussed.

2. Literature Review

Three core issues related to cost savings in last-mile logistics are (1) last-mile logistics
strategies, (2) site location analysis, and (3) route line optimization.

First, strategy selection solves the problem of the distribution of end-to-end delivery
service points in urban logistics [12]. In traditional end-to-end delivery markets, the solu-
tion was home delivery—bringing each parcel directly to the recipient’s address [13,14]. In
recent years, however, a strategy of delivering parcels to recipients through local service
points has become popular [15]. These service points may be either staffed facilities or
self-service facilities. For example, the Modular Bento Box System (M-BBX) was proposed
as a solution for efficient last-mile deliveries [16]. A study revealed that the use of staffed
service points instead of home delivery significantly reduced travel costs and the average
delivery time [17]. Since 2018, a mobile parcel locker was developed that can change
locations during the day, either autonomously or when moved by a driver [18]. Second,
site location analyses focus on finding potential locations for parcel lockers, on determining
the number of locations, and on selecting the optimal locations for effective installation [19].
To this end, the spatial interactions between pickup points and end consumers [11,20], site
characteristics, and the regional location characteristics of parcel lockers are key problems
to overcome [10,21]. The spatial pattern [22,23] and site selection [19,24] of parcel lockers
have also been analyzed. However, neither the accessibility [2,25], adoption [26,27], and
usability [28,29] of parcel lockers from the end consumer’s perspective nor the poten-
tial demand for automated delivery stations from the e-commerce delivery perspective
have been addressed [30]. Additionally, the impacts of CDPs on the energy efficiency of
goods movement, an individual’s activity–travel patterns, e-shopping usage behavior, and
city development have been analyzed [31–34], as have the consequences of CDP uptake
for retailers and shopping centers [20]. Third, route line optimization for realizing low-
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carbon express delivery [35] has been proposed to address problems related to vehicle
routing [36,37], urban street networks [38], urban consolidation schemes [39], and vehicle
usability [40,41]. The street network within a given urban area in terms of travel distances,
travel times, and topography has been indicated to possibly affect last-mile distribution.

In China, scholars have examined Cainiao Stations and China Post Stations in Xi’an,
Dongguan, Wuhan, Shenzhen, Nanjing, and Changsha to investigate the spatial distri-
bution pattern, micro-location selection, and influencing factors of CDPs. The methods
applied are kernel density estimation, Moran’s I index, standard deviation ellipse, average
nearest neighbor analysis, and statistical analysis, etc. [7,42]. These empirical studies have
reported the following main findings: (1) The macro-location of CDPs is usually in commu-
nities, schools, townships, businesses, enterprises, and office buildings to share costs and
customers with supermarkets, department stores, and individual shops [7,42–45]; (2) the
micro-location layout follows the principle of minimum distance and tends to be the last 300
and 100 m in small-scale spaces. The locations of CDPs sites are as close as possible to the
entrances and exits of their service targets [7,42,44–46]; (3) the spatial distribution of CDPs
is unbalanced, with more in some regions and less in other regions. For example, the spatial
distribution of CDPs in Shenzhen and Wuhan shaped multi-core agglomerations, which
presented more in the central regions yet less in the periphery regions [42,46], whereas the
spatial distribution of CDPs in Changsha showed a northwest–southeast orientation, which
presented more in the center and less in the surroundings [7]; contrary to that of Shenzhen,
Wuhan, and Changsha, the spatial distribution of CDPs in Dongguan presented multi-core
agglomerations centered within its town districts [44]. (4) Factors of regional development
levels, urban functions, built environment, and personal characteristics show a Pearson
relationship with the spatial distribution of CDPs. For example, the regional development
level had positive Pearson correlations with CDPs distribution [7,42,43]. With regard to
factors of urban functions, industrial and commercial enterprises, residential land use, and
the area of municipal districts were positively correlated with the spatial distribution of
Cainiao Stations and China Post Stations in Dongguan and Wuhan [44,46]. For factors of
the built environment, the preference for using CDPs decreased as urban density decreased,
and people in the city center had the most positive perceptions of using lockers and service
points, followed by inhabitants of suburbs and the periphery [47]. A significant positive
correlation exists between road density and pickup point distribution [7,42,43]. For factors
of personal characteristics, population density, and scale are critical in the distribution
of CDPs [3,7,42,43]. Research has found that young people, students, and people with
full-time jobs had positive views of using CDPs, whereas older adults and unemployed
people were somewhat more reluctant to use CDPs; married couples with children were
the main users of CDPs [47].

In general, research on end-to-end delivery service points has focused on ACDPs.
Discussions of Cainiao Station and China Post Stations have been centered around spatial
distribution characteristics, especially spatial distribution patterns, micro-location selection,
and influencing factors. Results have indicated that the spatial characteristics of service
points are heterogeneous and correlated with factors such as population density, economic
development level, land use type, and road accessibility. However, little attention has
been paid to the heterogeneity of the strength and scope of such effects, and few studies
have examined UCDPs. Furthermore, traditional computer-based point-of-interest (POI)
data from Baidu Map (similar to Google map) is insufficient for satisfying the precision
requirements of empirical research.

Thus, this study examined Hive Box to discuss the heterogeneous characteristics of
spatial distribution patterns and factors influencing locker points, and the smartphone
app-based POI data of Guangzhou City were obtained from the official Hive Box app. The
guiding research questions were as follows: Why are there more locker points in some areas
of urban space and fewer in others? How do the influencing factors vary geographically?
This study is expected to provide scientific recognition of the layout optimization for
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locker points and to promote enhanced community-based end-to-end delivery services
and low-carbon city logistics development.

3. Materials and Methods
3.1. Study Area

Guangzhou, a super city with a population of more than 10 million in China, is a core
city in the Guangdong–Hong Kong–Macao Greater Bay Area. The city has 11 administrative
districts, including 4 central districts (i.e., Liwan District, Yuexiu District, Tianhe District,
and Haizhu District), 3 suburban districts (i.e., Baiyun District, Huangpu District, and
Panyu District; the squares are the centers), and 4 outer suburbs (i.e., Huadu District,
Conghua District, Zengcheng District, and Nansha District; the circles are the centers)
(Figure 1). These 11 administrative districts consist of 2740 administrative communities,
covering approximately 7434.40 km2.

Figure 1. Study area.

Guangzhou, the capital city of Guangdong Province, is also a metropolis for online
shopping and express delivery services. By the end of 2020, the value of online retail
sales of physical goods in Guangzhou amounted to more than CNY 0.19 trillion, which
accounted for 1.99% of the online retail sales of goods in China. Moreover, both the amount
and revenue of the express delivery industry in Guangzhou ranked second, accounting for
9.14% and 7.89%, respectively, of the amount and revenue of this industry nationwide.

3.2. Data Source

The basic data were the geographical locations of Hive Box points and the social
characteristics of the 2740 administrative communities.

In previous research, the geospatial data of CDPs were usually obtained from POIs in
the Baidu Maps app. Generally, such an incomplete data set with hundreds of POIs cannot
satisfy the precision needs of spatial distribution research. Today, with the development of
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smartphones and apps, more complete and steady measures are employed to obtain huge
amounts of location data. In this study, the official Hive Box app developed by Shenzhen
Hive Box Technology Co., Ltd. was used to obtain the geospatial data (name, address,
longitude, and latitude). The data were obtained through several steps: (1) a batch of
control points that completely covered the whole area of Guangzhou were selected, (2) the
geographical locations (longitude and latitude) of Hive Box points within a 5 km radius of
these control points were searched, and (3) duplicate Hive Box points were deleted. Finally,
a total of 11,832 Hive Box points based on the app were obtained and used in this study
(Figure 1).

The social characteristics of 2740 administrative communities, including urban devel-
opment (UD), urban functions (UF), built environment (BE), and personal characteristics
(PC), were derived from multiple data sources. Total population (X11), urbanization rate
(X12), population aging (X41), number of working people (X42), number of highly edu-
cated people (X43), and housing conditions (X44) were derived from the 2010 Population
Census of the People’s Republic of China; the POI of living facilities (X21), POI of working
facilities (X22), and POI of public facilities (X23) were derived from Baidu Maps through
web crawler technology; road density (X31), building density (X32), and building floor
(X33) were obtained using OpenStreetMap (OSM) and ArcGIS data on internet (Table 1).
Additionally, the results of correlation analysis in the EViews software package showed
that there was no collinearity among these 12 variables (Table 2).

Table 1. Influencing factors, variables, and data sources of the social characteristics of administrative communities
in Guangzhou.

Factors Variables Data Sources

Urban development
(UD, X1)

X11_Total population (TP) 2010 Population Census of PRC
X12_Urbanization rate (UR) 2010 Population Census of PRC

Urban functions
(UF, X2)

X21_POI of living facilities (LPOI) Baidu’s map
X22_POI of working facilities (WPOI) Baidu’s map

X23_POI of public facilities (PPOI) Baidu’s map

Built environment
(BE, X3)

X31_Road density (RD) OpenStreetMap (OSM) and ArcGIS data
X32_Building density (BD) OpenStreetMap (OSM) and ArcGIS data

X33_Building floor (BF) OpenStreetMap (OSM) and ArcGIS data

Personal characteristics
(PC, X4)

X41_Population ageing (PA) 2010 Population Census of PRC
X42_Number of working people (WP) 2010 Population Census of PRC

X43_Number of highly educated people (HEP) 2010 Population Census of PRC
X44_Housing conditions

(HC, habitable space >120 m2) 2010 Population Census of PRC

Table 2. Correlations of variables in EViews.

X11 X12 X21 X22 X23 X31 X32 X33 X41 X42 X43 X44

X11 1.000
X12 0.165 1.000
X21 0.539 0.122 1.000
X22 0.450 0.022 0.741 1.000
X23 0.575 0.270 0.782 0.660 1.000
X31 0.129 0.560 0.204 0.133 0.254 1.000
X32 0.195 0.670 0.136 0.011 0.109 0.445 1.000
X33 0.236 0.630 0.252 0.191 0.342 0.480 0.487 1.000
X41 −0.399 0.299 −0.328 −0.353 −0.278 0.123 0.172 0.064 1.000
X42 0.506 0.118 0.373 0.399 0.324 0.182 0.268 0.217 −0.635 1.000
X43 0.298 0.592 0.073 0.057 0.351 0.284 0.319 0.462 0.007 0.200 1.000
X44 −0.091 −0.465 −0.063 0.024 −0.047 −0.335 −0.537 −0.233 −0.151 −0.091 −0.171 1.000
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3.3. Methodology
3.3.1. Kernel Density Estimation Method

Kernel density estimation calculates a magnitude-per-unit area from point features us-
ing a kernel function to generate a smoothly tapered surface. Density surfaces show where
point features are concentrated, which helps detecting hotspots of events happened [48]. In
criminal, commercial and traffic activities, it serves as a mean to explore spatial agglomera-
tion characteristics [49–51]. In this paper, kernel density is employed to detect the spatial
agglomeration characteristics of Hive Box distribution. The higher the kernel density grade,
the denser the point distribution, and the lower the scattering, on the contrary. The formula
is as follows [52]:

f (s) = ∑n
i

k
πγ2

(
dis
γ

)
, (1)

where f(s) is the density at position s; r, which equals 500 m, is the search radius of the core
density estimate; dis is the distance from i to position s; and k is the weight of dis.

3.3.2. Spatial Autocorrelation Analysis Model

Spatial autocorrelation, which includes global spatial autocorrelation and local spa-
tial autocorrelation, has been widely used to analyze the correlation of the same spatial
variable in different spatial positions [53–55]. This section provides a brief introduction to
Global Moran’s I index and Anselin Local Moran’s I index. In this paper, a square grid of
500× 500 m was created by the fishnet creating tool in ArcGIS 10.2, and the number of Hive
Boxes located in the grids was counted; thus, the global and local spatial autocorrelations
of these locations were analyzed.

(1) Global Spatial Autocorrelation: Global spatial autocorrelation measures the extent
to which the value of a variable at a certain location relates to the same type of value
in neighboring locations [53]. Moran’s I index is the most commonly used technique
for detecting spatial patterns, namely, clustered, dispersed, or random, according to the
spatial autocorrelation [54–56]. To evaluate the spatial distribution patterns of Hive Box in
Guangzhou, Moran’s I was used; the formula used is as follows [53]:

I =
n ∑n

i=1 ∑n
j=1 Wij(xi − x)

(
xj − x

)
∑n

i=1 ∑n
j=1 Wij ∑n

i=1(xi − x)2 , (2)

where I is the global Moran’s I index. If Moran’s I is significant at the level of 0.05 (0.01),
it indicates that there is a significant positive spatial correlation among variables, which
indicates that similar eigenvalues in adjacent areas have a cluster trend.

(2) Local Spatial Autocorrelation: Although Moran’s I index is efficient for detecting
the global spatial autocorrelation, it does not depict the local spatial cluster and outlier
relationships. Local Moran’s I index, also known as cluster and outlier analysis, is a method
that analyzes the local spatial autocorrelation by detecting the spatial cluster features of
high (hot spots) or low (cold spots) concentrations of spatial data [54,55]. The formula is as
follows [57]:

Ii =
zi − z

σ2

n

∑
j=1,i 6=1

[
wij

(
zj − z

)]
(3)

where Ii is the local Moran’s I, which is divided into four types: high–high clusters (HH),
high–low outliers (HL), low–low clusters (LL), and low–high outliers (LH). HH (LL) clusters
imply that the locations have similarly high or low values compared to their neighbors,
that is, high values in a high value neighborhood (HH) or low values in a low value
neighborhood (LL); HL (LH) outliers are those values that are obviously different from the
values of their surrounding locations, that is, a high value in a low value neighborhood
(HL) and a low value in a high value neighborhood (LH).
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3.3.3. Geographical Weighted Regression Model (GWR)

The GWR model can fully consider the spatial characteristics of each influencing factor,
and it accurately depicts the spatial relationship between independent and dependent
variables [58–60]. The formula is as follows [61]:

Yi = β0(µi, vi) + ∑n
λ

βλ(µi, vi)Xiλ + ε, (4)

where Yi denotes the number of Hive Boxes in administrative community i of Guangzhou;
β0(ui, vi) is a constant, βλ(ui, vi) represents the regression coefficient, (ui, vi) represents
the geographic location of the community i, Xiλ represents the parameter value of the λ
independent variable of community i, and ε represents the random error. The optimal
bandwidth distance was obtained automatically in GWR 4.0 and was subjected to finite
correction using the Akaike information criterion (AIC). The smaller the AIC value, the
higher the goodness of fit of the model.

4. Results
4.1. Results for Kernel Density Estimation

Figure 2 shows five grades of kernel density estimation, namely, the first grade (0–1),
the second grade (1.00001–14.5431), the third grade (14.5432–30.9831), the fourth grade
(30.9832–55.6431), and the fifth grade (55.6432–161.239), which could be classified into a
larger group (the second to fifth grade) and a smaller one (the first grade).

Figure 2. Map depicting the kernel density of Hive Boxes in Guangzhou. Note: 1—Xi Guan; 2—
Dongshan; 3—Long Daowei; 4—Xiao Bei; 5—Yang Ji; 6—Lin He; 7—Lie De; 8—Yuan Cun; 9—Su
She; 10—Xia Du; 11—Wu Fengxiang; 12—Chi Gang; 13—San Yuanli; 14—Jing Xi; 15—Xiao Guwei;
a—Shamian; b—Ersha Island; c—Zhongshan Fifth Road; d—Zhujiang New Town; e—Kangle Village;
f—Wushan Nan Road; g—Zhannan Road; h—Shiliu Gang Road; i—Luntou Road; j—Ruibao Road;
k—Huawan Road.
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The results highlighted that kernel density declined from the city center toward the
outskirts (Figure 2). In particular, the larger group for the whole city was located in
the central districts and core areas of suburban districts. However, the smaller one was
distributed across the vast countryside; that is, the density grade of Hive Box distribution
in urbanized areas was higher than that in rural areas.

In addition, the results also showed that the kernel density in the areas of Xi Guan,
Dongshan, Long Daowei, Xiao Bei, Yang Ji, Lin He, Lie De, Yuan Cun, Su She, Xia Du, Wu
Fengxiang, Chi Gang, San Yuanli, Jing Xi, and Xiao Guwei were relatively high, while in
the areas of Shamian, Ersha Island, Zhongshan Fifth Road, Zhujiang New Town, Kangle
Village, Wushan Nan Road, Zhannan Road, Shiliu Gang Road, Luntou Road, Ruibao Road,
and Huawan Road, they were relatively low.

4.2. Results for Global Moran’s I Index and Anselin Local Moran’s I Index

Figure 3 reports the results of Global Moran’s I index. The p-value was less than 0.05,
indicating that the Hive Boxes is randomly generated with a probability of only 5%, while
the z-score was 178.84, which was larger than 1.96, indicating that the Hive Box distribution
showed obvious clustering characteristics. The global Moran’s I index of square grids was
0.52, which was greater than 0, indicating that the spatial distribution pattern of Hive Boxes
was positively correlated; that is, high values are clustered in high value neighborhoods,
and low values are clustered in low value neighborhoods, showing a significant spatial
agglomeration from a global perspective.

Figure 3. Report of Global Moran’s I index for Hive Box distribution in Guangzhou.
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Figure 4 presents the results of Local Moran’s I index, which depicts three local spatial
agglomeration types, namely, the high–high clusters (HH), high–low outliers (HL), and low–
high outliers (LH). On one hand, the dominant high–high clusters occupied the majority
of areas in the inner city, central districts, and centers of suburban areas. However, on
the other hand, a lack of adequate service of Hive Box in the vast countryside was also
detected. Such differences existing in urban–rural space imply the uneven development
and spatial distribution of Hive Boxes in Guangzhou.

Figure 4. Results of local Moran’s I index of Hive Box distribution in Guangzhou.

4.3. Results for Influencing Factors of Geographical Weighted Regression Model
4.3.1. Spatial Spillover Effects of Influencing Factors

As the number of Hive Boxes at the Guangzhou community level had spatial autocor-
relation effects, the residuals were no longer independent of each other; thus, the influence
of the spatial spillover effect could not be ignored.

The GeoDa software package was used to obtain the parameter estimation results of
the ordinary least squares (OLS) model, spatial error model (SEM), and spatial lag model
(SLM) (Table 3). Higher statistical values of R2 and AIC in the SEM compared with those
in the SLM indicated that it was appropriate to use the SEM to explore the key factors
affecting the number of Hive Boxes.
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Table 3. Results of spatial spillover effects for the OLS model, SEM, and SLM.

Variables

OLS SEM SLM

Coefficient Standard
Deviation Coefficient Standard

Deviation Coefficient Standard
Deviation

Constant 0.0334 ** 0.0133 0.0383 *** 0.0138 0.0301 ** 0.0130
X11_TP 0.0788 *** 0.0140 0.0612 *** 0.0137 0.0658 *** 0.0137
X12_UR 0.0047 0.0044 0.0089 * 0.0047 0.0012 0.0044

X21_LPOI −0.1040 *** 0.0195 −0.0914 *** 0.0196 −0.1036 *** 0.0191
X22_WPOI −0.0459 *** 0.0156 −0.0280 * 0.0158 −0.0426 *** 0.0153
X23_PPOI 0.4541 *** 0.0183 0.4396 *** 0.0180 0.4416 *** 0.0180
X31_RD −0.0386 *** 0.0100 −0.0324 *** 0.0102 −0.0340 *** 0.0098
X32_BD −0.0111 ** 0.0055 −0.0146 ** 0.0060 −0.0095 * 0.0054
X33_BF 0.0902 *** 0.0089 0.0823 *** 0.0091 0.0777 *** 0.0088
X41_PA −0.0924 *** 0.0254 −0.0993 *** 0.0267 −0.0636 ** 0.0252
X42_WP −0.0442 *** 0.0165 −0.0494 *** 0.0169 −0.0456 *** 0.0162
X43_HEP −0.0186 * 0.0100 −0.0137 0.0104 −0.0214 ** 0.0098
X44_HC 0.0142 *** 0.0050 0.0116 ** 0.0053 0.0106 ** 0.0049

R2 0.4696 0.4996 0.4894
AIC −8798.26 −8912.57 −8879.70

Notes: *** significant at the 1% level; ** significant at the 5% level; * significant at the 10% level.

According to the SEM results in Table 3, the coefficients of TP (X11), PPOI (X23), and
BF (X33) were significant and positive at the 1% threshold level; HC (X44) were significant
and positive at the 5% threshold level; and UR (X12) was significant and positive at the
10% threshold level. The coefficients of LPOI (X21), RD (X31), PA (X41), and WP (X42) were
significant and negative at the 1% threshold level; BD (X32) was significant and negative at
the 5% threshold level; and WPOI (X22) was significant and negative at the 10% threshold
level, while the coefficient of HEP (X43) was not significant. Furthermore, a GWR model
was employed to explain geographic variations in the degree and scope of the 11 significant
factors (X43 was excluded) the space. These factors were inserted into the GWR model
according to the criterion of AIC minimization.

The GWR results reveal that the 11 factors explained 99.7% highest of the variance
in the number of Hive Boxes (Figure 5). Geographic variations in these factors revealed a
difference in the combined statistical influence of these variables on the number of Hive
Boxes in Guangzhou, from 0.270 to 0.997. It was found that 58.19% of communities had
local R2 values of over 70.5%. The predictive power of the model was low in the center
and high in the periphery. The lower R2 values demonstrated a poorer regression fit in the
inner city and some parts of the central districts of Guangzhou. A higher R2 indicated a
superior regression fit in the outer districts of Guangzhou, such as in the northern, eastern,
and southern parts.
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Figure 5. Spatial distribution of local R2 in the GWR model.

4.3.2. Geographical Variations of Influencing Factors

The spatial distribution of regression coefficient values and the 10% statistically signifi-
cant level of the t-value were mapped according to the results of GWR modeling (Figure 6).
The degree was divided into five classifications based on natural breaks, and the scope of
10% statistically significant level of the t-value was presented with grids. The results were
as follows:

Figure 6. Cont.
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Figure 6. Spatial distribution and regression coefficients for the 11 factors based on the GWR model for Hive Boxes in
Guangzhou: (a) Total population, (b) urbanization rate, (c) POI of living facilities, (d) POI of working facilities, (e) POI of
public facilities, (f) road density, (g) building density, (h) building floor, (i) population aging, (j) number of working people,
and (k) housing conditions.

The (1) total population (TP) had significant effects (both positive and negative) on
28.23% of the communities in Guangzhou, which significantly increased the number of
Hive Boxes in 44.88% of the communities at the edge of Central Guangzhou (such as
the Northern Panyu district) that had a larger population, and which had significant
negative effects on 55.12% of the communities in the core areas (such as Huangpu district,
Panyu district, and Baiyun district) that had a smaller population (Figure 6a). The (2)
urbanization rate (UR) had significant effects (both positive and negative) on 33.39% of the
communities in Guangzhou, which significantly increased the number of Hive Boxes in
21.78% of the communities at the edge of core regions (such as Panyu district and Huangpu
district) that had a lower urbanization rate, and which had significant negative effects on
78.22% of the communities in the core regions (such as Yuexiu district) that had a higher
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urbanization rate (Figure 6b). The (3) POI of living facilities (LPOI) had significant effects
on 49.41% of the communities in Guangzhou, which significantly increased the number
of Hive Boxes in 93.04% of the communities located in the inner, central, and suburban
regions of the city (such as Yuexiu district, Liwan district, Haizhu district, Panyu district,
and Baiyun district), and which had negative effects on 6.96% of the communities in the
outer suburban districts (such as Huadu district and Panyu district) (Figure 6c). The (4)
POI of working facilities (WPOI) had significant effects (both positive and negative) on
25.29% of the communities in Guangzhou, which significantly increased the number of
Hive Boxes in 61.82% of the communities in the suburb and outer areas (such as Huangpu
district, Zengcheng district, Huadu district, and Conghua district) that had a lower POI of
working facilities, and which had a significant negative effect on 38.18% of the communities
in the central districts and outer suburbs (such as Haizhu district, Panyu district, and
Baiyun district) that had a higher POI of working facilities (Figure 6d). The (5) POI of
public facilities (PPOI) had significant effects on 42.26% of the communities in Guangzhou,
which significantly increased the number of Hive Boxes in 99.72% of the communities
concentrated in the central, suburban, and outer regions that had a higher POI of public
facilities, and which had a significant negative effect on 0.28% of the communities in
the outer suburban communities (Figure 6e). The (6) road density (RD) had significant
effects on 42.49% of the communities in Guangzhou, which significantly decreased the
number of Hive Boxes in 97.42% of the communities in the inner, central, suburban, and
outer communities in the city, and which had significant positive effects on 2.58% of
the communities (Figure 6f). The (7) building density (BD) had significant effects (both
positive and negative) on 50.12% of the communities in Guangzhou, which significantly
increased the number of Hive Boxes in 27.30% of the communities in the inner regions
(such as Huangpu district, Zengcheng district, Huadu district, and Conghua district) that
had higher building density, and which had a significant negative effect on 72.70% of the
communities in the suburban and outer regions (such as Huangpu district, Panyu district,
Nansha district, and Huadu district) that had lower building density (Figure 6g). The (8)
building floor (BF) had significant effects on 31.67% of the communities in Guangzhou,
which significantly increased the number of Hive Boxes in 90.12% of the communities in the
central areas (such as Yuexiu district, Haizhu district, and Tianhe district) that had higher
building floors, and which had a significant negative effect on 9.88% of the communities in
suburban districts (such as Huangpu district, Panyu district, and Baiyun district) which
had lower building floors (Figure 6h). The (9) population aging (PA) had significant effects
on 49.61% of the communities in Guangzhou, which significantly increased the number
of Hive Boxes in 98.42% of the communities in most areas of the city, and which had a
significant negative effect on 1.58% of the communities in suburban and outer regions of
the city (Figure 6i). The (10) number of working people (WP) had significant effects on
33.58% of the communities in Guangzhou, which significantly increased the number of
Hive Boxes in 81.02% of the communities in the center of the city (such as Yuexiu district,
Liwan district, Haizhu district, Huangpu district, and Huadu district), and which had a
significant negative effect on 18.98% of the communities in peripheral areas of the center
(such as Tianhe district, Panyu district, and Baiyun district) (Figure 6j). The (11) housing
conditions (HC) had significant effects on 39.60% of the communities in Guangzhou, which
significantly increased the number of Hive Boxes in 99.21% of the communities in the inner
city and central districts (such as Liwan district, Yuexiu district, and Tianhe district) that
had dwellings of low square footage, and which had a significant and negative effect on
0.79% of the communities in the city (Figure 6k).

5. Discussion

The results of p-value, z-score, and Global Moran’s I index showed that Hive Box
distribution in Guangzhou were not distributed randomly but spatial clustered, and
the further analysis of Local Moran’s I index showed that it was the high–high clusters
(i.e., high values are clustered in high value neighborhoods) that dominated the spatial
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agglomeration in the inner city, central districts, and centers of suburban areas. The results
depicted high similarity of Hive Box distribution in urban areas.

The results of kernel density also showed that Hive Box distribution in Guangzhou
were aggregated in points rather than being evenly distributed in a community-based urban
space, which highlighted the uneven development of Hive Boxes in urban areas. Such
results may correlate with previous findings, which stated that the spatial distribution of
CDPs was unbalanced, and CDPs tended to be located in communities; schools; townships;
and businesses, enterprises, and office buildings [7,42–45].

The regional differences in urban development strategies, urban built environments,
individual characteristics of residents, population scales, infrastructures, and social and
economic development levels have caused such spatial heterogeneity. Overall, total popu-
lation, urbanization rate, POI of working facilities, and building density had significant
multi-impacts (both positive and negative) on spatial Hive Box distribution; POI of living
facilities, POI of public facilities, building floor, population aging, number of working
people, and housing conditions had significant positive effects on Hive Box distribution;
and road density had significant negative effects on Hive Box distribution.

The positive effects of total population (44.88%) and urbanization rate (21.78%) on
Hive Box distribution were mainly observed at the edge areas of Central Guangzhou, and
the negative effects of total population (55.12%) and urbanization rate (21.78%) on Hive
Box distribution were concentrated in nonspecific Guangzhou. The positive effects of POI
working facilities (61.82%) on Hive Box distribution were mainly observed in the suburban
and outer areas of Guangzhou, and the negative effects of POI working facilities (38.18%)
on Hive Box distribution were mainly observed in the central districts and outer suburbs.
The positive effects of building density (27.30%) on Hive Box distribution were found in the
inner city of Guangzhou, and the negative effects of building density (72.70%) on Hive Box
distribution were found in the suburban and outer districts. The absolutely positive effects
of POI of living facilities (93.04%), POI of public facilities (99.72%), and population aging
(98.42%) on Hive Box distribution were scattered throughout the whole city; however, the
significant positive effects of building floor (90.12%), number of working people (81.02%),
and housing conditions (99.21%) on Hive Box distribution were gathered in the center of
Guangzhou. Finally, the significant negative effects of road density (97.42%) on Hive Box
distribution were scattered throughout the whole city.

6. Conclusions

As an important CDP type in China, Hive Box has increasingly peaked great interest
among governments and researchers. Its services represent a crucial alternative solution
for solving last-mile logistical problems, especially in current situations.

This paper revealed the spatial characteristics of Hive Box distribution by analyzing
the kernel density, Moran’s I index, and GWR methods with the location data of Hive
Box. The conclusions indicated that Hive Box distribution exhibited significant spatial
agglomeration characteristics and high–high cluster agglomeration type and exhibited
spatial heterogeneity rather than homogeneity in urban areas. Multiple factors caused such
spatial heterogeneity of Hive Box distribution in Guangzhou, and the effects of influencing
factors presented local geographic variations across regions.

The findings enlightened us about the agglomeration and heterogeneity of the spatial
distribution and influencing factors when CDPs were applied elsewhere for end-to-end
delivery services. It had profound meanings for 3PLs, e-commerce companies, and gov-
ernments. Nowadays, with the prevalence of e-shopping, customers preferred to select
nearby CDPs, which boosted 3PLs and e-commerce companies to engage themselves in the
fierce market competition for end-to-end delivery services by establishing different CDPs,
while governments committed themselves to providing plans to boost the development
of such facilities as well. For local governments, 3PLs and e-commerce companies, it was
important to realize where and how geographic variations took place for CDPs. Thus, the
findings offered one explication.
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To improve the final distribution of unattended locker points (such as Hive Boxes) for
an enhanced community-based end-to-end delivery service, low-carbon city logistics, and
sustainable e-commerce development in Guangzhou, this study provides the following
insights and suggestions:

(1) The infrastructure of unattended locker points should be intensified to improve end-
to-end delivery services. The point-like kernel density distribution showed that Hive Boxes
exhibited spatial heterogeneity rather than homogeneity in urban areas, which indicated
insufficient end-to-end delivery service points in some areas where home delivery failures
occur. This reduces consumers’ adoption as well as their usability of self-collection services,
end-to-end delivery solutions (the last 100 m), and even unsustainable e-commerce devel-
opment.

(2) The combined effects of multiple factors should be acknowledged rather than the
unidirectional effects of a single factor. The analysis revealed that the Hive Box distribution
in Guangzhou was affected by the combined effects of multidimension factors but not by
the unidirectional effects of a certain factor. This indicated that, under the combined effects
of multiple factors, the original unidirectional effects of a factor varied across regions.

(3) The heterogeneous characteristics of the influencing factors should be identified.
The analysis revealed that the effect of the strength, direction, and scope of the factors
influencing Hive Box distribution were heterogeneous rather than homogeneous across
regions. This result clarified that end-to-end delivery points should be distributed in
consideration of regional variations as influencing factors.

One limitation of this study was the difficulty to obtain the most recent data from
the 2740 administrative community units of Guangzhou City. Another limitation was the
difficulty of allocating equilateral square grids and the corresponding data of the study
units for GWR. However, our empirical results were beneficial for understanding the
heterogeneous characteristics of the spatial distribution and influencing factors for unat-
tended locker points. Future studies should focus on the characteristics of heterogeneity,
accessibility, and usability, and the adoption of locker points (CDPs), according to different
types of sub-dwellings.
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