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Abstract: Predicting query cost plays an important role in moving object databases. Accurate
predictions help database administrators effectively schedule workloads and achieve optimal resource
allocation strategies. There are some works focusing on query cost prediction, but most of them
employ analytical methods to obtain an index-based cost prediction model. The accuracy can be
seriously challenged as the workload of the database management system becomes more and more
complex. Differing from the previous work, this paper proposes a method called CPRQ (Cost
Prediction of Range Query) which is based on machine-learning techniques. The proposed method
contains four learning models: the polynomial regression model, the decision tree regression model,
the random forest regression model, and the KNN (k-Nearest Neighbor) regression model. Using
R-squared and MSE (Mean Squared Error) as measurements, we perform an extensive experimental
evaluation. The results demonstrate that CPRQ achieves high accuracy and the random forest
regression model obtains the best predictive performance (R-squared is 0.9695 and MSE is 0.154).

Keywords: cost prediction; range query; moving object database; machine learning

1. Introduction

With the proliferation of positioning technologies, a large amount of location data
are collected. Efficiently managing such data has received great interest in database
management systems. A moving object database (MOD) deals with spatial objects whose
positions change over time [1]. Typical examples of moving objects are taxis, airplanes,
and mobile phone users. MODs have been widely studied in many applications, such as
transportation services [2,3] and traffic management [4].

MODs provide a large number of operators for data retrieval. A common query type
is called a range query [5], e.g., “find all bus stations that are located within ten miles to
the query location”—k-Nearest Neighbor queries [6]. Due to the emergence of queries in
MODs, an important task has recently turned to the effort of cost models that provide cost
prediction for queries. The cost prediction is essentially useful in three aspects:

• Structure evaluation: One better understands the query behavior under various input
data sets and query types to perform cost-based structure evaluation [7,8].

• Process monitoring: One can pick optimal resources during query planning by process
monitoring and perform resource allocation strategies [9] to determine the termination
request or allocate resources to other requests according to the monitoring results,
thereby avoiding the unnecessary cost of resources.

• Query optimization: The system can perform cost-guided estimation to optimize
the execution procedure [10] by taking into account the cost information of complex
spatial query behaviors before they start executing.

This paper aims at making accurate CPU time prediction for range queries in MODs.
Although there is a substantial body of literature on the cost prediction of range queries
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[11–15], those works are based on analytical models of index structures, such as R-tree [16]
and its variants [17,18]. However, prior attempts have the following limitations:

1. They focus on deriving cost formulas based on the experience and expertise of
database management systems [14], which may not be universally applicable.

2. They make certain special or simplified assumptions on data sets and queries to make
the cost analysis easier to perform [19,20]. Therefore, the prediction accuracy can be
seriously challenged, due to the increasing complexity of the workload of database
management systems.

3. They do not attempt to predict intuitive cost metrics, such as CPU time, and they
predict disk-based metrics, such as disk access overhead [11,21]. However, users are
often more concerned with the former cost metrics because they have the greatest
impact on user experience in practice.

Motivated by that, we propose a method called CPRQ (C ost Prediction of Range
Query) to perform CPU time prediction of range queries in MOD. Figure 1 shows the
architecture of CPRQ. CPRQ consists of several phases: data collection, feature selection and
extraction, feature vectorization, prediction models building, and model-based prediction.
Firstly, we design a range query plan generator to collect data. After feature extraction
and vectorization of range queries, all prediction models are built and trained to fit the
relationship between query features and CPU time. After tuning hyper-parameters of
predictive models when training, the learning models are used to predict the CPU time of
unforeseen queries in the future. CPRQ utilizes a learning-based method that overcomes
the shortcomings generated by the analysis complexity of increasing workload.

Figure 1. The architecture of CPRQ.

In summary, our main contributions are as follows:

• We formalize the problem of predicting range queries over moving objects.
• We propose a method CPRQ to predict the CPU time of range queries. Specifically,

we extract features of the queries and encode them using vectors. A prediction model
is built.

• We implement the model in an extensible database system SECONDO and conduct
experiments using four learning models: polynomial regression, decision tree, random
forest, KNN (k-Nearest Neighbor). The experimental results demonstrate the high
accuracy of cost prediction for range queries.
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The remainder of the paper is organized as follows. We start discussing related work
in Section 2. In Section 3, we present the problem definition. We present feature extraction,
vectorization and prediction model building of CPRQ in Section 4. The experimental
evaluation based on the four learning models’ prediction is provided in Section 5. We
discuss our work in Section 6. We conclude the paper in Section 7.

2. Related Work

Cost prediction is a hot topic in the field of database management systems. There has
been considerable related work on predicting query cost [22–25]. These studies are mainly
classified into two classic categories: analytical methods and learning methods. There are a
variety of metrics for cost prediction that are applicable to analytical methods and/or learning
methods. Next, we firstly introduce common metrics for cost prediction, then demonstrate
related research studies of analytical methods and learning methods, separately.

In database management systems, different metrics are used to evaluate query cost in
various facets. For example, researchers can obtain query cost estimation by modeling the
amount of memory [26] and disk space consumed [27] on a target database management
system. CPU time is widely used as a cost metric [28,29], which provides a query feedback
to users that is more intuitive, compared to other metrics. To effectively support non-
traditional data (e.g., moving objects), various index structures are proposed in MODs.
Therefore, there are many cost metrics based on the index structure [30], such as the number
of disk accesses [11,31] and the selectivity of index nodes [32].

Analytical methods have been the common technique to carry out cost prediction in
database management systems [33,34]. The method takes advantage of available expertise
on database management systems and encodes the knowledge into mathematical models
aimed at capturing how query behaviors map onto query cost [35]. Sun et al. propose an
end-to-end learning-based cost estimator for cost estimation [36]. The estimator encodes
metadata, query operation, and query predicate into a model. Theodoridis et al. focus on
the derivation of analytical formulae based on R-tree to estimate the cost (in terms of node
and disk accesses) of selection and join queries in spatial databases [19]. Some analytical
methods resort to the optimizer to help analyze the query cost [20]. For example, Markl et
al. present a learning optimizer LEO for cost estimation [28], which uses a feedback loop of
query statistics.

Analytical methods typically rely on simplified assumptions on how queries exe-
cute. Therefore, the accuracy may be seriously challenged in real scenarios in which such
assumptions are not matched.

Learning methods lie on the opposite side of the spectrum, given that they require
a little knowledge about the target database management systems’ internal behavior.
Learning methods treat the database management system as a black-box and rely on the
actual behavior to infer a statistical behavioral model [35]. With the rise of machine learning
technology, more and more scholars apply learning technologies for cost prediction [22,37].
There are two main reasons for this trend. On the one hand, the ever-increasing complexity
of modern database management systems represents the ever-increasing workload for
analytical methods’ cost model building. On the other side, analytical methods based on
experience and professional knowledge can no longer satisfy the accuracy requirements.

There have been many studies on cost prediction based on machine-learning meth-
ods [38,39]. Learning methods are widely used, including logistic regression models [40],
random forest models [37], etc. Akdere et al. use a support vector machine to build a
separate prediction model for each physical operator and then combine their prediction
results to evaluate the query time [41]. Gupta et al. use a binary classification tree to
predict the time range of query execution delay. They take the query interaction and
concurrency into account [42]. In addition to using a single model to learn query behavior,
some researchers attempt to evaluate multiple machine-learning methods. For example,
Malakar et al. evaluate 11 machine-learning methods to model the query behavior [43].
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Learning methods are promising for the problem of cost prediction. However, the
accuracy that they can reach strongly relies on the representativeness of the data set used
during the initial training phase.

3. Preliminary

We formalize the range query in MODs and introduce the index structure SETI used
for speeding up the query execution.

3.1. Range Query

Definition 1 (Range query). Given a set of moving objects O, a rectangle query window R, a
time interval T = [tl , tr](tl ≤ tr), a range query returns O′ ∈ O such that ∀o′ ∈ O′ : ∃t ∈ T, o′

intersects R at t.

We use an example to illustrate the range queries.

Example 1. The data management system of a certain logistics company stores the information of
multiple express cars, including location information and time information of each car every day. A
car dispatcher wants to retrieve the information of express cars within fifty miles of the local area
for logistics dispatch. Let Objs be the information of multiple express cars, O the information of
one car, and t the time stamp of a car within arrival time to departure time. R represents a spatial
query window, consisting of a circle with a radius of 50 miles from the dispatcher. The dispatcher
designates the time interval T = [tl , tr](tl ≤ tr). The range query can be written as follows: return
the information O for each car from the information sets Objs of multiple express cars, where the O
satisfies that there exists a time stamp t ∈ T such that O intersects or overlaps with R at the time
stamp t.

3.2. SETI

We perform the cost prediction of range queries based on an index structure called
SETI (Scalable and Efficient Trajectory Index) [44]. We designate CPU time as the execution
cost because the logical execution cost is intuitive to query effects compared with a physical
measure for user experience. SETI makes use of a simple two-level structure to decouple
the indexing of the spatial and temporal dimension. The mechanism makes data retrieval
very efficient not only for spatial indexing, but also for temporal indexing. Furthermore,
SETI has the advantage of being a logical indexing structure that can be easily built over
common spatial indexing structures, such as R-tree.

Specifically, SETI partitions spatial objects into a number of non-overlapping spatial
cells. A cell contains trajectory segments that are completely within the cell. Each trajectory
segment is stored as a tuple in a data file, and a data page only maintains trajectory
segments that belong to the same spatial cell. The minimum time interval of each data
page represents the time spans of all trajectory segments stored in the page. The time spans
of all pages are indexed using an index structure, such as R∗-tree. These temporal indices
are sparse indices because only one entry for each data page is contained instead of one
entry for each segment. Moving objects are typically stored in chronological order. The
property makes SETI outperform other index structures when retrieving moving objects
that overlap with a time range specified in a query.

A range query is formed by a three-dimensional query box, including a temporal
predicate box and a time-predicate range. Therefore, there are two steps to perform
range queries employing SETI: spatial filtering and temporal filtering. Spatial filtering is
applied to pick candidate spatial partitions that overlap with the spatial predicate box.
Temporal filtering is employed to extract data pages whose lifetime overlaps with the
time predication.
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4. CPRQ

CPRQ is an experiment-driven learning technique, which consists of two main phases:
training and testing. In the training phase, prediction models are obtained from the training
data set, which is represented as a set of feature vectors. In the testing phase, the prediction
models are used to predict the CPU time of range queries.

In this section, we firstly analyze the range query features, then encode the features
into vectors. Secondly, we introduce the modeling method.

4.1. Feature Extraction and Encoding

We first extract the features of query plans and then encode the features into vectors.
Four main factors affect the query cost, including physical query operation, spatial query
predicate, temporal query predicate, and data. These features are general features of range
queries and are applicable to feature extraction of almost all range queries in different
moving object database management systems.

Operation : Operations are physical operators employed in query plans, and different
operations can significantly affect the query cost. We consider the IntersectWindow and
InsideWindow operators based on the SETI index structure. IntersectWindow returns all
trajectory segments that intersect with the search window, and InsideWindow returns all
trajectory segments within the search window. Each operation can be coded as a unique
one-hot vector.

One-hot encoding [45], also known as one-bit effective encoding, uses N-bit registers
to encode N different values of the features. Each value has an independent register bit,
and only one register bit is valid at any time. Specifically, if the feature value has m discrete
feature values, the feature after the one-hot encoding operation is an m-dimensional vector,
and the feature of each sample can only have one value, that is, the vector coordinate of the
value is 1 and the others are 0.

Predicate: A predicate is a filter in a query. Predicates affect query costs because
the number of tuples to be retrieved changes when different predicates are applied. A
range query is performed only once, but the CPU time of a query is derived from the total
execution time, including the spatial filtering time and the temporal filtering time. SETI
utilizes a two-layer index structure to separate temporal and spatial dimensions, so we
divide predicates into two parts: spatial and temporal predicates. For a query plan, a
spatial predicate is a numeric value and we encode it by using normalized floating-point
numbers. For the time predicate, we first divide the whole time interval of the data set to
be retrieved into different time periods, and the number of data items in each segment is
almost the same. Then, we use the one-hot vector to identify the time interval where the
temporal condition is located.

Data: Data are a collection of data sets of moving objects. In general, for the same
query operation and predicate, the larger the data set, the more computational overhead
and query time are incurred. We use n-bit one-hot coding to represent n data sets, each of
which corresponds to a 1 significant bit, and the rest of the bits are 0.

Figure 2 shows an example of feature extraction and encoding. The query plan is
“query Obj IntersectWindow (SETIRect QueryRect 2011-11-30-12:00 2011-11-30-13:00)”, where
the moving object set obj contains 2.5 million data points, the operator is IntersectWindow,
the window size of SETI is 400.0 and the spatial query window size is 100.0. The query plan
returns every object within the moving object set Obj indexed by SETI SETIRect, where
the object satisfies intersects with the spatial rectangular query window QueryRect and the
time interval from 2011-11-30-12:00 to 2011-11-30-13:00. We use the one-hot encoding to
encode the data set and the predicate. Specifically, the data set in the example contains
three sub data sets: 1.1 million data points (1.1 M), 2.5 million data points (2.5 M) and
4.5 million data points (4.5 M). Then, we can encode the 2.5 M we use in the example as
010. For operator IntersectWindow and InsideWindow, we use one bit 0 and 1 to encode.
For the temporal predicate, we first divide the time span on the data set to be retrieved into
time periods, and the number of data items in each time period is the same. Then, we make
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use of the one-hot encoding to encode the temporal predicate that falls within a certain time
period. Specifically, if the time span of Obj is 2011-11-30-07:00 2011-11-30-19:00 and the
step to ensure the same number of data items is one hour, then we encode 2011-11-30-07:00
to 000000000001 and 2011-11-30-19:00 to 100000000000. Therefore, the coding of the time
period 2011-11-30-12:00 2011-11-30-13:00 to be retrieved in the query plan is 000000100000.

Figure 2. Example of feature extraction and encoding.

We use a moving object database based on algebraic modules to run queries and collect
the data, so we build the feature vector of the algebraic modules. We design a query plan
generator to generate query templates. The query plan generator simulates objects moving
in a two-dimensional space with query features, and each template contains multiple
placeholders. A feature corresponds to a placeholder in a template. The placeholders
can be replaced with a specific value. A range query refers to a query in which different
placeholders are instantiated.

4.2. Modeling

In this paper, we make a cost prediction in which the cost metric CPU time is a real
number; namely, we consider a regression problem. We now turn to the consideration
of which type of regression model to train from the collected samples. Machine-learning
technologies provide many candidate model types, such as the random forest regression
model, some of which were utilized in previous works on predicting query cost. Our
selection of the models is driven by two key factors between our problem scenario and
previous ones. Firstly, the model can balance errors for unbalanced data sets. Secondly,
the model can maintain accuracy when the number of features and samples is not very
large. Simple types of instance-based learning model are polynomial regression, decision
tree, random forest, and KNN with Euclidean distance. Next, we give the details of the
four models.

Polynomial regression : A simple starting point is linear regression. Linear regression
means that the relationship between the dependent variables and independent variables
is linear. However, there is often more than one independent variable that affects the
dependent variable. The study between a dependent variable and one or more independent
variables is called polynomial regression. We perform the CPU time prediction for the
range query, that is, the predicted variable is only one, so the dependent variable is CPU
time and the independent variable includes multiple query features (operation, predicate,
and data). Considering that CPU time is affected by multiple query features, we make use
of the polynomial regression model.

Decision tree: The decision tree regression model builds a predictive model in the form
of a tree structure. The model is composed of multiple judgment nodes. Every node has
two or more branches representing values for the attribute tested. Each internal node
contains a test using if–else rules to determine which branch the node follows. A leaf node
represents a decision on the numerical target. The topmost node in a decision tree is the
root node that corresponds to the best predictor. The paper predicts the CPU time of the
query execution. We build the decision tree regression model by using the sklearn package
of the Python DecisionTreeRegression model.
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Random Forest: Important improvements in model accuracy have originated from
growing an ensemble of trees by asking them to vote for the predicted value in the random
forest regression model. A random forest combines various weak regression trees by taking
different samples of the original data set and then combining their outputs. Therefore, the
random forest predictive regression model is a meta-estimator that fits some regression
trees to each sub-sample of the dataset. Furthermore, the random forest model utilizes the
average value to improve the prediction accuracy and control over-fitting. The random
forest regression model, RandomForestRegressor, that we used is built by Python’s sklearn
package. The model starts with default values.

KNN: KNN is k-Nearest Neighbors, which means that each sample can be represented
by its k-Nearest Neighbors. KNN predicts the CPU time based on the k-Nearest Neighbors
of the range query instance. We consider the Euclidean distance over the feature space
to determine CPU time. The KNN model building consists of two steps. The first step
is to find the k points nearest to the node to be predicted. The second step is to take the
average value of the k nodes as the predicted value of the point to be predicted. We build
the prediction model by using Python’s KNN regressor KNeighborsRegressor with default
values. After adjusting the hyperparameters of the model, the KNN regression model is
used to predict CPU time.

5. Experimental Evaluation
5.1. Setup

The evaluation is performed in an extensible database system SECONDO [46], which
supports range queries over moving objects. SECONDO is scalable by algebra modules
and has a friendly user interface. Users can develop data structures and data models and
integrate them into SECONDO.

We carry on experiments on a 64-bit Ubuntu Server 14.04 running Intel Xeon(R)
1.90 GHZ CPU, 31 GB system RAM, and a Linux 4.4.0-31-generic operating system. All
range queries are executed in SECONDO with a single user model, and the cache size is set
as 512 MB.

5.2. Data Sets and Workload

The experimental data sets are real taxi trajectories in Beijing extracted from [47].
Table 1 shows the data statistics. The data sets contain GPS records of 10,357 taxis from 2
February to 8 February 2008, in Beijing. The total number of GPS records is about 15 million
and the total distance of trajectories reaches 9 million kilometers. Table 2 exhibits a specific
example of the data sets.

Table 1. Beijing taxi data set.

Taxi GPS Records Longitude Latitude Duration

10,357 15,000,838 [115.42, 117.5] [39.42, 41.05] [2 February 2008,
8 February 2008]

Table 2. A specific example of Beijing taxi data set.

Trajectory id Time Longitude Latitude

... ... ... ...
10 2 February 2008 13:32:08 116.442194 39.993146
10 2 February 2008 13:32:13 116.442174 39.993178
10 2 February 2008 13:32:18 116.442166 39.993211
... ... ... ...

We utilize the above query plan generator to generate query testing cases. A query
plan is a template with one specific subset, one specific query predicate, and one specific
datum that is instantiated with certain values to generate query instances. We use three
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data sets to collect training and testing data, including 1.1 million, 2.5 million, and 4.5
million data points. To speed up the query execution, we use an index structure SETI. We
implement SETI based on R-tree in the experiments. We execute each query plan three
times and record the average CPU time in seconds. These queries return at least one result
and run within an hour.

Table 3 shows the details of the training and testing data. There are approximately
4117 queries from each data set. We totally obtain 12,350 records and the average CPU time
is 3.3405 s. Figure 3 shows the CPU time distribution of the 12,350 records. We divide the
collected data into two disjoint subsets: 70% for training data, that is, 8771 records; and
30% for testing data, that is, 3759 records. We use k-fold cross-validation on the training set,
where k is set to 5. The average CPU time of the training data is 3.3209 s. Figure 4 shows
the CPU time distribution of the training data set. The average CPU time of the testing
data is 3.3622 s. Figure 5 shows the CPU time distribution of the testing data set. We use
the query plan template to generate query instances; therefore, these clusters that appear
in Figures 3–5 indicate that the query features are similar. For example, only varying the
spatial predicate in query templates, these queries have similar query characteristics.

Figure 3. The CPU time distribution of training and testing data sets.

Figure 4. The CPU time distribution of training dataset.
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Figure 5. The CPU time distribution of testing data set.

Table 3. Training and testing data sets.

Description Data Set Training Data Set Testing Data Set

Number of records 12,530 8771 3759
Average execution time (s) 3.3405 3.3209 3.3622

5.3. Metrics and Validation

We utilize the R-squared and MSE (Mean Squared Error) as the error metric for
measuring the accuracy of the learning models. R-squared is a widely used evaluation
metric to evaluate predictive models, which closes to 1, indicating near-perfect prediction.
For MSE, the smaller the MSE, the better the prediction accuracy. R-squared and MSE are
calculated using the following equation, where yi is the ground truth objective value for
the ith sample in the data set, yi is the mean of yi, and ŷi denotes the respective predicted
value for according sample.

R− squared = 1− ∑m
i=1(ŷi − yi)

2

∑m
i=1(yi − yi)2 (1)

MSE =
1
n

m

∑
i=1

(ŷi − yi)
2 (2)

5.4. Performance of Learning Models

We evaluate the prediction accuracy of the four regression models: polynomial re-
gression (PM), decision tree (DT), random forest (RF), and KNN. When training these four
models, we tune hyperparameters to obtain each model with the highest accuracy, and
then compare the prediction accuracy of the four models in the testing data set.

Table 4 shows the hyper-parameters we tune when training the regression model: PM,
DT, RF and KNN. For the PM regression model, degree is used to specify the order of the
polynomial used in the resulting polynomial regression. We obtain the best score when
degree is 3. For the DT and RF regression models, max_depth determines the maximum
depth of the decision tree. The best score is obtained when max_depth gets 9 and 9 in the
DT and RF regression models, respectively. We tune the hyperparameter k for the KNN
regression model and set k to 4. Figure 6 shows the hyper-parameters tuning of RF and k
in the RF and KNN regression models.
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Table 4. The hyper-parameters tuning when training PM, DT, RF and KNN.

Model PM DT RF KNN

Hyper-parameter(s) degree max_depth max_depth k
Range [1, 10] [2, 9] [2, 9] [2, 9]

The value with the best score 3 9 9 4

(a) Tuning max_depth of RF. (b) Tuning k of KNN.

Figure 6. Hyper-parameters tuning.

The experimental comparison results of the four models are shown in Figures 7 and 8.
In Figures 7 and 8, we find that the R-squared values are all more than 0.8 and the MSE
values are all less than 1 of the models. The experimental results show that there is a
correlation between the CPU time and the query behavior of the range query. What is
more, the machine-learning models with CPRQ can find the correlation and perform the
prediction for cost estimation very well.

Figure 7. R-squared values of polynomial regression (PM), decision tree (DT), random forest (RF)
and KNN.

Specifically, the PM model obtains the minimum value of the R-squared value (0.8919)
and the maximum value of MSE (0.545), which implies the relatively poor prediction result
compared to the other three models. R-squared and MSE values of the DT and RF model
perform in almost the same way with values equal to 0.9649, 0.174, and 0.9695, 0.154. The
maximum R-squared value and minimum MSE value indicate that the RF model performs
with the best prediction accuracy.
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Figure 8. MSE values of polynomial regression (PM), decision tree (DT), random forest (RF) and KNN.

6. Discussion

We propose a technology, CPRQ, to predict the range queries cost in the moving object
database management system by modeling the query behavior and CPU time, and evaluate
experimentally the four regression models with CPRQ. For future work, we want to address
some of the shortcomings that exist in our research. One of the major limitations of CPRQ
is that the model predicts the CPU time for range queries while there are many types of
queries in the moving object database management. We study the technology to expand
the adaptability of the model by integrating different query types to predict the query cost
under different query operations. Another disadvantage is that CPRQ is a method based
on off-line training progress. Off-line models can accurately predict query costs, but any
new data type predictions must retrain the model. We have a work-in-progress to learn
the execution cost of query operations in real-time, which can dynamically improve the
predictive accuracy of the model. Therefore, this issue will be resolved in the near future.

7. Conclusions

Predicting query costs helps database administrators effectively perform optimal
resource schedule strategies. This paper proposes a technology CPRQ, which predicts
the query cost of range queries in the moving object database management system by
modeling the query behavior and CPU time. CPRQ firstly extracts query features, encodes
the features into vectors, and then builds learning models to fit the vectors. We designed
a feature extraction method for range queries and evaluated experimentally the four
regression models with CPRQ: polynomial regression model, decision tree regression
model, random forest regression model, and KNN regression model.

We used R-squared and MSE to evaluate the prediction accuracy of the model. The
R-squared and MSE of the polynomial regression model, decision tree regression model,
random forest regression model, and KNN regression model were 0.8919 and 0.545, 0.9649
and 0.174, 0.9695 and 0.154, 0.9325 and 0.3382, respectively. The random forest regression
model obtained the highest prediction accuracy. The R-squared values of the four models
were above 0.89 and MSE values were all within 0.6. The experimental results indicate that
CPRQ can accurately predict the CPU time of range queries.
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