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Abstract: Recent advancements in spatial modelling and mapping methods have opened up new
horizons for monitoring the migration of bird species, which have been altered due to the climate
change. The rise of citizen science has also aided the spatiotemporal data collection with associated
attributes. The biodiversity data from citizen observatories can be employed in machine learning
algorithms for predicting suitable environmental conditions for species’ survival and their future
migration behaviours. In this study, different environmental variables effective in birds’ migrations
were analysed, and their habitat suitability was assessed for future understanding of their responses
in different climate change scenarios. The Jacobin cuckoo (Clamator jacobinus) was selected as the
subject species, since their arrival to India has been traditionally considered as a sign for the start of
the Indian monsoon season. For suitability predictions in current and future scenarios, maximum
entropy (Maxent) modelling was carried out with environmental variables and species occurrences
observed in India and Africa. For modelling, the correlation test was performed on the environmental
variables (bioclimatic, precipitation, minimum temperature, maximum temperature, precipitation,
wind and elevation). The results showed that precipitation-related variables played a significant role
in suitability, and through reclassified habitat suitability maps, it was observed that the suitable areas
of India and Africa might decrease in future climatic scenarios (SSPs 2.6, 4.5, 7.0 and 8.5) of 2030
and 2050. In addition, the suitability and unsuitability areas were calculated (in km2) to observe the
subtle changes in the ecosystem. Such climate change studies can support biodiversity research and
improve the agricultural economy.

Keywords: citizen science; machine learning; Indian monsoon; Jacobin cuckoo; Maxent; species
distribution model; habitat suitability; range expansion; WorldClim; CMIP

1. Introduction

The exponential change in the climate has directly affected the spatial distribution of
species and communities in ecosystems, which is an essential requirement to understand
the functions and processes of the ecosystem. As such, species movement in response
to climatic shifts could be projected from species distribution models (SDMs), which
provide an empirical way to assess the climatic impacts for the changes of species habitats
(for example, reference [1]). A habitat is defined as a particular location where species
live and reproduce with certain characteristics, behaviour, interactions and population
patterns [2]. A favourable habitat that is significant for the survival of a species is called
habitat suitability [3] and has importance in ecological research through habitat suitability
modelling, which can help in conservation and protection plans. Several studies have
investigated the suitability of species’ habitats using maximum entropy (Maxent) [4] for
evaluating the species range using geolocation data; for example, references [5–12]. The
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Maxent model has gained popularity in the literature for the modelling of species’ spatial
distributions, and related studies have received over 5000 citations in the Web of Science
Core Collection, mostly used by distribution modelers (ca. >60%) [13]. In recent decades,
countless studies have been carried out on the suitability of species’ habitats using the
maximum entropy method for evaluating species ranges using presence-only data [14–19].
Such studies help to derive useful guidelines on the parameterisations of the model, such as
the minimum sample size and data sample requirement, selection of random samples from
voluminous datasets and the determination of subsampling process for range predictions
per species and per sample size [14–16,18,19].

Although such data-intensive modelling approaches can help in identifying the major
factors behind species range expansion [20], the occurrences of species, which poses a
significant contribution to the model, should preferably be recorded across spatial (species
range) and temporal (time of observation) contexts. However, it is intrinsically a problem-
atic and costly task to record geographically varied near-real-time observations, because
such activities need the continuous monitoring of species movements, so the species are
tagged with tracking devices without causing any harm to them. Therefore, these real-time
or near-real-time observations through a volunteering approach for data collection could
help in quantifying the species fitness at a large spatial scale and informing about the
changes in climatic patterns. The species properties can also be obtained from floras, the
literature, herbaria and museums as theoretical data to model the habitat suitability of a
species [21]. However, the main challenge remains the spatial uncertainty, which may be
sourced from incorrect geotagging or wrong datum information [21,22]. Until recently, the
species data were collected and recorded as a textual description in the forms of names and
places [22], and digitising the textual information also causes substantial errors and brings
spatial uncertainty in the order of several kilometres [23]. Various techniques have been
developed to estimate and to document the location uncertainty among species’ occurrence
records in order to eliminate high errors prior to suitability modelling [22,24].

Trained and untrained volunteers have helped in the data collection processes as a
citizen science approach, which may provide robust and rigorous data with qualitative
and quantitative attributes. The data collected using citizen science approaches have been
applied to ecological niche models in recent years to mitigate the gaps in the quantity
and quality of data, which also improved the approximation of the metric of interest [25].
Species distribution modelling for particular species requires a sufficient number of oc-
currences distributed across its extant [26–28]. Citizen science is a broad concept that can
be understood in different forms [29], from highly systematic protocols to opportunistic
surveys with no sampling designs [29,30].

In this paper, a ML-based maximum entropy (Maxent) algorithm was applied to
Jacobin cuckoo (pied cuckoo or pied-crested cuckoo) occurrences with environmental
variables, such as to evaluate the potential habitat suitability in Africa and in India. For the
modelling procedure, the birds’ occurrences were first divided into three time periods—
June–September, which refers to India’s southwest monsoon, October–December, which
refers to India’s northwest monsoon and Africa’s wet season, and January–May—to predict
the suitability site of the Jacobin cuckoo, as most parts of India have winter and summer
seasons. This approach was also used to predict the change in monsoon patterns by mod-
elling how this bird’s favourable habitats will shift under different climate change scenarios.
For this future prediction modelling, the obtained modelling results of current suitability
with the existing environmental variables and species occurrences was projected with
future models to observe the probable climatic changes in 2030 (an average of 2021–2040)
and 2050 (an average of 2041–2060). In addition, the areas of suitability and unsuitability
sites were also calculated to analyse the increase or decrease in the ecological system in re-
sponse to changes in the monsoon patterns. The first ever Indian monsoon climate change
study in terms of Jacobin cuckoos’ migration was performed by Singh and Saran [31],
in which the geographic occurrences of the Jacobin cuckoo with 19 current bioclimatic
variables were modelled using the ML=based Maxent model in R software. This trained
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model was then projected with future bioclimatic variables under the RCP8.5 scenario
of the Coupled Model Intercomparison Project (CMIP5) to assess the predicted changes
in the suitability of Pied cuckoos’ habitats by 2050. Specifically, the current and future
bioclimatic variables were used at a resolution of 2.5 arc seconds (~4.5 km at the equator) of
latitude and longitude. The above-mentioned study signified that the major environmental
variables that affect the suitability of the Jacobin cuckoo were isothermality (16.8%), the
mean temperature of the warmest quarter (15.7%), annual precipitation, precipitation of the
warmest quarter (13.6%) and precipitation of the wettest month (11.3%) during the Indian
summer monsoon season, i.e., June–October. As per the current suitability predictions,
the states of Southern India—Andhra Pradesh, Goa, Karnataka, Kerala, Maharashtra and
Tamil Nadu—and Northern India—Uttarakhand and Himachal Pradesh—showed high,
as well as medium, habitat suitability, and the western states (e.g., Gujarat) displayed
medium suitability; southern Africa was found unsuitable for this bird, because in the
June–October months, a dry and hot climate is experienced there, which is not a favourable
habitat. However, according to the future suitability prediction of this bird, the Jacobin
cuckoo range contraction could happen in all parts of India except the southern parts of
Tamil Nadu due to increased greenhouse gas emissions and a decrease in precipitation of
the warmest quarter. In addition, the quantiles (5% and 95%) of the relevant environmental
variables were calculated to observe the changes in climates of now and 2050 with respect
to Indian monsoon seasons.

2. Citizen Science as a Biodiversity Research Method

The act of engaging volunteers in scientific tasks has proliferated in the past few
decades with offered, more pressing opportunities for participants to deliver advanced
approaches and make meaningful insights into their collected data. The activity of ef-
fectively utilising crowdsourcing, along with the Internet and mobile applications, over
large geographic regions is known as citizen science. Citizen science “is a process where
concerned citizens, government agencies, industry, academia, community groups, and
local institutions collaborate to monitor, track and respond to issues of common commu-
nity concern” [32] and “where citizens and stakeholders are included in the management
of resources” [33,34]. Citizen science involves both professionals and non-professionals
participating in both scientific thinking and data collection [33,35] with the support of
technological advancements, such as smart phones with location services, camera, ac-
celerometer, etc. [36]. However, based on its nature of engagement and utility in diverse
domains, citizen science may have different conceptual definitions and meanings.

According to the nature of engagement, the galaxy of citizen science is categorised into
four levels—crowdsourcing, distributed intelligence, participatory science and extreme [37].
Crowdsourcing is the most basic level, where the general public can contribute to science by
processing and analysing collected data. The next level is distributed intelligence, in which
citizens learn new skills before becoming involved in data collection and interpretation
activities. The third level is participatory science, where citizens are involved with research
groups for defining problems and data collection. The last level is extreme, where citizens
are equipped with full control to define problems, collect data and performing analyses
on it.

As per its utility in various projects with different aims, Wiggins and Crownston [38]
classified citizen science projects into five mutually exclusive and exhaustive types-action,
education, conservation, investigation and virtual projects. The various action projects
address local issues with the joint collaboration of citizens and scientists/researchers—
for example, references [39–49]-and education projects help in improving the knowledge
of citizens as part of the curriculum [50–55]. The conservation projects focus on the
management of natural resources—for example, reference [19]—investigation projects
emphasise the study of citizen’s observations combined with different parameters to
answer scientific questions [56,57] and virtual projects involve remote citizen science
activities [58–61].
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The above classification schemes can be demonstrated with the example of Project
PigeonWatch, which is one of the citizen science projects at the Cornell Lab of Ornithology
(CLO) and the National Audubon Society that engage many volunteers of all ages and
professions throughout the world to collect hands-on data to study and analyse pigeon
colour variations. On the basis of the above checklist, this project can be characterised as
an “investigation” project, and the utilised approach is “crowdsourcing”.

Amidst various citizen science projects, 72% of the projects relate to the discipline of
biology [62], and due to such dominancy in this area, the study and research on the diver-
sity and distribution of species [63] advance the rapid need for biodiversity monitoring,
conservation planning and ecological research. Many citizen science programs have been
realised over the span of years or even decades and are still being carried out to study the
patterns of nature on a large spatial scale by collecting data on different locations and habi-
tats of species. The way of collecting such information on the species’ locations, habitats
and other related information [63–65] by enlisting the public in scientific activities is now
considered the best practice. It is not necessarily true that the scientific output is always
benefitted by robust strategies and inferences from highly recognised and peer-reviewed
scientific publications; rather, gathering information through public participation could
be a better source of scientific information to answer specific questions [66,67]. Higher
credit may be given to Cornell University’s Lab of Ornithology, which laid the foundation
for volunteer participation in biodiversity observations, monitoring and research [52].
However, there are many other organisations and research groups that have designed
various citizen science programs to collect geographically well-distributed and dense data
with rigorous spatial sampling, such as Species Mapping through the Indian Bioresource
Information Network (IBIN) portal [68], bioblitz [69], the shell polymorphism survey [70],
the water quality survey [71] and breeding bird surveys [72]. Such diverse datasets compel
the aggregation of observation data from different sources for conventional research, but
the major concerns even after data aggregation are data quality [73] and techniques for
combining diverse datasets into different schemas [74]. Therefore, apposite planning is
required for managing the voluminous dataset integration into a uniform schema with data
quality check infrastructure for handling observational biases, “false absences” that yield
to inadequate sightings [75] and uneven data distributions [76]. These challenges were
addressed by a global concerted effort [77] that began in 2004 and has now resulted into
the largest single gateway to observation-based datasets, known as the Global Biodiversity
Information Facility (GBIF).

The GBIF is an intergovernmental organisation that provides “an Internet accessible,
interoperable network of biodiversity databases and information technology tools” [78]
as a “cornerstone resource” [79], with a “mission to make the world’s biodiversity data
freely and universally available via the Internet” [79]. Currently, the GBIF portal provides
open access to more than 160 million biodiversity occurrences and taxa data from 1641
institutions and volunteered surveying data around the globe. Therefore, the GBIF has
become an authentic repository where various organisations/institutes share their data
with quality and in large quantity, which are essential for modelling and decision-making
purposes. Edwards et al. [77] performed a spatial validation of the third-largest flowering
plant family, the Leguminosa, using its taxa and distribution data from the GBIF portal to
evaluate the quality and coverage of its geographic occurrences. Similar reviews could
be seen by Graham et al. [21] and Suarez and Tsutsui [80] for additional uses of museum
specimen data, which facilitated biodiversity policy and decision-making process [80].
Amongst the various other advantages, GBIF data can be used for biodiversity assess-
ments [81], taxonomic revisions [82], compiling red lists of threatened species [83] and
habitat suitability modelling [31,84–87]. The latter is one of the prominent examples of
climate change studies in which citizen science-based observations from the GBIF are
being increasingly used [88–95]. In this paper, different climate change scenarios combined
with the GBIF’s observed occurrences of the monsoon favourable bird, Clamator jacobinus,
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are modelled using the Maxent approach to study the contemporary and future habitat
suitability of this bird so that the variations in the Indian monsoon season can be examined.

3. Materials and Methods
3.1. The Jacobin (Pied) Cuckoo Species

As per Indian belief, the arrival of this partially migrated bird, the Jacobin cuckoo
(Clamator jacobinus) (Figure 1), also known as “Chatak” in India, heralds the onset of the
Indian monsoon [96]. During the summer, the bird flies from Africa to India for breeding,
crossing the Arabian Sea and the Indian Ocean, as shown in Figure 2. The Jacobin Cuckoo
belongs to the cuckoo order of small terrestrial birds with black and white soft plumage
and long-wings with a spiffy crest on the head that quenches its thirst with raindrops. The
species is also known as a brood parasite, i.e., instead of making its own nest, it lays its
eggs in the nest of other birds, particularly Jungle babbler (Turdoides striata). This bird of
an arboreal nature mostly sits on tall trees but often forages for food in low bushes and,
occasionally, on the ground. It prefers well-wooded areas, forests and bushes in semi-arid
regions. As widely known, the Jacobin cuckoo maintains their suitability in India in two
ways. There is a population that is sighted as residents year-round in the southern part of
the country. The Jacobin cuckoo is also sighted in the central and northern parts of India
along with summer monsoon winds from just before the monsoon to early winter, i.e.,
May–August. The reason behind choosing the Jacobin cuckoo was that the arrival time of
this bird is directly linked with the monsoon because it only drinks rainwater drops as it
pours down and does not utilise any other water sources, such as collected rain waters,
rivers, etc., to quench its thirst.

Figure 1. Image of Clamator jacobinus (Jacobin cuckoo or Pied cuckoo) (Source: Pied Cuckoo Macaulay
Library ML32455551).

3.2. The Species Distribution Data and the Preprocessing

The distribution data was obtained from the GBIF repository that collated geographic
records of this bird from surveys, museums, human observations and other data sources.
Then, those occurrences recorded through “human observation” were selected for this
study, because this research was focused on demonstrating the use of citizen science data
for habitat suitability modelling [97]. The institutes/organisations contributed this bird’s
data in the “human observation” category through various citizen science programs. These
institutes/organisations are the Cornell Lab of Ornithology, FitzPatrick Institute of African
Ornithology, South African National Biodiversity Institute, iNaturalist.org, Observation.org,
Xeno-canto Foundation for Nature Sounds, naturgucker.de, Kenya Wildlife Service, India
Biodiversity Portal and A Rocha Kenya. However, the dataset contained repeated latitude
and longitude values, as well as null values (NA: not available). By using a data cleaning
algorithm in R, records with NA values and duplicated locations were removed. Since the
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Jacobin cuckoos are known for their close association with the onset of monsoon season in
India, the compiled GPS records of human observations from 1991 to 2020 were divided
into the following monthly sets:

i. Based on the period of the southwest monsoon season that typically lasts from June
to September, the geographic occurrences of the Jacobin cuckoo were filtered for
these months starting from the year 1991 to 2020. In this period, the whole country
receives more than 75% of its rainfall [98].

ii. The second input set was filtered using the months of northeast monsoon season,
i.e., October–December. This monsoon season is also known as post-monsoon or
winter monsoon season, in which the country receives about 60% of its annual
rainfall in the coastal areas and about 40% in the interior areas [99]. Additionally,
the rainy season starts from October and lasts until April–June in Africa, where the
conditions are mostly suitable for its residency.

iii. The third and final set contains the data of months January–May that denote the
mid-rainy period and end of the rainy season in Africa and India, respectively.

Hence, the abovementioned sets of geographic occurrences were combined with
environmental datasets to understand their potential suitability ranges, environmental
parameters and altered climatic variations in different climate change scenarios.

Figure 2. Extant map of Clamator jacobinus (Pied cuckoo) (Image Source: reference [30]).

3.3. Environmental Data
3.3.1. Selection of Environmental Variables

This section discusses the selection of environmental data that are assumed to ecologi-
cally influence mobile species like birds, particularly the Jacobin cuckoo distribution. These
include bioclimatic variables, minimum temperature, maximum temperature, precipitation,
elevation and wind at the spatial resolution of 2.5 arc-min from WorldClim. For the present
climatic conditions, the bioclimatic variables, which were averaged for the years 1970–2000,
were obtained from WorldClim version 2.1, the latest version of climate data launched in
January 2020 [100]. As per this study, modelling was carried out for three different time
periods; therefore, climatic variables such as precipitation, wind, minimum temperature
and maximum temperature were taken and screened for the given three sets.
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For future sets, 19 bioclimatic variables (Table 1) for the near-future (2021–2040) and
remote-future (2041–2060) projections of the species distribution maps at 2.5 arc-min were
obtained from WorldClim [101]. For future climate scenarios, the CIMP’s climate data
of the CNRM-ESM2-1 [102] global climate model (GCM) for four Shared Socioeconomic
Pathways (SSPs): 126, 245, 370 and 585 were obtained from WorldClim’s database, which
was spatially downscaled and calibrated to reduce the bias.

Table 1. Environmental variables used in the habitat suitability modelling process.

Bioclimatic Variable Code Bioclimatic Variable Name Unit

BIO1 Annual Mean Temperature ◦C

BIO2 Mean Diurnal Range (Mean of monthly (max
temp–min temp))

◦C

BIO3 Isothermality (BIO2/BIO7) dimensionless
BIO4 Temperature Seasonality (Standard Deviation) ◦C
BIO5 Max Temperature of Warmest Month ◦C
BIO6 Min Temperature of Coldest Month ◦C
BIO7 Temperature Annual Range (BIO5-BIO6) ◦C
BIO8 Mean Temperature of Wettest Quarter ◦C
BIO9 Mean Temperature of Driest Quarter ◦C
BIO10 Mean Temperature of Warmest Quarter ◦C
BIO11 Mean Temperature of Coldest Quarter ◦C
BIO12 Annual Precipitation mm
BIO13 Precipitation of Wettest Month mm
BIO14 Precipitation of Driest Month mm

BIO15 Precipitation Seasonality (Coefficient of
Variation) fraction

BIO16 Precipitation of Wettest Quarter mm
BIO17 Precipitation of Driest Quarter mm
BIO18 Precipitation of Warmest Quarter mm
BIO19 Precipitation of Coldest Quarter mm

The 2013 IPCC (Intergovernmental Panel on Climate Change) fifth assessment report
(AR5) generated climate models from CMIP5, and the 2021 IPCC sixth assessment report
(AR6) presented CMIP6 with the 10 Earth system models (ESMs) [103]. CNRM-ESM2-1
is one of the ESMs that contains interactive earth system components such as aerosols,
atmospheric chemistry and the land and ocean carbon cycles. In CMIP6, sufficient amounts
of data on Carbon Brief were included to analyse the future emission scenarios, such as
past and future warming and climate sensitivity since CMIP5. The IPCC AR5 introduced
four Representative Concentration Pathways (RCPs) that examined future greenhouse
gas emissions in different climate change scenarios: RCP2.6, RCP4.5, RCP6.0 and RCP8.5.
These scenarios were updated with the Shared Socioeconomic Pathways (SSPs) scenar-
ios in CMIP6–SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-6.0 and SSP5-8.5. SSP1 is a world of
sustainability-focused growth and equality. SSP2 is known as the “middle of the road”,
where the historical patterns are followed, SSP3 lies right in the middle of the range of
the baseline outcomes produced by ESMs, SSP4 is a more optimistic world that fails to
ordain any climate policies and SSP5 depicts the worst-case scenario. These SSPs could
examine the demographic and economic factors, as well as how societal picks will have
an impact on greenhouse gas emissions. While in RCPs, the socioeconomic factors are not
included, but only the pathways are set to examine the greenhouse gas concentrations and
the amount of warming that could occur by the end of the century. In this paper, the SSPs
1–2.6, 2–4.5, 3–7.0 and 5–8.5 were used.

3.3.2. Screening of Environmental Variables

The correlation test between the environment variables for each of the three seasonal
sets was carried out to retain the ecologically relevant variables in the species’ suitability.
Spearman’s correlation coefficients [104] were applied on the variables set, where, if the
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variables had a Spearman correlation < 0.7, those variables were not highly correlated. Then,
the Variance Inflation Factor (VIF) was calculated in R software for each remaining variable
using the vifcor function of R package usdm [105] and eliminated the environmental
variables whose VIF values > 3, because the smaller VIF values hold low correlations. The
resulting VIF values were <3 [106], and therefore, no further variables were eliminated. This
correlation test among the environmental variables was performed for India and Africa
separately, and these screened environmental variables were then used in the Maxent
model to predict the habitat suitability in the abovementioned study areas.

3.4. The Spatial Distribution Model with Maxent

ML-based Maxent modelling [107] is the most popular and a well-established habitat
suitability modelling approach [108–116] that predicts probable distributions based on
species’ occurrences and environmental variables. The advantage of using Maxent is that it
uses presence-only data and provides a predictive map within the study area. This works
on the principle of maximum entropy that estimates the probability distribution of species’
habitats with no constraints and assumes that each feature has the same mean value in the
approximated distribution as the species occurrences.

In this study, the maximum entropy algorithm with bird’s occurrences and screened
predictor variables was modelled to predict the potential suitable habitats and analyse
the relative importance of different bioclimatic factors of each point of occurrence for the
Jacobin cuckoo. This method was applied on all the three sets of time periods, so that
the habitat suitability analysis could be performed to validate the belief that the Jacobin
cuckoo are the harbinger of the Indian monsoon and analyse the suitable climates and
range of this bird in India, as well as in Africa, during the selected periods. The jackknife
test was applied to recognise the importance of the environmental variables. The species
occurrences were split as training (75% of the total occurrences) and test (25% of the total
occurrences) data for the models’ calibration and assessment, respectively. The response
curves; jackknife and other features such as linear, quadratic, product, threshold and hinge
were set as true parameters in the habitat suitability model. The other model parameters
were used as follows:

i. “replicates = 10” tells the model about the number of replicates that the model executes
for cross-validating, bootstrapping or doing sampling with replacement runs;

ii. “lq2lqptthreshold = 80” is the number of samples at which the product and threshold
features start being used;

iii. “l2lqthreshold = 10” is the number of samples at which the quadratic features start
being used and

iv. “hingethreshold = 15” is the number of samples at which the hinge features start
being used.

The predictive performance of the generated model was then assessed by calculating
the Area Under the Receiver Operator Curve (AUC) of the receiver operating characteristic
(ROC) plot, which ranges between 0 (no discrimination) to 1 (perfect discrimination) [116].
The process of evaluating the model’s predictive performance using AUC involves the
process of setting thresholds on the model’s prediction by generating various levels of
false positive rates and then assessing the true positive rate as a false positive rate function.
Here, the false positive rate referred to the prediction of a presence for those places where
the species is absent, and the true positive rate is the successful prediction of a presence.
The AUC range from 0.7 to 0.8 is acceptable, 0.8 to 0.9 is excellent and above 0.9 is an
outstanding performance [117]. The dominant environmental variables in determining the
species’ probable distribution were assessed through the jackknife test (also called “leave-
one-out”) that gives the permutation importance against the environmental variables [110].
The species response curves were generated by the model to examine how the likelihood of
species’ occurrences responds to the variations in the changing environmental conditions.

Then, the future climatic variations (2021–2040 and 2041–2060) were also modelled to
estimate how the species will respond to changes in ecological systems, as their favourable
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habitats will shift under different climate change scenarios (i.e., SSP1-2.6, SSP2-4.5, SSP3-7.0
and SSP5-8.5).

The predicted habitat suitability maps were then reclassified into convenient classes
that represented the threshold limits that differentiated the unsuitable and suitable habitats.
The reclassified classes of habitat suitability were: the unsuitable conditions with a lower
threshold and the suitable conditions that were further categorised into three classes:
low, medium and highly suitable. This threshold helped in interpreting the ecological
significance by identifying areas that were at least suitable as similar to those areas where
the species has been recorded.

4. Results
4.1. Selection of Environmental Variables

To detect the correlations among environmental variables, the Spearman’s correlation
coefficient threshold was set to 0.7, and then, the vifcor function was performed. From the
visual assessment, some variables showed an intercorrelation that was then eliminated if
their vif values was assigned as less than 3. This was the case for the minimum temperature,
maximum temperature, precipitation, elevation, wind and bioclimatic variables. The final
selected set of variables were then used to predict the suitability of the Jacobin cuckoo,
given in Table 2.

Table 2. Environmental variables selected after the correlation test.

Time Periods India Africa

June–September bio14, bio15, bio18, bio19, bio2, bio3,
bio8, wind7

bio13, bio14, bio19, bio2, bio3,
elevation, wind6, tmax9

October–December bio14, bio15, bio18, bio19, bio2, bio3,
wind12, prec12

bio14, bio15, bio19, bio8, bio9,
wind 12

January–May bio14, bio15, bio18, bio19, bio2, bio3,
wind2, prec1 bio14, bio15, bio19, bio2, elev

4.2. Performance Evaluation Results of the Maxent Model

After executing the Maxent model on the species’ occurrences and environmental
variables, its predictive accuracy was evaluated by using AUC plots. As shown in Table 2,
environmental variables were selected for India and Africa separately in three different time
periods; therefore, the Maxent model was executed by separating the species occurrences of
India and Africa into three different time periods. Additionally, the minimum temperature,
maximum temperature and precipitation used in the Maxent model were taken according
to these three time periods.

The AUC values for the Pied cuckoos’ suitability prediction model given in Table 3
depicted that the model’s prediction was very good, so that it could effectively predict the
species distribution under the current and future climate scenarios.

Table 3. AUC values of the Maxent model’s performance.

Time Periods India Africa

June–September 0.885 0.908
October–December 0.91 0.947

January–May 0.958 0.908

4.3. Variable Importance and Contribution

Tables 4 and 5 depict the heuristic estimate of the percentage contribution and the
permutation importance of the environmental variables used in the Maxent model for
three different time periods with species occurrence data from India and Africa. These two
tables helped us to interpret the most influential environmental variables that played a
significant role in the Jacobin cuckoo’s habitat suitability in India and Africa. It is observed
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in Table 4 that bio2, bio3, bio14, bio15, bio18, bio19 and wind are common for all the
three time periods in India, whereas, in Africa (Table 5), bio 14 and bio 19 are common
in all three time periods. In India, wind and precipitation play a minor role, whereas, in
Africa, wind and elevation hold major contributions in suitability modelling. Therefore,
this section concluded that the environmental variables related to precipitation play a
significant role in the distribution of the Jacobin cuckoo and are essentially required in its
potential suitable habitats.

Table 4. Percent contribution and permutation importance of the environmental variables in terms of India’s suitability.

Time Periods Selected Environmental Variables Percent Contribution Permutation Importance

June–September

bio8 (Mean Temperature of Wettest Quarter) 52.4 40.9
bio3 (Isothermality) 13.9 11

bio2 (Mean Diurnal Range) 9.2 14.4
bio18 (Precipitation of Warmest Quarter) 7.8 5.3

wind7 (wind of July month) 6.8 9.6
bio19 (Precipitation of Coldest Quarter) 5.2 10

bio15 (Precipitation Seasonality) 4.5 7
bio14 (Precipitation of Driest Month) 0.3 1.7

October–December

bio3 (Isothermality) 69.7 54.7
bio18 (Precipitation of Warmest Quarter) 9.8 12.4

bio2 (Mean Diurnal Range) 9.4 17.9
wind12 (wind of December month) 3.8 5.7

prec12 (precipitation of December month) 2.6 2.8
bio15 (Precipitation Seasonality) 2.3 4.5

bio19 (Precipitation of Coldest Quarter) 2 1.6
bio14 (Precipitation of Driest Month) 0.5 0.5

January–May

bio3 (Isothermality) 56.2 49.7
bio19 (Precipitation of Coldest Quarter) 21.7 5.1

bio2 (Mean Diurnal Range) 13.2 22.8
prec1 (precipitation of January month) 3.5 4.7

bio18 (Precipitation of Warmest Quarter) 3.4 9.6
wind2 (wind of February month) 1.3 6.3
bio15 (Precipitation Seasonality) 0.7 1.5

bio14 (Precipitation of Driest Month) 0.1 0.4

Table 5. Percent contribution and permutation importance of the environmental variables in terms of Africa’s suitability.

Time Periods Selected Environmental Variables Percent Contribution Permutation Importance

June–September

bio14 (Precipitation of Driest Month) 31.2 26.9
bio13 (Precipitation of Wettest Month) 23.5 24.3

wind6 (wind of June month) 15.4 19.2
bio19 (Precipitation of Coldest Quarter) 11.1 7.2

tmax9 (Maximum Temperature of September) 8.9 12.6
bio2 (Mean Diurnal Range) 5.7 3.4

elev (Elevation) 2.1 4.8
bio3 (Isothermality) 2 1.6

October–December

bio9 (Mean Temperature of Driest Quarter) 51 30.1
bio14 (Precipitation of Driest Month) 24.8 20.9
wind12 (wind of December month) 8.9 18

bio8 (Mean Temperature of Wettest Quarter) 8.1 20.9
bio15 (Precipitation Seasonality) 5.5 8.1

bio19 (Precipitation of Coldest Quarter) 1.7 2

January–May

bio19 (Precipitation of Coldest Quarter) 33.9 38.6
bio15 (Precipitation Seasonality) 24.8 16.1

bio14 (Precipitation of Driest Month) 24.6 37.9
bio2 (Mean Diurnal Range) 15.4 6.3

elev (Elevation) 1.4 1
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4.4. Predicted Habitat Suitability Map of the Jacobin Cuckoo

Using the influential bioclimatic factors in the species distribution, the habitat suitabil-
ity prediction was performed under the current and future climatic scenarios to estimate
the changes in the ecological systems and how the species will respond to the changes in
different climatic variations. This section discusses the spatial characteristics of the utilised
distribution data, i.e., India’s southwest and northeast monsoon seasons and Africa’s rainy
season, especially in Southern Africa.

4.4.1. Current Habitat Suitability
June–September

The months of June–September are known as India’s southwest monsoon period, in
which all of India receives more than 75% of its rainfall [118], whereas these months bring
the dry season in Central, South and East Africa. Therefore, the recorded occurrences of
June-September (separately for India and Africa) with screened environmental variables
were supplied to the Maxent model, which resulted in the dominant bioclimatic variables,
as well as the prediction of the current habitat suitability of this bird. After evaluating the
model’s performance, the output was then used to project the future habitat suitability of
the Jacobin cuckoo under different climate change scenarios.

The species habitat suitability map shown in Figure 3 depicts that the areas covered
with grey colour represent no suitability for this bird, whereas the yellow and brown
colours represent good and low habitat suitability of the species, respectively. The species
occurrences are plotted with red points on the map, and the habitat suitability ranges can
be seen from the probability scale, which depicts the bird’s residency. Accordingly, Africa
has very low suitability during the June-September period because of its dry season, which
might not be a favourable climate for the suitability of Pied cuckoos. However, the model
predicted the good and high suitability of these birds in all of India as compared to Africa,
because India receives 75% of its rainfall then, and thus, this could be one of the main
reasons of their partial migration to India, so that they can get their suitable climatic factors.
The results shown in Figure 3 were computed on occurrences from 1991 to 2020 and the
climatic variables (tmin, tmax, prec and wind) of the June–September months.

In India, the major suitability predictions under the current scenario can be seen in
Northern, Western and Southern India, but Eastern, Central and North-eastern India have
shown very low or no suitability predictions. The model predicted the average suitability
range of the Jacobin cuckoo in the following Indian states—Uttarakhand and Uttar Pradesh
and in Madhya Pradesh of Central India. The reason behind its migration to these parts of
India could be because of the wettest features due to the highest rainfall and the maximum
number of rivers. A good suitability range was predicted in Western India, such as in
Gujarat (sites near to the Gulf of Kachcha and the Gulf of Khambat) and in Maharashtra
(sites surrounded by the Arabian Sea) and, also, in Southern India, such as in Western
Ghats. The highest suitability of this bird was predicted in a few areas of South India,
such as Southern Tamil Nadu, which is Rameswaram, Dhanushkodi and Thoothukodi.
Therefore, there is a probability that this bird likes to stay at the wettest sites, which receive
the highest amount of rainfall. In Africa, no habitat suitability was predicted for Jacobin
cuckoo, because this time period is the dry season, which might force the Jacobin cuckoo’s
migration to India.
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Figure 3. Habitat suitability prediction of June-September for the Pied cuckoo range.

The change in climate, particularly the Indian southwest monsoon patterns, were
analysed with respect to the Jacobin cuckoo in the past 30 years by separating the datasets
into two subsets—1991–2005 and 2006–2020. For this, the climatic variables were used for
these yearly subsets, and their results are illustrated in Figures 4 and 5, respectively. In
Figure 4, there is no suitability predicted in Africa in 1991–2006 during June–September
because of its dry weather, which is unsuitable for the bird, but, in India, an adequate
habitat suitability can be seen in the eastern parts and northern parts but not the southern
and western parts, due to the bird’s migration to India in search of a wet climate. When
the suitability results of Figure 4 are compared with Figure 5, a decline is observed in the
Indian monsoon rainfall in the north and east for the past 15 years in June–September.
Additionally, this study on climate change was completely dependent on sightings of the
Jacobin cuckoo, so one of the reasons of less suitability in Southern and Western India
would be less sightings of the bird due to the unawareness of crowdsourcing. As per
Google Trends search records from 2004 to the present (Figure 6), the public interest in the
term “crowdsourcing” in India started in 2007.
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Figure 4. Habitat suitability modelling in 1991–2005 for the June–September period.

Figure 5. Habitat suitability modelling in 2006–2020 for the June-September period.
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Figure 6. Google trends of “crowdsourcing” based on searches in India.

October–December and January–May

The months of October, November and December are known for the northeast mon-
soon or winter monsoon in India, as its direction is set from the northeast to southwest of
India, and the beginning of rainy and wet season in Africa, which typically lasts until April.
As such, this set of months includes monsoons of two different countries. Therefore, the re-
sults discussed in this section are divided into two sub-sections: one for October–December
and another for January–May.

The northeast monsoon season from October to December in India brings rain to
Andhra Pradesh mainly in the coastal regions of Kerala, Puducherry, Rayalaseema, South
Karnataka and Tamil Nadu. As compared to the southwest monsoon, this monsoon period
gives only 11% of the annual rainfall in India, but in Tamil Nadu, this season gives almost
half of its annual rainfall. The habitat suitability map given in Figure 7 depicts that, in
India, the highest habitat suitability of the Jacobin cuckoo is predicted in Tamil Nadu, good
in Andhra Pradesh and Karnataka and low in Kerala. Considering the model’s predictions
on the bird’s habitat suitability, which is correlated with the patterns of the northeast
monsoon (i.e., in October, November and December), it can be linked to the belief or fact
that the bird’s movements are completely linked with the monsoon rains of the northeast
monsoon period.

After verifying and exploring the links of the Indian monsoon arrival with the bird’s
sightings, subsequently, the same study was carried out to investigate the major climatic
factors that could be the cause behind the bird’s return journey to Africa. Figures 7 and 8
depict that, when the rainy and the wet season starts in October, the Pied cuckoos, residents
of Africa, might return to their native lands and reside there until April. Therefore, the
sightings of the Jacobin cuckoo were observed in the provinces of Africa, except the Western
Cape. However, the highest suitability (green colour) is predicted in the coastal areas of
the Eastern Cape and Kwazulu-Natal Provinces. Therefore, the research on the habitat
suitability of the Jacobin cuckoo proved the correlation between sighting of the Jacobin
cuckoo and the arrival of the monsoon season in India and also gives rise to ancestral tales
or traditional beliefs that these Jacobin cuckoos have the magical ability of summoning
rain wherever they go, such as all over the Indian subcontinent, as well as in Africa.
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Figure 7. Current habitat suitability predictions of October-December for the Jacobin cuckoo range. The regions marked
with a cross sign in the lower right part of the figure are: Andhra Pradesh (blue mark), mainly in the coastal regions,
Kerala (black mark), Puducherry (red mark), Rayalaseema (green mark), South Karnataka (marron mark) and Tamil Nadu
(pink mark).

4.4.2. Predicted Future Suitability under Different Climate Change Scenarios

This section is related to the modelling of future habitat suitability of the Jacobin
cuckoo by using the existing Maxent model, existing occurrences data and existing environ-
mental layers and then projecting them with future environmental variables of the years
2030 and 2050. In addition, the probable increase or decrease in suitable and unsuitable
habitats in the current and future years were also estimated for the sites occupied by the
species, which can be used in various climate change studies later.



ISPRS Int. J. Geo-Inf. 2021, 10, 463 16 of 29

Figure 8. Current habitat suitability prediction of January-May for the Pied cuckoo range.

June–September

The resulting suitability maps was then generated using the selected environmental
variables that are given in Figure 9. The figure depicts that the probable habitat suitability
conditions of the Jacobin cuckoo have are relatively medium in SSPs 2.6, 4.5 and 7.0 of
2030. As compared to the current predictions in Figure 5, declines are observed in different
climatic scenarios of the future years, particularly in SSP 8.5, in which the pixels of good
suitability disappeared. This might be due to the estimation of higher CO2 emissions and
the increase in global warming. Table 6 depicts that there is a decline in suitable areas and
an increase in unsuitable areas as compared to the current ones.
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Figure 9. Predicted future habitat suitability maps of the Jacobin cuckoo during June–September of
India for the 2030 SSPs 2.6, 4.5, 7.0 and 8.5 (a–d) and 2050 SSPs 2.6, 4.5, 7.0 and 8.5 (e–h).
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Table 6. Predicted suitable areas under the current and future climatic conditions during June–
September (India).

Climatic Scenarios Unsuitability (km2) Suitability (km2)

Current – 3,903,906.3 1,554,570.5

2030

SSP 2.6 3,917,983.9 1,533,619.6
SSP 4.5 3,956,603.1 1,492,705.1
SSP 7.0 3,925,725.7 1,530,059
SSP 8.5 4,083,028.8 1,371,543.6

2050

SSP 2.6 3,935,078.1 1,514,768.8
SSP 4.5 4,012,498.1 1,436,972
SSP 7.0 4,170,800.4 1,281,060.6
SSP 8.5 4,249,557.4 1,205,204.4

October–December and January–May

This section discusses on how the distribution of potential habitats will shift under
different climate change scenarios. According to the model’s future predictions for the
months of October-December in India (Figure 10) and Africa (Figure 11), the habitat
suitability of the Jacobin cuckoo is highly related to the current scenario (Figure 7) under
SSPs 2.6 and 4.5 of 2030. However, the suitability conditions under different scenarios
such as 7.0 and 8.5 of 2030 and, in 2050, under all climatic scenarios, the probability of
occurrence of the Jacobin cuckoo is predicted as quite low when compared with the current
one. This can be observed in Tables 7 and 8, which represent the increase in unsuitable and
decrease in suitable areas of the Jacobin cuckoo in India and Africa, respectively.

Table 7. Predicted suitable areas under the current and future climatic conditions during October–
December (India).

Climatic Scenarios Unsuitability (km2) Suitability (km2)

Current – 4,662,162.9 269,311.2

2030

SSP 2.6 4,772,917.3 198,217
SSP 4.5 4,773,967.4 197,233.2
SSP 7.0 4,758,425.3 200,135.6
SSP 8.5 4,806,362.7 185,111.4

2050

SSP 2.6 4,772,249.1 1,990,134.3
SSP 4.5 4,804,739.2 183,147.1
SSP 7.0 4,842,675.4 165,650.5
SSP 8.5 4,836,618.7 163,666.7

Table 8. Predicted suitable areas under the current and future climatic conditions during October–
December (Africa).

Climatic Scenarios Unsuitability (km2) Suitability (km2)

Current – 25,328,121 1,416,705.3

2030

SSP 2.6 25,421,822.1 1,320,241.8
SSP 4.5 25,402,520.3 1,337,374.5
SSP 7.0 25,396,134.9 1,344,209.5
SSP 8.5 25,417,724.7 1,321,503.3

2050

SSP 2.6 25,549,750.9 1,193,954.8
SSP 4.5 25,598,589.5 1,144,656.8
SSP 7.0 25,611,813.3 1,132,636.1
SSP 8.5 25,682,361.4 1,065,214.8
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Figure 10. Predicted future suitability maps for Jacobin cuckoos from October to December: (a–d)
and (e–h) represent the SSPs 2.6, 4.5, 7.0 and 8.5 for 2030 and 2050, respectively.
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Figure 11. Predicted future suitability maps for Jacobin cuckoos from October to December in Africa: (a–d) and (e–h)
represent the SSPs 2.6, 4.5, 7.0 and 8.5 for 2030 and 2050, respectively.
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Other future suitability predictions for the January–May months of 2030 and 2050
through the Maxent model are shown in Figures 12 and 13 for India and Africa, respectively,
which provides the probability that the bird’s suitability might become low in 2050 under
all climate scenarios. Such a decline in habitat suitability of the bird during these months
indicates that, in the future, India, as well as Southern Africa, might receive less rain and
more dryness, which will result in a decline of the Jacobin cuckoo’s suitability in India
(Table 9) and Africa (Table 10). Although incongruities may exist between various climate
modelling approaches [119], the strategy of assessing the current suitability and predicting
the future changes in the distributions of diverse species, which are influenced by different
climatic patterns, is still recognised as an important research area.

Table 9. Predicted suitable areas under the current and future climatic conditions during January–
May (India).

Climatic Scenarios Unsuitability (km2) Suitability (km2)

Current – 4,568,739.6 128,897

2030

SSP 2.6 4,585,901.9 114,579.5
SSP 4.5 4,583,793.4 115,614
SSP 7.0 4,584,234.3 115,404
SSP 8.5 4,594,489.4 100,791.9

2050

SSP 2.6 4,573,664.1 121,099.9
SSP 4.5 4,581,033.1 117,698.1
SSP 7.0 4,593,339.3 103,510.2
SSP 8.5 4,600,834.1 94,180.3

Table 10. Predicted suitable areas under the current and future climatic conditions during January–
May (Africa).

Climatic Scenarios Unsuitability (km2) Suitability (km2)

Current – 15,137,454 1,205,065.2

2030

SSP 2.6 15,271,158.6 1,150,279.7
SSP 4.5 15,242,352.7 1,143,199.7
SSP 7.0 15,275,949 1,170,872.3
SSP 8.5 15,385,782.4 1,140,142.1

2050

SSP 2.6 15,271,495.7 1,206,615
SSP 4.5 15,279,882.5 1,115,013
SSP 7.0 15,200,979.4 1,199,596.5
SSP 8.5 15,389,258.9 1,125,855.3
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Figure 12. Predicted future suitability maps for January-May in India: (a–d) and (e–h) represent the
SSPs 2.6, 4.5, 7.0 and 8.5 for 2030 and 2050, respectively.
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Figure 13. Predicted future suitability maps for January-May in Africa: (a–d) and (e–h) represent the SSPs 2.6, 4.5, 7.0 and
8.5 for 2030 and 2050, respectively.
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5. Discussions

The study presented here analysed the habitat suitability for the Jacobin cuckoo in
different seasons, with particular reference to India, using the species’ occurrences (1991–
2020) in the ML-based Maxent model with environmental variables. The occurrences were
obtained from the GBIF database, an observatory composed of data from public institutions,
e.g., museums, and citizen observations. The Maxent model’s predictive performance
achieves higher AUC values, which denotes that this model is excellent and accurate. The
results obtained using the Maxent method for predicting the potential suitability of the
Jacobin cuckoo are different in all three seasons of India, i.e., June-September (the southwest
monsoon), October-December (the northeast monsoon) and January-May (winter and
summer). The important environmental variables affecting its habitat suitability are the
precipitation of the driest month, precipitation seasonality, precipitation of the warmest
quarter, mean temperature of the wettest quarter and wind. The model predictions showed
that the species suitability followed the same pattern of both Indian monsoon seasons,
i.e., southwest and northeast. Therefore, based on the results, the bird’s migration can
be linked with monsoons in the assessed regions—India and Africa. Nevertheless, in
order to examine India’s southwest monsoon season, the datasets were divided into two
subsets—1991–2005 and 2006–2020, and then, the Maxent model with the environmental
data was executed. From the results, it was surprisingly interesting to see that the monsoon
patterns started declining in 1991 in a few regions of the northern and eastern parts of India
during the June-September period, which might be because of anthropogenic activities,
deforestation, etc. However, in Africa, the climatic conditions are always suitable for this
bird’s residency starting from October and lasting until April. When the rainy and wet
season in Africa ends, the birds start migrating to different parts of the world where they
get more favourable climate conditions. The future suitability of the Pied cuckoo bird was
modelled here with a full set of climatic conditions under four scenarios (SSPs): 2.6, 4.5,
7.0 and 8.5 for 2030 (averaged for 2021–2040) and 2050 (averaged for 2041–2060), using
the results of the current suitability and its projected bioclimatic variables. As per the
future predictions carried out in this study, the potentially suitable climatic distribution
will shrink in the future (2050 < 2030 < current) under different climate change scenarios,
indicating that there could be a change in the monsoon season in India, as well as in Africa,
which will result in less suitability for the Jacobin cuckoo. Such a direct link of this bird
with the monsoon season helps to critically analyse the likely climatic change activities and
which environmental variables play an influential role for its suitability and to support its
migratory movements.

6. Conclusions

This study concluded that the ecological systems will be altered with respect to the
climate changes, and the favourable habitats of species will shift under different climate
change scenarios. The present study demonstrated an example of the modelling or the
prediction of these shifts by using citizen observations, which provided the required set
of data or the observations to apply robust ML models. Thus, the use of citizen science
methods was essential for enabling such an analysis. Future suitability modelling using
CMIP6 future datasets revealed that the precipitation and wettest climates might decline
while warm and dry climates may rise.

The wettest season and precipitation are major elements in Jacobin cuckoos’ distribu-
tion, and various collaborative programs are required to maintain the suitability of various
migratory birds like the Jacobin cuckoo in such a changing and unexpected potential
warming of the Earth. However, such predicted changes are based only on climatic factors
and are not necessarily related to the distribution of human-occupied land use like urban
settlements and dispersal ability.
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