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Abstract: The increase in atmospheric pollution dominated by particles with an aerodynamic di-
ameter smaller than 2.5 um (PMz2s) has become one of the most serious environmental hazards
worldwide. The geographically weighted regression (GWR) model is a vital method to estimate the
spatial distribution of the ground-level PMzs concentration. Wind information reflects the direc-
tional dependence of the spatial distribution, which can be abstracted as a combination of spatial
and directional non-stationarity components. In this paper, a GWR model considering directional
non-stationarity (GDWR) is proposed. To assess the efficacy of our method, monthly PM:z5 con-
centration estimation was carried out as a case study from March 2015 to February 2016 in the
Yangtze River Delta region. The results indicate that the GDWR model attained the best fitting ef-
fect (0.79) and the smallest error fluctuation, the ordinary least squares (OLS) (0.589) fitting effect
was the worst, and the GWR (0.72) and directionally weighted regression (DWR) (0.74) fitting
effects were moderate. A non-stationarity hypothesis test was performed to confirm directional
non-stationarity. The distribution of the PM2s concentration in the Yangtze River Delta is also
discussed here.

Keywords: GWR; non-stationarity; wind; PM2s concentrations; locally varying anisotropy

1. Introduction

PM25, which refers to particles with an aerodynamic diameter smaller than 2.5 pm,
is one of the main indicators in air quality assessment [1]. Due to its small particle diam-
eter, high capacity to carry viruses, long stagnation time in the atmosphere, and large
transportation distance, PM2s can not only cause a severe atmospheric environment with
heavy haze but can also cause great harm to human lungs and respiratory and cardio-
vascular systems [2-4]. Accurate PM:2s spatial characterization is crucial to air quality
assessment and addressing public health concerns, and a temporally continuous process
at the monthly level is crucial to effectively conduct periodic air quality prediction and
pre-disposal recommendations at medium and large scales. A large number of ground
air quality monitoring stations have been established globally, and the monitoring of the
spatial and temporal characteristics of PMzs has become a hot spot. An unbalanced spa-
tial distribution and incomplete coverage are the major obstacles to analysis and fore-
casting based on only discrete monitoring site data [5,6]. Satellite remote sensing can be
used to assess the air quality in areas where ground-based PM25s monitors are not avail-
able [7]. Since the middle of the 2000s, the MODIS (Moderate Resolution Imaging Spec-
troradiometer) and MISR (Multiangle Imaging Spectroradiometer) instruments onboard
NASA’s Terra satellite have provided global observations of aerosol optical depth
(AOD). Aerosol particles can block and attenuate the solar radiation reaching the ground
by absorption, scattering, etc. AOD is the integral of the extinction coefficient of the me-
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dium in the vertical direction and describes the attenuation of light by aerosols [8]. Ac-
cording to the physical definition [9], AOD is related to the particles in the atmosphere. It
has been demonstrated that AOD in the visible and near-infrared bands of inversion is
most sensitive to particle concentrations of 0.1-2 um in diameter, which is very close to
the particle size range of PMas [10,11], thus providing an important theoretical basis for
establishing the AOD-PMa2s correlation. Therefore, satellite remote sensing images are
used to retrieve AOD data within a continuous spatial range and at a high spatial reso-
lution, and a high-precision AOD-PMa2;5 spatial model has been discussed for ground
PM:5 concentration estimation.

The classical AOD-PM:5 models include mechanistic and non-mechanistic models.
Mechanistic models involve complex physicochemical processes and require the estab-
lishment of relatively complete models of emission sources, meteorological and pollutant
dispersion processes, and other related physicochemical processes [12-15].
Non-mechanistic models, which capture data characteristics through historical data by
statistical models or neural network models, are relatively simple and can easily be ap-
plied in practice [16-21]. The correlation between AOD and PMo:s has significant spatial
non-stationarity [22]. Spatial non-stationarity means that the relationship between coef-
ficients varies throughout space and cannot be explained by a simple global model [23].
Among the above models, the geographically weighted regression (GWR) model is a
non-mechanistic technique that focuses on the non-stationarity spatial variability in lin-
ear regression modeling, making it prediction using the complex spatial structure of both
predictor variables and their coefficients possible, and thus it can better reflect the com-
plex spatial relationship between AOD and PMas over a certain contiguous region
[23-25]. Numerous studies on PM25 estimation have been conducted based on the GWR
model. PM2s prediction accuracy has been significantly improved in North America by
introducing meteorological and land use variables [26]. To improve the regional scale of
the PM:5 concentration estimation accuracy, Song [27] combined the AOD with vertically
corrected relative humidity (RH) data to improve the AOD-PM:s correlation. He and
Huang [19] bridged the gap in 3-km AOD data via the development of the AOD image
fusion technique and obtained daily PMzs data in China at a 3-km resolution through es-
timation with the GTWR model, [28] indicating that the PM2s concentration exhibits
seasonal variation in China, while the winter pollution level is much higher than that in
summer and other seasons.

The change in PM2s concentration originates from pollution sources and air trans-
portation. Wind is the main factor influencing PM2s diffusion. Higher wind speeds im-
pose a greater influence on the transport of air pollution, which is referred to as the wind
effect [29]. Downwind areas of factories, for example, are more vulnerable to pollution
emissions than are upwind areas. The wind effect influences the spatial heterogeneity of
air pollution, in which the wind direction effect is manifested as the directional hetero-
geneity of spatial variation [30]. Jammalamadaka and Lund [31] confirmed wind heter-
ogeneity through correlation analysis of the wind direction and PM2s. In most studies,
the wind speed or direction has been adopted as an independent explanatory variable in
simulation equations [32,33]. A relationship between PM:5 and the wind direction has
been described largely with qualitative statistical charts, such as correlation analysis and
qualitative discussion of the segmented wind direction and PM:s using a wind frequency
rose diagram [33,34]. A few studies have examined the influence of the wind field on the
PM2s5 concentration by equally considering the wind direction and wind speed to im-
prove the interpolation accuracy [35-37].

Although these methods considering the wind influence have certain significance,
the inaccurate definition of the wind classification, the lack of a quantitative wind-space
relationship, and the incomplete utilization of wind information (especially the wind
direction in vector format) may limit the further improvement of PM:s estimation. In
general, spatial and directional heterogeneity concepts have not been combined in re-
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gression models to estimate the PM2s concentration. This paper first extends the tradi-
tional GWR model considering both spatial and directional non-stationarity.

2. Materials and Methods
2.1. Study Area

The Yangtze River Delta region is referred to as an economic zone including
Shanghai, Jiangsu Province, and Zhejiang Province, as shown in Figure 1. The region is
one of the most well-developed coastal areas in eastern China and one of the areas with
the highest energy consumption, most intensive pollutant emissions, and most complex
air pollution in China.
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Figure 1. Study area, PM25 monitoring stations, and the wind fields with their annual mean values.
Annual averages are calculated from PM:s monitoring values and wind field data for the period
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March 2015 to February 2016, which are provided by the China Environmental Monitoring Station
and European Centre for Medium-Range Weather Forecasts, respectively.

2.2. Materials
2.2.1. Ground-Level PM2s5 Observations

Since 2010, China has gradually established air quality monitoring stations to pro-
vide real-time air quality monitoring data to the public. Data are available for more than
1600 air quality monitoring stations on the urban air quality real-time release platform
established by the China Environmental Monitoring Station, which has officially been
put into operation (http://106.37.208.233:20035/ (accessed on 20 December 2017)).

In this study, the obtained PM:s data include the monthly average of 91 stations
across the Yangtze River Delta from March 2015 to February 2016 (filtered from 108 sta-
tions with an average monitoring frequency greater than 25 times/month), for a total of
1040 records (filtered with an AOD greater than 0). The spatial distribution of the stations
and their observed annual average PM2s values are shown in Figure 1.

Since the measurement of PM2s is conducted in a dry environment contrary to AOD,
the PM2s data were amended based on the RH to improve the linear relationship
[27,38,39]. The correct equation is expressed as follows:

1
C ted PM.,.=PM., x| ——M 1
orrecte 25 25 (I—RH/IOOJ 1)

2.2.2. AOD Data

MODIS is a commonly considered instrument to retrieve AOD data, which is
mounted on NASA Terra and Aqua satellites; it has a scan width of 2330 km and captures
at least one global observation each day [40]. The instrument measures 36 spectral
channels, with a spatial resolution range from 250 to 1000 m, and it is suitable to obtain
aerosol, water vapor, surface temperature, and ocean data. The large number of spectral
channels makes it possible to obtain parameters of aerosol particles of different sizes [41].

MODIS_L2 (level-2 atmospheric aerosol product) and MAIAC (Multi-Angle Im-
plementation of Atmospheric Correction) are the main sources. According to compara-
tive research, MAIAC products have a higher spatial resolution and coverage in China,
but their values have significant bias. In eastern China, the MAIAC inversion has signif-
icant overestimation at low and medium values of aerosol optical thickness, due to er-
rors in the calculation of regression coefficients for surface reflectance at different wave-
lengths [42]. In this study, we adopted the MODO04_L2 AOD data, which provide a full
global coverage of aerosol properties resulting from the dark target (DT) and deep blue
(DB) algorithms [43]. The DT algorithm was applied over ocean and dark land areas (e.g.,
vegetation), while the DB algorithm in Collection 6 (C6) covered all land areas, including
both dark and bright surfaces. Both results are provided on a 10 by 10 pixels scale (10 km
at the nadir). The component with the best assured quality (quality flag = 3) provided by
MODO04_L2 was employed in this research area and was obtained from NASA Level-1
and the Atmosphere Archive and Distribution System (LAADS) website
(http://ladsweb.nascom.nasa.gov/ (accessed on 20 December 2017)).

AOD data retrieved from MODO04_L2 should be extracted, clipped, reprojected,
meshed, and spatially joined to obtain monthly average values and simultaneously re-
move any no-data values.

Subject to cloud influence, AOD data cover the space incompletely for each month,
as shown in Figure 2, in which the change in pixel color from black to white indicates the
increasing value of AOD, which was missing for some months. In this study, we effec-
tively chose separate monthly AOD grids (filtered with an AOD greater than 0) for
model fitting and spatially interpolated these by the kriging method for the final uni-
versal PMas estimation.
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Figure 2. Monthly AOD data coverage in study area (2015/03-2016/02); the change in pixel color from black to white in-
dicates the increasing value of AOD, and red pixels indicate missing value.

It has also been found that the original AOD can be vertically corrected by using the
planetary boundary layer height (BLH) to achieve a better correlation with the
ground-measured PM:s concentration [11,38,39].

Corrected AOD = 40D )
BLH

2.2.3. Wind Data

To estimate the whole region, regular continuous grids of wind field data must be
generated. Wind information varies among grid units. Information can be acquired from
available weather grid products or spatially interpolated from sample wind monitoring
sites. Wind vector data contain v- and u-wind components in the Cartesian coordinate
system, as shown in Figure 3. The wind direction in each grid can be calculated with
Equation (3), starting from the north in the clockwise direction. The wind speed can be
calculated with the square root of the sum of the u and v squares.
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Figure 3. Continuous wind field in the research area during the four seasons: (a) spring, (b) sum-
mer, (c) autumn, and (d) winter; (e) shows wind rose diagrams illustrating wind direction and
wind speed for four seasons.

2.2.4. Auxiliary Data

In addition to the RH and BLH mentioned above, other factors related to PMazs in-
clude the wind speed, wind direction, and temperature. Wind information at a height of
2 m, divided into u and v components, and the temperature were acquired from Coper-
nicus Atmosphere Monitoring Service (CAMS) near-real-time data with a 0.125 degrees
resolution (http://apps.ecmwf.int/datasets/data/cams-nrealtime/levtype=sfc/ (accessed on
20 December 2017)). BLH data were acquired from ERA Interim, namely, monthly aver-
ages of daily mean data, with a 075 degrees spatial resolution
(http://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc/ (accessed on 20 De-
cember 2017)). The RH at 2 m was retrieved from NASA/POWER agroclimatology daily
averaged data with a 1.0 degrees spatial resolution
(http://power.larc.nasa.gov/common/AgroclimatologyMethodology/Agrold0_Methodol
ogy_Content.html (accessed on 20 December 2017)).
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2.2.5. Data Integration

All these data must be integrated into the same regular grids for regression calcula-
tion purposes. In this study, we defined the research scale at 10 x 10 km?, covering 2570
square grids in the Yangtze River Delta region. In regard to the other data, the ordinary
kriging interpolation method was applied to attain raster data with the same accuracy,
and the point extraction method was adopted to extract the value in each grid, while the
spatial connections between the independent variables and location information were
considered during integration into the grids. Figure 4 shows our data processing work-

flow.
Text Data Data Extraction Clip Analysis
) é Format LN Spatial N\
Raster Data [j/ Conversion TV Resample |
Vector Data P1‘0Ject10p Temporal
transformation Resample

Figure 4. Computational workflow of data processing. Input data include text, raster, and vector formats, with the fol-
lowing processing: (1) input data need to be directionally extracted to omit other information from original format (data
extraction), and converted to a uniform format (format conversion, for Esri geodatabase) and coordinate system (projec-
tion transformation, for EPSG 4549); (2) integrate these data into a unified 10 x 10 km? grid system on a spatial scale (clip
analysis, spatial resample) and unify monthly slices on a temporal scale (temporal resample).

2.3. Methods
2.3.1. Geographically Weighted Regression Model (GWR)

The GWR model is a spatial statistical model suitable for spatial heterogeneity
analysis [44]. The GWR model can be written as

Y;=ﬁ0(uiavi)+2ﬁk(ui’vi)xik+gi 4)
k

where (ui,vi) are the coordinates of the / -th point, [, (ui,vi) represents the con-
stant term, [, (u l.,vl.) is the K -th regression parameter at sampling point / , which is
calculated via the weight function, and x,, represents the K -th coefficient value of the

I -th point. &, is the error term for observation / , which is generally assumed to be
normally distributed with a zero mean and constant variance.

In equation, it is assumed that the observations nearer to location / are more in-
fluential on the estimates of /3, (u[, v[) .

,@(ul.,vi):(XTW(ui,vl.)X)_lXTW(ui,vl.)Y (5)

where ﬂA is the estimated value of B , w (u,», vi)

are zero and diagonal elements that are the geographical weights of the n observed data
points at regression point / , and Y denotes the real dependent variable value.

The global linear regression model (OLS) is assigned a weight of 1. The initial step of
the weighting-based local model excludes the observations beyond a certain distance d
from the regression point. The weighting function can be written as

comprises off-diagonal elements that
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a V|
W, = exp -[fj (6)

where j is a specific point in space at which data are observed, i denotes any points

in space for which parameters are estimated, h is the bandwidth, and dl.j is the dis-

tance in the Euclidean space. The bandwidth / either remains fixed or is adapted to fit
sample points under different spatial distribution conditions. For a given sample point,
the fixed method yields an invariable spatial distance, while the adaptive method usually
yields invariable nearest neighbor sample counts, resulting in bandwidth changes based
on the sample density in space. Consequently, the fixed method is suitable for spatially
balanced sample data, and the adaptive method is suitable for other sample data.

2.3.2. Directionally Weighted Regression Model (DWR)

In order to account for directional heterogeneity, R. Oller [35] presented a direction-
al weighting function according to Equation (7) by defining the distance between two
points’ directional difference.

d; = Angle(i, j)=6,-0,] @)

The kernel model above can be applied to the locally weighted regression as well.
Due to the effect of directional heterogeneity, points with a closer direction value should
generate a stronger mutual influence. The bandwidth % controls the impact between
two samples in the direction unit of measurement, and spatial units close to the direction
of the estimation point increase their weight (Figure 5).

1.0

h=0.1 h=0.5

0.8

0.6

0.4

0.2

0.0

Figure 5. The representation of a directionally weighted kernel function in the sample space [35]

2.3.3. Extending the GWR Model Considering the Wind Influence (GDWR)

The wind direction imposes a major effect on PM:s diffusion. Pollutants in air usu-
ally travel along the wind direction, which directly impacts the direction of pollutant
diffusion. Therefore, the diffusion distance due to different wind directions varies, and
the distance of pollution diffusion is also inconsistent. The wind speed also greatly in-
fluences the diffusion of pollutants. Generally, the higher the wind speed, the larger the
diffusion distance and influence area of air pollutants. Therefore, the effect of the wind
field on the PM:2s concentration is fundamentally reflected in the diffusion process of
pollutants, which is characterized by wind direction and speed weighting.
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In spatial regression, the influence of the wind field on the PM:5 concentration is em-
bodied in the anisotropic characteristics of spatial variation and the directional aspect of spa-
tial dependence. Based on the principle of non-stationarity, the directionality of spatial dif-
ferentiation is determined. This method considers that the attenuation mode of the regres-
sion coefficient is subject to directional constraints, and the regression coefficients along the
different directions are inconsistent with the corresponding distance attenuation.

The wind field affects the direction of atmospheric diffusion, and the spatial distance
affects the diffusion intensity, such that the distance equation considering the space and
direction can be integrated into the distance of atmospheric diffusion. This study adopted
the direction of the atmospheric diffusion distance proposed by Li et al. [36,37] to con-
sider both spatial and directional heterogeneity. The diffusion distance can be adopted to
describe the difficulty of diffusion of air pollutants between adjacent grid units. There-
fore, the distance is based on the standard model of air pollutant diffusion in the wind
field-Gaussian diffusion model, as shown in Figure 6.

/' /' /' /‘
/// // ‘ /// /// (_\ ()
b \\
/ /,-’f"' ———> AN
// R
"l \
/4 /// /ﬂ \\ C
Starting | . g \, Starti
? /1 /1 /’
s s /
i s ,~" Destination “ Destination
. A r 3
——> V=1m/s Dijkstra's algorithm
M . .
LVA distance calculation
e (% O
Cost{ E ) =| F(D,, Dy )<, -+ F(Dy, Dy )<, | XL
C ’ i : W, - [OOS(| D, D, XVA]*SE'{“"((IDA*DH\)]
p > Vi=l L,=2 F=2
/,
> ¥(D,,D,)=15 F(Dy, D, )= 30
A
/ —
/ W, = [cos@)x]"  w, —[cosG0)x2]"
=1.035 =0.577
G O
Cost(E,,)=[15x1.035 +30x 0.577]x /2=46.44

Figure 6. Distance equation considering the wind influence between starting pixel and destination
pixel: (1) first calculate the distance between adjacent grids ( A B) , referring to the LVA distance

calculation; (2) calculate the distance between dissociative grids (starting, destination), referring to
Dijkstra's shortest path algorithm.

COSt(E 4 B) denotes the diffusion distance between two adjacent grids A and B,

the F function indicates the angle between the two wind directions, D

), is the wind direc-

tion of grid A, and D, is the direction of line AB. COS(|D L, -D,, |) is the wind compo-
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nent rate along the AB direction, and V, and Vj are the wind speeds in grid units A
and B, respectively. The equation -sgn[cos (|D L -Dy, |) determines the positive or nega-

tive effect on diffusion. For cos (|D . -D,, |) >0 the grid A component of the wind speed

along the AB direction is positive, which exerts a positive impact on the diffusion process
of pollutants, thus decreasing the diffusion distance. In contrast, for COS(|D . -D,, |) <0,

the wind speed in grid A results in a larger diffusion distance. L, indicates the spatial

distance between cells A and B, which is calculated by the adjacency relation, L, =1 if

the adjacency relation is edge-connected, or L, , = \/E if the diagonal relation is

point-connected.

In contrast to the effects of the upper and lower tuyeres proposed by Li et al. [37],
this paper considered that the influences are equivalent with the same difficulty, and the
smaller value was adopted as the final diffusion distance. In regard to grid data with ar-
bitrary distances from points i to f , the distance considering the wind field can be
obtained with Dijkstra's shortest path algorithm as follows:

j
d;=d,,., (pi,pj) = mianin{Cost(EAB),Cost(EBA )} (8)

Considering the combination of directional and spatial non-stationarity aspects, the
wind field distance is defined accounting for the direction and spatial heterogeneity,
namely, the wind field locally varying anisotropy (LVA) distance, in the PMas5 estimation
model.

Selecting the Gaussian kernel function as an example, its weight calculation equa-
tion is

572

W, =exp| — w 9)

where /1 is the optimal bandwidth value expressed in units of the optimal wind field
distance.

Figure 7 compares the expression form of the center point in the Euclidean distance
space and the weight change in the wind field distance space. In the Euclidean distance
space, it is expressed as a circular shape with the sample point as the center, and the
distance in space increases with decreasing weight. In the wind field distance space, it is
expressed as a band form with the sample point as its center, and the weight decreases
along the shortest path of the wind field, which reflects its anisotropy.

P31 v sl
v Y S -
.A = S SO
| = vivint
Y 4|4V e
@ (b) ©

Figure 7. Representation of weighted kernel function in wind field space (b): (a) spatially constrained, (c) directionally
and spatially constrained [35].
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According to the above defined formula and chart, it can be found that OLS, GWR,
DWR, and GDWR models are specialized in solving general problems based on global
linear assumptions, geographic problems based on spatial heterogeneity, problems based
on directional heterogeneity, and geographic problems based on spatial plus directional
heterogeneity, each with its own usage scenarios and specialties. In addition, these four
models have sequential extension characteristics, and the extended model contains the
capabilities of the original. That is, GWR and DWR are an extension of the OLS model
separately, and GDWR is an extension of combined GWR and DWR models.

2.3.4. Parameter Estimation

Due to the uneven distribution of ground PM:s monitoring sites, we adopted an
adaptive Gaussian kernel in locally weighted regression for experimental verification.
The distance in Equation (7) may be the Euclidean, directional, or diffusion distance. The
optimal solution of the model depends on the definition of the bandwidth, and the cur-
rent criteria considered for bandwidth selection include cross-validation (CV), Akaike
information criterion (AIC) validation, and Bayesian information criterion (BIC) valida-
tion. The AIC has the advantage of a more general application than that of CV statistics
[45]. In this study, we chose the AIC according to the following definition:

IC.=2nlo (A)+ lo (2 )+ —n tr( ) 10
A =2n o)+n T)+n
C ge ge n 2 t]/'(S) ( )

2.3.5. Result Evaluation

To test the effectiveness of the regression models, a homogeneity assumption as-
sessment method must be developed, where F statistics are suitable to evaluate the model
significance. Leung et al. [46] improved the existing traditional testing procedures of
spatial non-stationarity in the GWR model. Here, we adopted this method to check the
significant spatial and/or temporal non-stationarity over the study area before applying
these models. The equation is given as follows, which is an F statistic using the method of
analysis of variance:

(RSS, - RSS, )/
F’z =
RSS,/(n—p-1)

(11)

where F, denotes the test statistic value, is RSS, the residual sum of squares of the

ordinary least squares (OLS) model, RSS, is the residual sum of squares of the locally
weighted model, v, = tr(A) , for A=n—-p —l—tr[(l —L)T (I—L)} , p is the

count of explanatory variables, and L is the hat matrix of the model.
Two indexes were used to evaluate the accuracy of the model fitting results and
compare them with among different models: the root mean square error (RMSE) and the

adjusted Rz(Rj 4 )- Equation (12) represents the expression of RMSE, where y, is the

true monitored value and y; is the mode fitted value.

RMSE = /%IZ:‘,(%—@)Z (12)

Equation (13) represents the expression of Rjd/ . The use of Rjd]. is a modification

of R* to avoid the index automatically and spuriously increasing when extra explana-
tory variables are included.
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3. Results and Discussion
3.1. Model Definition
The OLS and GWR model structures can be expressed as

Corrected PM , ; ~ corrected AOD + TEMP + RH + BLH + WIND  (14)
The DWR and GDWR model structures can be expressed as
Corrected PM, ; ~ corrected AOD +TEMP+ RH + BLH (15)

Among them, the DWR, GWR, and GDWR models all adopt the Gaussian model as
their kernel and apply the AIC equation as their optimal bandwidth selection criterion.

3.2. Accuracy of the Models

The model accuracy of the four types of models is shown in Figure 8. The revised
PM25 and AOD data generated a high fitting precision, except the OLS method. For ex-
ample, in February 2016, the fitting precision of the OLS model only reached 0.2. Gener-
ally, the remaining models attained a precision above 0.5, with more than half of the fit-
ting precision values higher than 0.8, indicating a good fitting effect. The RMSE exhibited
a strong negative correlation with the fitting accuracy. Generally, the RMSE indicated a
high fitting accuracy from March 2015 to November 2015, while the fitting effect declined
during the autumn/winter transition period of 2015.
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Figure 8. Comparison of the monthly model fitting accuracy among the OLS, DWR, GWR, and GDWR models.

By comparing the four models, both the RMSE and R;dj followed the order of

GDWR>GWR~DWR>OLS in terms of the model accuracy. The mean fitting accuracy values
of the GDWR, GWR, DWR, and OLS models were 0.79, 0.72, 0.74, and 0.589, respectively.
From the perspective of the DWR model, its accuracy obviously exceeded that of the
OLS model and was similar to that of GWR, indicating that the importance of wind direction
modeling in the PM2s regression exceeded the effect of the wind speed variable. Moreover,
this also confirmed the occurrence of directional non-stationarity in the process of PM:s5 re-
gression modeling. The data comprising sample points with the same wind direction exhib-
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ited more similar characteristics of the regression coefficient, and the model fitting efficiency
of the regression model that considered the directional value was higher.

From the perspective of the GDWR model, the optimal fitting effect was achieved in
each month during the study period. Compared to the GWR model, the annual average
accuracy increased by 9.7%, and the RMSE was reduced by 13.7%. Compared to the OLS
model, the accuracy was 22% higher and the RMSE was 28.2% lower. Compared to the
DWR model, the precision was 6.8% higher, and the RMSE was 11.9% lower. The wind
field distance was adopted to comprehensively consider the wind direction, wind speed,
and spatial distance information, and spatial and directional non-stationarity aspects
were effectively combined to improve the model accuracy and realize PMzs estimation
with a higher accuracy.

When analyzed from a seasonal perspective, the fitting accuracy of all models seems
to be highly dependent on the season, with a larger error in winter. This may be due to
several reasons: The severe weather conditions in winter and spring can lead to very
drastic changes in the vertical profile of aerosols, resulting in a complex and variable re-
lationship between AOD and PM:s. The dispersion of the data varies from season to
season, and the data values of PMzs have obvious jumps in the more polluted weather.
Since the boundary layer is often in inverse temperature in winter, it is difficult for
heating emission aerosol particles to diffuse, resulting in a significant increase in the
number of severely polluted days, which makes the model built with the overall data
inaccurate for predicting some extreme values.

When analyzed on a monthly scale, the GDWR model stands out in Month 13. By
counting the wind speed data for each month in the study area, results show that the
variance of the wind speed in Month 13 (3.09) was second only to April (1.56) and May
(1.74), but the wind speeds in these two months were relatively low with monthly aver-
age wind speeds of 1.4 m/s and 2.3 m/s, while the average wind speed in Month 13 was
higher at 3.48 m/s, and the variance in all other months was significantly higher than
those three months. It can be speculated that the wind speed distribution is relatively
uniform over 13 months, there is a certain number of sample sizes at different wind
speeds, and the wind speed again significantly changes the proximity metric values be-
tween stations, showing a large accuracy improvement.

3.3. Hypothesis Testing

The validity of the various models is verified and the results are listed in Table 1. All
of the models exhibit a significant rejection of the hypothesis test, indicating model va-
lidity, while the order was DWR~GDWR>GWR in general. In contrast, the validity of the
DWR and GDWR models exceeds that of the GWR model, which verifies the occurrence
of spatial and directional non-stationarity.

Table 1. Comparison of F: test results.

Month DWR GWR GDWR
3 2.220 2.466 2.898
4 2.143 3.942 2.306
5 1.628 2.079 1.921
6 2.264 3.011 1.687
7 2.133 2.464 1.995
8 1.791 2.500 1.891
9 2.438 2.759 3.094

10 1.574 2.331 1.755
11 1.005 1.897 1.261
12 2411 2.773 1.941
13 1.884 2.690 2.016

14 2.556 2.745 2.211
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3.4. Accuracy at Each Site

To further evaluate the performance of the GDWR model, all the PM25 measure-
ments retrieved from monitoring stations were applied as a training dataset. The figure
below shows the mean difference between the GDWR estimations and ground meas-
urements, and the observed PMzs discrepancies varied.

To analyze the model accuracy in greater detail, for each model, a two-dimensional
scatter plot was generated for each PM2s monitoring station according to the fitting re-
sults of the whole month and the actual monitoring values, and the model accuracy was
graphically analyzed. The statistical results of each model are shown in Figure 9.

3600 3 600
= =
A 500 A 500
o =
L F] Q
= 400 £ 400
'8 B
B 300 B 300
? 200 § 200
O y = 0.8449x + 39.465 o y = 0.8805x + 30.681

1o R? = 0.8449 100 R2=0.8929

0 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Corrected Measured PM2.5 Corrected Measured PM2.5
600 600

Corrected Fitted PM2.5
oy
=

y =0.8775x +30.911 y = 0.8985x + 25.146

Corrected Titted PM2.5
Lad
2

10 R* = (.8869 100 R:= 09186
0 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Corrected Measured PM2.5 Corrected Measured PM2.5

Figure 9. Scatter plot between corrected measured and corrected fitted PM25 concentrations for model fitting.

According to the above scatter plot of the model fitting results, PMzs and the other
independent variables all exhibited a notable fitting effect, and the PM:s fitting accuracy
between each model and the original calibrated data was above 0.8, indicating the valid-
ity of the models. Moreover, a comparison of the effects of these four models also re-
vealed that the accuracy values followed the order of GDWR>DWR>GWR>OLS, indi-
cating that the weighted regression model considering the annual direction achieved a
higher fitting effect.

After recalculating the data into three segment groups by corrected PM2s values
(0~200, 200~400, 400~600), the statistical results of each model are shown in Figure 10. As
seen in the figure, all models have the highest fitting accuracy in the PM2s interval (200,
400), followed by the PMzs interval (200, 400), and the worst in the high PM:s interval
(400,600), which is inversely proportional to the amount of effective training data in the
interval. The number of effective training data for the high PM:2s value is significantly less
than the other two intervals, resulting in a model accuracy below 0.5. Comparing be-
tween models, the GDWR model ranks first in all intervals, especially in the case of low
training data, reflecting its strong resistance to missing training data.
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Figure 10. Scatter plot between corrected measured and corrected fitted PM2s concentrations for model fitting grouping
by corrected measured PM:s: (a) 0~200 pm, (b) 200~400 pum, (c) 400~600 pm.

Regarding the results of all models, the error at each site was obtained by generating
a box diagram at the annual scale based on the error ratio between the real and predicted
values at each site.

The error rate equation is

Corrected Measured PM 2.5 — Corrected Fitted PM 2.5
Corrected Measured PM 2.5

The results are shown in Figure 11.

ErrorRate =

(16)
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Figure 11. The error of the four models in each station in the whole year.

Analysis of the above box plot reveals that the error responses of the four types of
models at all stations throughout the year are similar, with the number of stations on the
abscisic coordinate generating similar error curves, which indicates that the model fitting
degree at all PM25s monitoring stations exhibits the same reaction in space. Statistics show
that the fitting accuracy at most sites is consistently high over 12 months, which is re-
flected by the fact that the error value varies around the zero axis within a small range,
and only a small proportion of the site data exhibit a wide error range. Moreover, the box
height is large, and only a small fraction of the site errors is large. By comparing the error
responses of the different models, the OLS model yields the largest mean error and the
largest fluctuation range in the whole year, which indicates that the model accuracy is
relatively low from a microscopic perspective. The DWR and GWR models basically at-
tain the same performance. The GDWR model yields the smallest overall error at each
site, and its fluctuation is smaller than that of the OLS, DWR, and GWR models. Based on
the microscale response among the stations, it is found that, on the whole, the GDWR
model achieves a better fitting effect than the other three models at all locations in space.
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3.5. Results of Full PM:zs Estimation with the GDWR Model

The GDWR model was implemented to predict the spatial distribution of the PM2s
concentration in the Yangtze River Delta region, and the predicted values are inversely
corrected based on the above equation. The spatial resolution is 10 km, and the total data
include 2570 grid points. Spatial analysis of the data was carried out from March 2015 to
February 2016, as shown in Figure 12. The figure reveals that the PM2s concentration in
the Yangtze River Delta region exhibits significant seasonal and cyclical characteristics.
According to the monthly analysis, the PM2s concentration decreases starting in March
2015 and reaches its lowest level in July. Thereafter, it increases and peaks in December.
An overall decline is observed based on the continuous decrease. According to the sea-
sonal analysis, the summer PM:s concentrations are the lowest, the winter PM2s concen-
trations are the highest, and the spring and autumn concentrations are the transition pe-
riods of the PM2s concentration.

In addition, the PM25 concentration in the Yangtze River Delta region shows signif-
icant spatial variation characteristics consistent with the relevant literature [46—48], with
monthly averages showing an overall decreasing trend from Jiangsu to Zhejiang, with
the characteristics of high in the north and low in the south.
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Figure 12. Monthly PM:5 concentration in the research area (GDWR 2015/03-2016/02).

4. Conclusions

The PM2s concentration has significant non-stationarity. In previous studies, spatial
non-stationarity was widely examined and addressed, and PM:s exhibited a strong di-
rectional non-stationarity due to its wind diffusion characteristics. Studies that consider
the wind influence on PM:2s estimation have been carried out; however, they lacked the
quantitative and fundamental combination of directional and spatial non-stationarity,
which may further limit accuracy improvement. By breaking through the traditional
isotropy spatial field assumption, constructing the space distance model directionally
constrained by the wind field, this study first combined spatial and directional
non-stationarity on PMzs concentration estimation and proposed the geographically di-
rectionally weighted regression model (GDWR).

To assess the efficacy of our method, monthly PM2s5 concentration estimation was
carried out as a case study from March 2015 to February 2016 in the Yangtze River Delta
region. The results indicate that the GDWR model attained the best fitting effect (0.79)
and the smallest error fluctuation, the OLS model yielded the worst fitting effect (0.589),
and the GWR (0.72) and DWR (0.74) fitting effects were moderate. Non-stationarity hy-
pothesis testing was conducted to objectively confirm the occurrence of directional
non-stationarity. Based on time series data of the PM2s concentration, we determined the
influence of wind field changes on the propagation, diffusion, and dissipation of PMas in
the different seasons. The GDWR model proposed in this study provides a certain guid-
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ing significance for the estimation and analysis of similar geographical elements with
directional propagation characteristics.
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