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Abstract: Static indicators may fail to capture spatiotemporal differences in the spatial influence of
urban features on different crime types. In this study, with a base station analogy, we introduced
crime risk stations that conceptualize the spatial influence of urban features as crime risk signals
broadcasted throughout a coverage area. We operationalized these risk signals with two novel risk
scores, risk strength and risk intensity, obtained from novel distance-aware risk signal functions. With
a crime-specific spatiotemporal approach, through a spatiotemporal influence analysis we examined
and compared these risk scores for different crime types across various spatiotemporal models. Using
a correlation analysis, we examined their relationships with concentrated disadvantage. The results
showed that bus stops had relatively lower risk intensity, but higher risk strength, while fast-food
restaurants had a higher risk intensity, but a lower risk strength. The correlation analysis identified
elevated risk intensity and strength around gas stations in disadvantaged areas during late-night
hours and weekends. The results provided empirical evidence for a dynamic spatial influence that
changes across space, time, and crime type. The proposed risk functions and risk scores could help
in the creation of spatiotemporal crime hotspot maps across cities by accurately quantifying crime
risk around urban features.

Keywords: spatiotemporal influence; spatial extent; crime risk function; crime risk strength; crime
risk intensity

1. Introduction

Urban features correlate with crime patterns in their vicinity to varying degrees. By
examining what differentiates this degree, researchers have primarily addressed the spatial
influence that urban features have on spatial crime distribution in nearby areas [1]. This
crime distribution represents the cumulative crime density at any point within the vicinity
of an urban feature. Previous research showed that these density values change based
on the distance from the exact location of an urban feature [2,3]. The distance decay
effect, a well-established phenomenon in spatial crime research, characterized the spatial
influence with a crime density inversely related to the distance from the origin point [1],
due to the declining spatial interaction with urban features [4]. The spatial influence
is at a maximum at the exact location and nearby areas (i.e., local effect) and decays
throughout neighboring areas until it entirely dissipates at some distance (i.e., spatial
diffusion effect) [5]. This dynamic crime density pattern, as a function of distance from the
location, defines the spatial influence of an urban feature, and the distance stretching to the
suggested dissipation point demarcates the spatial extent to which the spatial influence
operates. Therefore, rather than a static indicator, a spatial influence should be measured
by a distance-aware function that can estimate the crime density at any given point within
a spatial extent. These functions allow for the development of multiple risk indicators that
can help quantify the local and spatial diffusion effects within a given area.

Spatial influence does not exist in a vacuum. Rather, it is determined by the degree to
which an urban feature interacts with environmental factors in creating a crime opportunity.

ISPRS Int. J. Geo-Inf. 2021, 10, 472. https://doi.org/10.3390/ijgi10070472 https://www.mdpi.com/journal/ijgi

https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://doi.org/10.3390/ijgi10070472
https://doi.org/10.3390/ijgi10070472
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijgi10070472
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi10070472?type=check_update&version=1


ISPRS Int. J. Geo-Inf. 2021, 10, 472 2 of 30

From a routine activity perspective, this opportunity is characterized by a situation where a
suitable target encounters a motivated offender under the absence of a capable guardian [6].
Crime pattern theory [7–9] spatializes these situations near urban features described as
crime generators and crime attractors. While the former group caters to offenders by
drawing large crowds, possibly containing a larger number of suitable targets, the latter
has salient characteristics promoting criminal behaviors. In another attempt to explain the
linkage between the spatial influence and crime opportunity, Groff [4] cited the level of
human activity as a key factor. She argued that being exposed to larger volume of human
activity for extended periods not only increases the spatial influence of an urban feature,
but also stretches its spatial extent to further points. Based on this argument, we can main-
tain that it is the nearby human activity, rather than type of the urban feature, that drives
the spatial influence. Supporting evidence is provided by Eck et al. [10] who found a highly
asymmetric exposure to crime amongst urban features spread across a city, even in the same
feature class. This asymmetric exposure can be jointly explained by urban mosaics [11] and
a time geography perspective [12,13]. During a day, or a week, human activity traverses
between urban mosaics that refer to the sub-regions of a city, each having unique urban
layouts, activity patterns, and sociodemographic characteristics. This continuous shift in
human activity between these mosaics’ shapes the opportunity landscape across a city.
Time geography, which articulates the limitations on human movement in space and time,
provides further explanation for the direction of the indicated movement patterns. A typi-
cal example here would be the daily routine of an office employee. On a regular weekday,
this employee follows a generic route: home, commute to work, workplace, and then back
home. Similarly, the routes followed by people in large groups in entertainment areas
during weekends is another example. These generic pathways move human activity back
and forth between residential, business, and entertainment areas within a city. As a result,
crime opportunity, hence the spatial influence of urban features in these areas, dramatically
change over the course of a day and a week. In addition to human activity, sociodemo-
graphic characteristics also play an important role in shaping the crime opportunity around
urban features. This relationship predicates upon an ecological perspective that views
crime as a consequence of the social disorganization of an area. Accordingly, the lack of
trust and solidarity amongst residents cripples the informal social control on crime [14],
elevating the overall opportunity level in an area. This increased opportunity surrounds all
the urban features and thus increases their spatial influence. Previous research provided
sufficient empirical evidence on this linkage between sociodemographic characteristics and
spatial influence [15,16]. Therefore, examining this linkage helps to further understand the
interaction between spatial influence and social environment.

Lastly, the crime opportunity heavily relies on the crime type. Depending on the
situational factors that define a crime setting, urban features have differential spatial
influences on different types of crime [17]. This argument can be illustrated by a typical
example. While a large crowd gathered around a fast-food restaurant may pose a great
opportunity for the thieves dependent upon people’s inattentiveness with regard to their
personal belongings, the same crowd may act as a natural shield against a robbery that often
involves a physical struggle between parties. As such, noticeable friction invites external
intervention from capable guardians in the form of security forces and fellow citizens. These
sharp differences in opportunity thus produce differential crime patterns around urban
features. In sum, the operationalization of a spatial influence requires a crime-specific
spatiotemporal approach. Accordingly, this approach should identify spatiotemporal
influence, which is a term used herein to describe a spatial influence changing across space
and time. Moreover, this influence should be crime-specific due to the significant variations
in levels of associated crime opportunity for each crime type.

In this study, we introduced the concept of crime risk stations. This concept illustrates
our crime-specific spatiotemporal approach to operationalizing the spatial influence of
an urban feature within a spatial extent. Much like a base station broadcasts signals
at varying strength levels throughout a coverage area, an urban feature operates like a
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crime risk station, broadcasting a signal-like spatial influence that changes over a spatial
extent. The signal strength is maximum at the origin (i.e., local effect) and wanes while
diffusing across nearby areas. Here, the broadcasting performance of a crime risk station
can not only be evaluated by the strength of its spatial influence over a spatial extent, but
also how much of the spatial influence it transmits from to the same extent (i.e., spatial
diffusion effect). While higher transmission rates indicate higher spatial influence strength,
lower rates demonstrate weaker ones. We hypothesized that the strength of the signal-like
spatial influence dynamically changes based on space, time, and crime type. To test this
hypothesis, we first developed distance-aware crime risk functions to capture the dynamic
spatial influence of urban features on crime in nearby areas. Next, we operationalized the
spatial influence with two novel risk scores, namely risk signal intensity score (RSIS) and
risk signal strength score (RSSS). The first score indicates the cumulative crime density at a
given spatial extent, while the second measures how much of the local effect is transmitted
throughout the same spatial extent. Then, a spatiotemporal influence analysis statistically
tested the differences in these scores across various models with different spatiotemporal
configurations and crime types. Lastly, we examined the relationship between these scores
and the social environment through a correlation analysis.

This study aimed to provide reasonable answers to the following questions:

1. How do the spatial influences of urban features change within a spatial extent?
2. How does a spatial influence operate within a spatial extent?
3. Based on a crime-specific spatiotemporal approach:

a. How does the spatial influence of an urban feature vary across the sub-regions
of a city based on the time of day and the day of the week?

b. How does the spatial influence of an urban feature vary across crime types?

4. How does a crime-specific spatiotemporal influence interact with the characteristics
of the social environment?

1.1. Spatial Influence

The spatial influence of an urban feature can be parameterized by the size of the
surrounding crime opportunity field: a larger size indicates a larger spatial influence. The
routine activities theory [2] formulated the idea that this opportunity is the result of a
spatiotemporal convergence between a suitable target and motivated offender without any
capable guardian present. Although it shed light on the how and why aspects of the crime
opportunity, the theory does not elaborate where and when the crime opportunity emerges.
A reasonable explanation came from Brantingham and Brantingham’s [7] crime pattern
theory, which put the opportunity into an urban context. Focusing on the opportunity
fields around places, this theory [8,9] viewed urban features as activity nodes (i.e., the
regularly visited places) and addressed two criminogenic node types: crime generators and
crime attractors. The former type attracts a large volume of people with no crime-related
motivations. The large crowds create situations that may tempt the occasional offenders
who do not actively seek favorable offending situations, but have an intuitive vigilance
to crime opportunities [18]. For instance, an opportunity would ensue for these offenders
when a person waiting at a crowded bus stop left his/her bag unattended near his/her feet
while reading something in a newspaper [19]. The latter type, crime attractors, is known to
bear unique characteristics promoting criminal behavior. These nodes are frequented by
offenders actively seeking crime opportunities as a part of their routine illegal activities.
For instance, offenders are attracted to pubs near their closing hours in the hopes of finding
suitable targets, often in the form of an intoxicated person unable to defend themselves
properly [20,21]. In either type, the intensity of these opportunity fields indicates the spatial
influence of an urban feature in nearby areas. Here, the answer to the question of “how
near is near?” [1] is articulated by the spatial extent and brings up another line of research
that will be discussed in the following section.
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1.2. Characteristics of Spatial Extent

Spatial extent demarcates the field of spatial influence where crime opportunity can
be described as a function of the distance from an urban feature. Its magnitude is mainly
parameterized by the volume of human activity: the exposure of an urban feature to larger
crowds for extended periods indicates higher exposure to potential offenders, which not
only stretches its spatial extent to further areas, but also elevates its spatial influence [4].
It has been repeatedly shown that spatial influence decays with distance and entirely
dissipates at some point [1,3] in parallel with the decreasing spatial interactions between
urban features and crime [22].

Past researchers have proposed various distance thresholds for spatial extent, such
as census blocks [21], face blocks [23], a quarter mile [24], one mile [25], or an arbitrary
distance [26]. Noting that such a disk-like bandwidth may not properly capture fluctuations
in spatial influence throughout a spatial extent in different physical layouts, researchers
proposed multiple bandwidths at finer resolution levels to improve the precision of the
analysis. This procedure starts with the placement of ring-like spatial buffers of various
sizes from 1.7 m to 457.2 m [1,4,27,28] around urban features. Next, they calculated
cumulative crime exposure at each buffer. In the last step, the buffer that demarcates
the elevated crime exposure was selected as the spatial extent of the urban feature. As a
remarkable example, using an average street block length (i.e., 122 m) and one-quarter
mile as spatial buffers to examine the spatial extent of drinking places on crime, Groff [4]
identified the threshold at 366 m for the first bandwidth and 402 m for the second. She
also stressed the importance of shorter bandwidths for better characterizing spatial extent
because they provide a more complete picture of inner crime risk. In a recent study, Xu
and Griffith [28] used smaller bandwidths, 1.7 m, and found decreasing crime exposure
levels in different distance intervals within a spatial extent of 304.8 m.

In the extant literature, spatial extent is mainly measured by Euclidean distance [29,30]
or street network distance [3,28]. Given that human movement between urban features is
primarily constrained to street networks in urban settings, the former is less likely to fully
represent actual distances between urban features and crime incidents. Furthermore, this
may cause false-positive spatial associations [31,32] or oversmoothed crime clusters [33].
Having tested the interchangeability of Euclidean and network distance in an urban context,
Maki and Okabe [34] found significant differences in their distance calculations under 400 m.
Similarly, Groff [4] tested the strength of association between bars and crime at different
distance thresholds and found that the association by street distance was up to three times
higher than the association by the Euclidean distance. Such distance-related differences
threaten the validity of a spatial influence indicator. The studies using network distance
are not, however, without their limitations. They sometimes represent crimes with relevant
street segments [3], which may decrease the precision of distances between crime and
urban features. For instance, the deviation in actual distance between a crime event at the
edge and an urban feature at the center would be a half-length of the street segment when
the crime is represented by the centroid of a street segment. To avoid such miscalculations,
Xu and Griffiths [28] proposed a continuous network space and used exact locations of
each urban feature and crime as the units of analysis. This approach undoubtedly helped
to improve precision, hence the accuracy of the spatial influence analysis.

1.3. Spatial Influence in an Environmental Backcloth

Spatial influence is embedded in an environmental backcloth [8,9] that can be viewed
as a cross-product of the social environment, built environment, people, behavior, activities,
and timing [35]. Within the context of urban crime, this backcloth underlines the roles of the
built environment (i.e., urban features and street networks) and human activity in shaping
crime opportunities around places. Being the primary medium of human movement, the
built environment channels human activity to different sets of places during the day or
the week, thus changing the crime opportunity landscape across a city. This temporal
fluctuation in the activity levels across places is often explained by a time geography
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perspective: the spatiotemporal rhythm of urban life [12] imposes various constraints on
individuals [13,36] and limits their movements in space and time. For example, individuals
must visit places (e.g., banks and grocery stores, etc.) within specified operating hours
or weekdays to perform relevant tasks. This and many other similar limitations dictate
that individuals, whether they be an offender or a target, must follow generic pathways
between activity nodes (e.g., work, shop, home, and public transit, etc.). The increasing
number of people who share the same pathways during their daily routines creates a
cyclical crime opportunity pattern around urban features during the day [37] or during the
week [38,39]. A body of research has thus far validated the existence of this temporality
in crime opportunity around urban features such as schools, bus stops, and fast-food
restaurants [37,40–42].

It should be noted that the spatial influence of urban features may not be stable
across a city even for the same crime type [43]. A small portion of the same type of
urban features often experience most of the crime, producing a j-shaped crime distribution
across a city [10]. Kinney et al. [18] explained this heterogeneity with the concept of urban
mosaic [11], wherein cities are viewed as an array of mosaics, each having differential
urban layouts, activities, and sociodemographic levels. A body of research has thus far
shown the role of urban mosaics in the spatiotemporal influence of urban features. In a
recent study, Hipp and Kim [44] found that the risk of robbery significantly decreased in
Southern California when employees in a commercial area were around in the daytime,
whereas that effect did not exist at night. Additionally, they indicated an increased robbery
risk on high restaurant segments in the early evening of weekends. In another study that
focused on regional sociodemographic differences, Stucky and Ottensman [15] reported a
negative relationship between social disadvantage and spatial influence of retail stores on
robbery. In sum, the literature indicated the necessity for a crime-specific spatiotemporal
approach in any spatial influence analysis with a reference to environmental backcloth.

The cyclical crime opportunity patterns vary across crime types given differences
in situational factors. According to situational crime prevention principles, different
crime types necessitate different security measures because they have different levels of
associated crime opportunities [17]. For example, a car with an open window would pose
different crime opportunities in terms of motor vehicle theft and robbery. Similarly, the
crime opportunity level that a vacant home represents will be totally different for burglary
than it is for an assault. This differential opportunity has some implications for spatial
influence. In a remarkable study examining the spatial influence of different crime types
in Philadelphia, PA, Groff and Lockwood [3] found that bars have nearly 1.5 times higher
spatial influence on disorder crimes than they have on violent and property crime within
a 120 m bandwidth. Similarly, a more recent study [45] indicated that assault density is
two times higher than robbery density within a 100 m bandwidth from a school. This
ratio, for the same pair of crime densities, is 1.5 times higher within the same bandwidth
from a recreational hub. In sum, spatial influence operates differently for different types of
crimes, underlining the need to develop crime-specific spatial influence indicators within a
spatial extent.

1.4. This Study

In the current study, we conceptualized urban features as base stations broadcasting
risk signals (i.e., spatial influence) with decreasing strength levels (i.e., distance decay effect)
throughout a coverage area (i.e., spatial extent). To evaluate their signal performance under
different configurations, we introduced a crime-specific spatiotemporal approach. To test
this approach, we used a methodology that combines network K analysis with segmented
regression. By using network K analysis, we first examined the crime clusters around
urban features across street networks. Then, for significant clusters, we used segmented
regression to model the spatial influence as a function of street network distance. A similar
method was previously applied by Xu and Griffiths [28] in their examination of the spatial
influence of urban features on gun violence in Newark, NJ. We extended this study to
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analyze spatiotemporal influences of a wide range of selected urban features on robbery
and theft in Chicago, IL.

Determining a suitable spatial extent threshold is a challenging task given physical
layout differences within and between cities. These differences often impede a comparative
spatial influence analysis across different contexts. In a remarkable study, McCord and Rat-
cliffe [46] proposed the intensity value analysis (IVA) to calculate spatial influence through
an inverse distance weighted (IDW) count measure within a given radial bandwidth. This
approach allowed for the testing of differential spatial influence within and between urban
features across periods, regions, and crime types. Motivated by this idea, we introduced
distance-aware risk signal functions using a segmented regression technique. Before, this
technique was applied by researchers to identify the change points marking where spa-
tial influence significantly changed [1,28]. In our work, we used it to model the spatial
influence within a given a spatial extent. Using these functions, we then developed two
spatial influence indicators: risk signal intensity score (RSIS) and risk signal strength score
(RSSS). The first indicates cumulative crime density within a given spatial extent, while the
second represents the spatial diffusion effect by measuring the percentage change between
an estimated local effect and the RSIS. As an illustrative example, for a crime density of
two at the origin point (i.e., local effect) and a cumulative crime density of 1.5 (i.e., RSIS) at
the spatial extent, the RSSS value is calculated as -33.3, indicating a one-third decrease in
the spatial influence. After comparing these scores across various spatiotemporal models,
a correlation analysis examined their relationship with one of the key sociodemographic
characteristics: concentrated disadvantage.

In sum, this study contributes to the current literature in many ways. First, it uses
network K analysis as a filter that eliminates the insignificant crime clusters around urban
features. Second, instead of a single value, it alternatively proposes a risk signal function
to model the spatial influence of an urban feature within a given spatial extent. Third, it
introduces two novel spatial influence scores (i.e., RSIS and RSSS) and compares them
across spatiotemporal models and crime types. Lastly, it quantifies the relationship between
spatiotemporal influence and concentrated disadvantage through a correlation analysis.

2. Materials and Methods
2.1. Study Setting

Chicago is the third-largest city in the U.S., with a population of nearly 3 million.
The city currently consists of 200 neighborhoods and 77 community areas [47]. Originally
planned to have three main sides (i.e., north, west, and south) due to a natural boundary set
by the Chicago River [48], as it grew larger, the city further evolved into nine sides: Center
side (CS), Far North side (FNS), Far Southeast side (FSES), Far Southwest side (FSWS),
North side (NS), Northwest side (NWS), South side (SS), Southwest side (SWS), and West
side (WS). Each side is known to have some distinguishing regional characteristics. For
instance, the CS is the attraction center of the city, hosting major corporate headquarters,
shopping centers, and theaters, while the FNS is home to the most vibrant immigrant
neighborhoods. On the other hand, neighborhoods with the highest disorder are located
on the WS and SS. In contrast, the NS covers the wealthy areas accommodating the most
affluent neighborhoods in the city [49,50]. Such differences also have implications in crime
level. For instance, Block [51] reported that 55% of gang-related homicide and 35% of
nonlethal gang-related offenses occurred on the WS. More recently, Schnell et al. [52] found
that the main violent crime hotspots were located on the WS and SS of the city. These
differences suggest the existence of localized crime risk patterns around urban features
across these sides. Therefore, we selected the sides of Chicago as the spatial units of our
spatiotemporal influence analysis. Figure 1 displays the sides and the related community
areas of Chicago.
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Figure 1. Main sides and corresponding community areas of Chicago (adapted from City of Chicago
Data Portal).

2.2. Creating Street Networks for the Sides of Chicago

A street network can be formulated as an undirected graph: G (V, E, W). Here, V (i.e.,
vertices) corresponds to a street intersection, E (i.e., edges) denotes a street segment between
two intersections and W (i.e., weight) is the segment length. Based on this formulation,
we firstly created a main graph from a street centerline shapefile. All the shapefiles were
retrieved from the City of Chicago Open Data Portal (https://data.cityofchicago.org/,
accessed on 4 July 2021). Each feature in this graph corresponds to a street segment with
the following attributes: segment ID, object IDs, GPS coordinates of involved intersections,
and length. We then spatially joined these street segments to the nearest community
areas specified in community areas boundaries shapefile. Given each community area is
only related to one side, segments were automatically mapped to relevant sides, creating
separate networks. Street segments were spatially joined with the nearest community
area by using NNQGIS plug-in of QGIS 3.6.0 Software. Then, we obtained a continuous
network by excluding all the independent street segments that remained outside of the
main component. To do this, we identified components of resulting side networks using
spatstat package in R and excluded all the segments independent of the main component
(i.e., comprised of the majority of street segments). We thus ensured the fully connected
street networks for each side, which was instrumental because disconnected networks
might complicate the results of any spatial analysis by deviating distance calculations [53].
The resulting networks are displayed in Figure 2. Descriptive information is summarized
in Table 1.

https://data.cityofchicago.org/
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Table 1. Subnetwork summaries.

Sides #Nodes #Edges Bounding Box Coordinates Bounding
Radius (m)

Network K Distance
Chunks (m)

C 1680 2444 (41.91, −87.60; 41.84, −87.65) 9977.9 19.4
FN 5407 8151 (42.02, −87.63; 41.93, −87.93) 29,611.9 57.7
FSE 4873 7227 (41.75, −87.52; 41.64, −87.66) 20,438.6 39.8
FSW 3509 5308 (41.75, −87.63; 41.66, −87.74) 15,932.5 31.0

N 2691 4145 (41.96, −87.62; 41.91, −87.73) 14,001.2 27.2
NW 2693 4423 (41.96, −87.69; 41.91, −87.83) 16,737.1 32.6

S 4040 6023 (41.85, −87.54; 41.74, −87.66) 15,770 30.7
SW 5032 7976 (41.78, −87.62; 41.75, −87.80) 17,380.9 33.8
W 6762 10,395 (41.92, −87.63; 41.81, −87.80) 20,760.5 40.4

2.3. Crime Dataset

The Chicago crime dataset consists of all criminal incidents from 2001 to the present.
Each row in this dataset represents a crime incident with 22 attributes including crime ID,
date-time, x and y coordinates, the primary description of the crime, the neighborhood,
and the community area. Our sample consisted of theft (n = 64,024) and robbery (n = 9685)
incidents in 2018. The Chicago crime dataset was retrieved from the City of Chicago Open
Data Portal (https://data.cityofchicago.org/, accessed on 4 July 2021). To examine the
spatiotemporal influence analysis, we aggregated crimes at sides and at three separate tem-
poral levels: default, intraday, and weekly. In the first level, we matched each incident with
relevant side street networks in the community area field without any time differentiation
(default). In the second level, the incidents were assigned to one of three equal shifts during
a day, the first shift (FS) from 00:00 to 07:59, the second shift (SS) from 08:00 to 15:59, and
the third shift (TS) from 16:00 to 23:59, based on the hour of occurrence. These shifts were
defined based on the working watches of Chicago police officers [54]. In the last level, we
used a weekend (WE) and weekday (WD) division to group incidents: the weekend cov-
ered all incidents between the third shift of Friday and the first shift of Monday (excluded),
and the remaining incidents were included on weekdays. This procedure generated a
total of 54 spatiotemporal models (9 default + 9 × 3 intraday levels + 9 × 2 weekly levels).
Robbery and theft distributions across these models are displayed in Figure 3.

https://data.cityofchicago.org/
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2.4. Urban Features

The locations of commercial features were retrieved from the Chicago business licenses
dataset. With the guidance of business activity definitions for each record, we obtained
unique instances of fast-food restaurants, pubs, grocery stores, and gas station records. For
bus stops, the locations were retrieved from the CTA bus stops shapefile. The final dataset
included fast-food restaurants (n = 402), grocery stores (n = 1330), gas stations (n = 350),
pubs (n = 810), and bus stops (n = 10900), for which significant influences were reported
in Chicago studies [30,38,43,55,56]. The distribution of these features across the sides of
Chicago is displayed in Figure 4.
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2.5. Concentrated Disadvantage (CD)

Concentrated disadvantage (CD) is one of the major indicators of social disorgani-
zation in a neighborhood, and it was repeatedly found to have a significant impact on
the spatial influence of urban features [15]. In this study, we measured the CD with four
indicators: the percentage under 15 and above 64 years of age, the percentage of unem-
ployed residents, the percentage of households below the poverty line, and the median
income. The data were not available at the side level. We, therefore, had to use a weighted
apportioning method [57] to impute the side-level CD data. For each side, we calculated
an average CD that was weighted by the population of the related community areas. The
descriptive statistics for side CD are displayed in Table 2.

Table 2. Side descriptive statistics for the selected variables.

Mean SD Eigen
Value

Factor
Loadings

Cronbach’s
Alpha

Concentrated Disadvantage (CD) 0.000 1 3.105 0.901
% under 15 above 64 years 38.074 6.545 0.753

% unemployed 5.973 3.075 0.907
% less than poverty 29.936 13.964 0.925

Inverted median income 51,038.798 23,754.78 0.926

2.6. Network K Function

Network K function [58] is an extension of the ordinary K function, which summarizes
a point pattern, tests hypotheses about the pattern, and estimates parameters and fit
models [59]. This function operates on a finite irregular network with the shortest-path
distance, rather than a homogenous infinite plane with the Euclidean distance. In this
study, we use a bivariate network cross K function to examine whether the locations of
urban features influenced the spatial distribution of crime. This function allowed for the
analysis of crime clustering within a given distance. Theoretically, it can be formulated as:

Kba(t) =
1
ρa

E(the number of points A within network distance t of a point bi in B) (1)

where E(.) denotes the expected value with respect to bi, . . . bn (bi Є B), which follows a
binomial point process, and ρa is the density of points a, ρa = na

|LT| (2). Here, |LT| denotes
the total length of the line segments in a network. For observed point processes of different
types, the observed network cross K function of A (i.e., crime) relative to B (i.e., urban
feature) can be formulated as:

K̂ba
(t) =

|LT|
nanb

nb

∑
i=1

(
the number of points of A on Lbi(t)

)
(2)

Here, if K̂ba
(t) > Kba(t), then it can be concluded that a is clustered around b,

otherwise, if K̂ba
(t) < Kba(t), then it can be concluded that a is dispersed around b. The

comparison of Kba and K̂ba invokes the calculation of the expectation in (1), that can be
analytically evaluated through the complete spatial randomness (CSR) hypothesis. This
CSR hypothesis posits that the different types of points are independently and identically
distributed according to the binomial distribution over network space. In this study, we
tested CSR with a Monte Carlo simulation that generated 39 complete spatial random
point patterns for crimes and urban features on a network, LT. For each simulated pattern,
the number of crime incidents on distance t from an urban feature were calculated on a
network. The minimum and maximum values at distance t, obtained from these simulated
point patterns, are the critical upper and lower values at the α = 0.05 significance level [60].
If the observed count of crimes exceeded the upper value, we could assume a significant
clustering; if it was below the lower value, we could assume a significant dispersion,
otherwise, the relationship was insignificant. We ran separate network K analysis for each
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of 54 spatiotemporal models on the spatstat package [61] on R for evaluating the clustering
of crime incidents around urban features. The Monte Carlo simulation helped to eliminate
all the insignificant spatial influences before risk signal functions analysis.

2.7. Risk Signal Functions, RSIS and RSSS

Segmented regression is a type of regression analysis that is well-suited for modeling
the changing relationships between an independent (x) and a dependent variable (y) in
different intervals of x. This analysis identifies the x values, marking change points where
estimated coefficients of the regression equation significantly differ between intervals. This
equation is formulated as:

E[y|x] = β0 +β1x + δ1(x− τ1)
+ + . . . . + δk(x− τk)

+ (3)

where τk represents unknown changepoints whereby (xi− τk)
+ = (xi− τk) if (xi− τk) > 0.

β0, β1, δ1 . . . δk are coefficients that were estimated by a permutation test method [62].
In this study, each observation (xi, yi) consisted of a network distance and a corre-

sponding cumulative crime density. The linear K cross function that we used for network
K analysis outputs expected number of events at 513 equal points, marking equal distances
within a bounding radius (i.e., maximum shortest path distance between any two points in
a linear network). The bounding coordinates, radius, and distance chunks corresponding
to the distance between these 513 points are reported in Table 1. To estimate the segmented
regression models, we used an adequate number from these observations that cover at least
400 m in a side network. For example, we used 21 observations for the center subnetwork
with a chunk distance of 19.4 (19.4 × 21 = 407.4 m) and 10 observations for the West side
(40.4 × 10 = 404 m) with a chunk distance of 40.4 m. To create risk signal functions, we
estimated segmented regression equations using Joinpoint Regression program to model
crime density as a linear function of network distance (i.e., spatial influence) within a
spatial extent. A sample risk signal function is displayed in Figure 5. We evaluated the
performance of risk functions with RMSE and MAE.
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From these functions, we derived RSIS and RSSS. RSIS is the estimated cumulative
crime density at a given spatial extent. In this study, we selected 402.4 m, a quarter-mile
bandwidth, as the extent. This bandwidth was originally proposed in transportation
research as a threshold for the maximum distance people would walk to get to the nearest
public transport stations [63]. It was then adapted to the field of spatial crime research



ISPRS Int. J. Geo-Inf. 2021, 10, 472 13 of 30

to draw the boundaries for the possible spatial interactions between urban features and
crime [4].

A body of research has thus far used this value as a proxy for a spatial extent [24,41,64,65].
RSSS can be calculated by the following formula:

RSSS =
RSIS− E[y|Origin]

E[y|Origin]
∗ 100 (4)

Here, E[y|Origin] quantifies the local effect with the expected crime density at 5.5 feet
(1.7 m) (E[y|1.7]) because crime incidents at the exact locations are sometimes geocoded
with nearby areas for identification purposes [1]. RSSS can then be translated as the change
percentage in local effect throughout a spatial extent, indicating a spatial diffusion effect.
The value interval for RSSS is (−∞, ∞). It takes negative values in the case of distance
decay and positive values for the urban features that have an increased spatial diffusion
effect. We impute zeros into RSIS and RSSS values of the urban features that were found
to have an insignificant spatial influence by bivariate network K analysis. This is because
an insignificant clustering under the CSR hypothesis indicates that the observed crime
clusters around an urban feature are merely chance products.

2.8. Analytical Procedure

The analysis started with the geocoding of urban features and crimes to the side
street networks. The crimes were then aggregated at 54 spatiotemporal models. Next, we
examined the significance of crime clustering around selected urban features in each model
by using a network cross K analysis and a Monte Carlo simulation with 39 steps. After
eliminating insignificant spatiotemporal clusters, we fitted a distance-aware risk signal
function for each model in the form of estimated segmented regression equations. Using
these functions, we derived RSIS and RSSS for each urban feature in selected crime types
for each model. We applied nonparametric statistical tests (i.e., Wilcoxon signed rank and
Kruskal-Wallis test) to examine the differences between these values across the models.
Lastly, we analyzed the relationships between RSIS and RSSS values and CD through a
correlation analysis.

3. Results
3.1. Network K Analysis

The network K results (Appendix A) confirmed the majority (509/540) of the hy-
pothesized spatiotemporal crime clusters. Moreover, they revealed the differential spa-
tiotemporal influences of gas stations, grocery stores, and pubs, on robbery and theft risk.
Figures 6–8 exemplified one of these inconsistent clusters that were identified between
pubs and robbery in the FSWS.
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These figures illustrate the observed cumulative robbery counts at all distances from
a pub up to 1200 m. Figure 6 shows that the observed robbery count, represented by
the continuous black line, is greater than the count that was obtained under the CSR
hypothesis after nearly 100 m. Here, the gray band demarcates the insignificance area
where the observed count falls between the maximum and minimum values obtained from
the Monte Carlo simulation. The dashed red line in the middle of the band represents
the mean value of 39 simulations for each point. In sum, a continuous black line running
above the gray band indicates a significant clustering, within the gray band indicates
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an insignificant clustering, and below the gray band indicates a significant dispersion.
Figure 6, therefore, shows significant robbery clusters around pubs in the default model.

We observed no significant robbery and theft clusters within a quarter of a mile of gas
stations on the CS in the default model.

The weekly model also indicated the differential spatial influence of gas stations on
robbery and theft. While its influence on the robbery was not significant on the NS on
both weekdays and weekends, the same existed only on the weekends in the CS. Further
inconsistencies were also observed between pub and robbery in weekly models. Pubs did
not attract robbery crimes on the SS and SWS during the weekend, nor did they on the
FSWS and WS during weekdays.

Intraday models revealed many nuanced spatial influences. For instance, grocery
stores on NWS and pubs on the SS and SWS did not attract robberies during the first shift.
Similarly, there were no significant robbery clusters around gas stations on the CS, FNS,
and NS during the second shift.

There were not any significant robbery clusters around gas stations on the CS and
NS in the third shift. Spatiotemporal theft clusters around urban features, on the other
hand, were more stable than robbery clusters. Only a few insignificant theft clusters were
observed around gas stations across the CS and NS during all shifts.

3.2. Spatiotemporal Influence Analysis

As overall performance indicators of the fitted risk functions (n = 509), the mean
MAE and RMSE values were found to be 0.119 and 0.13675, respectively. Spatiotemporal
influence analysis revealed significant differences in RSIS and RSSS across different crime
types (Appendix B).

Figure 9 displays the RSIS and RSSS values of the bus stop in robbery and theft
incidents across spatiotemporal models. The results of the Wilcoxon signed rank test
indicated that theft RSIS of bus stops in the default model was significantly increased in the
second shift (p-value < 0.01) and decreased in the first shift (p-value < 0.05). It also indicated
a higher robbery RSIS during the first shift (p-value < 0.05). We observed significantly
higher RSSS of theft than that of robbery in the first shift. The Kruskal-Wallis test showed
a lower RSIS of theft and robbery than that of fast-food restaurants and grocery stores in
general. This relationship was reversed for RSSS values, as bus stops mostly had positive
RSSS values. The tests revealed a significantly higher theft and robbery RSISs of bus stops
located in the FNS, FSES, and FSWS. For RSSS, bus stops were found to have the lowest
values in both crime types in the CS and NS.

Spatiotemporal theft and robbery RSIS and RSSS of fast-food restaurants are displayed
in Figure 10. The main results indicated that both theft and robbery RSIS in the default
model is significantly higher than first shift models (p-value < 0.01). A Kruskal-Wallis test
for intraday differences further revealed significantly lower theft intensity around fast-
food restaurants in the first shift than those calculated in other shifts (p-value < 0.01). We
observed significant RSSS differences for robbery between default and weekday (p-value
< 0.05), and between weekend and weekday models (p-value < 0.01). The results further
showed that the robbery intensity of fast-food restaurants was significantly higher than
that of pubs during the second and third shifts. For theft, fast-food restaurants had higher
intensity values than gas stations and pubs in all temporal models, except for the first
shift model. The tests revealed significantly higher robbery RSISs of fast-food restaurants
located in the FNS, FSES, and FSWS. For theft incidents, significantly higher values were
mostly reported on the FSES. For RSSS, the CS and FE sides were found to have relatively
greater values.
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The analysis results of gas stations are displayed in Figure 11. The Wilcoxon signed
rank test indicated that robbery RSIS was significantly higher on weekends when compared
to theft values (p-value < 0.05). We also found higher robbery RSSSs on weekdays. A
comparative analysis with other features showed significant theft intensity differences
between gas stations and fast-food restaurants across all temporal models. For RSSS, this
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difference was significant in robbery across the default, weekday, and second shift model.
Further tests revealed a significantly higher robbery intensity around gas stations on the
FSES and FSWS sides, as well as higher theft intensity in FSES, FSWS, and SWS. For theft
RSSS, the SWS was consistently found to have the smallest values.ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 22 of 39 
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Figure 12 displays the results of grocery stores across spatiotemporal models. The
results indicated that theft RSIS of grocery stores in the default model was significantly
higher than it was in the first shift (p-value < 0.05). It also showed robbery RSISs were
higher than their theft counterparts during the second shift (p-value < 0.05). We observed
that robbery RSSS values were also significantly higher than theft values in the default
(p-value < 0.01), weekday (p-value < 0.01), and third shift models (p-value < 0.05). A
comparative analysis with other features showed that theft and robbery intensity were
significantly higher around grocery stores than around pubs in second shift models. The
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The results of spatiotemporal influence analysis of pubs are displayed in Figure 13.
They indicated that theft RSISs of pubs in default and weekday models were significantly
higher than the weekday (p-value < 0.05), and lower than the weekend (p-value < 0.05)
model. We also found lower robbery RSSS values in the first shift than in the default model.
It also reported greater robbery RSSSs in the second shift. The results also indicated robbery
and theft RSSSs of pubs were significantly lower during weekdays, second shift, and third
shift than that of fast-food restaurants. The Kruskal-Wallis test revealed significantly lower
robbery RSISs of pubs on the SW and SWS, and theft RSISs on the SS, SWS, and NWS.ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 26 of 39 
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3.3. Correlation Analysis with Concentrated Disadvantage (CD)

The main results found that some RSIS and RSSS values of urban features for differ-
ent crime types moderately correlated with both each other and with the concentrated
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disadvantage of the sides. We found strongly correlated theft and robbery RSISs around
bus stops in all temporal models. For gas stations, the correlation analysis revealed an
increased crime intensity in disadvantaged neighborhoods (Figures 14 and 15). Likewise,
a strong correlation was observed between CD and theft (ρTheft, CD = 0.92) and robbery
(ρRobbery, CD = 0.76) intensities in the second shift models.
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weekday, (c) weekend, (d) first shift, (e) second shift, and (f) third shift models. GS = gas station, RI = robbery RSIS, TI =
theft RSIS, RS = Robbery RSSS, TS = theft RSSS, WD = weekday, WE = weekend, FS = first shift, SS = second shift, and TS
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GS_TI_Default refers to theft RSIS of gas stations in the default model).
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In contrast, CD showed a negative correlation with robbery RSSS in the first shift
(ρRobbery, CD =−0.69), and theft and robbery RSSS during the weekend (ρRobbery, CD =−0.79
and ρTheft = −0.68). For pubs, the only significant correlations with CD were observed in
theft (ρTheft, CD = −0.89) and robbery (ρRobbery, CD = −0.72) intensities in the first shift and
second shift models, respectively.

4. Discussion

The bivariate network K analysis indicated possible dead zones in terms of spatial
influence, which refer to certain spatiotemporal configurations where urban features do
not broadcast any crime risk signals in their vicinities. Moreover, we found differential
crime clusters around urban features that varied with the sides, time of the day, or day of
the week. For instance, the default model identified insignificant theft and robbery clusters
around gas stations across the CS. A weekly model, however, further indicated that robbery
incidents had a significant cluster on the same side during weekdays. Similarly, although
all the temporal models, except the default model, identified insignificant robbery clusters
around gas stations on the NS, they found all theft clusters significant on the same side.
These inconsistent crime clusters are well aligned with the previous research [39,44,66–68]
that showed unique intraday and weekly crime patterns around urban features across
different regions. Another important result showed that, except for insignificant clusters
around gas stations in a few spatiotemporal models, theft clusters were more consistent
around all urban features than robbery clusters were. This underlines the situational crime
opportunity, emphasizing the differential reward definition of offenders across different
crime types [17]. Seemingly, theft criminals are less influenced by situational factors than
robbers. Robbers, on the other hand, use violence and intimidation against victims, which
may result in a physical struggle between involved parties. This struggle may draw larger
attention from outsiders who can act as capable guardians [6]. Robbers are thus more
sensitive to unfavorable situations than thieves due to higher associated risks.

The RSIS results indicated bus stops had significantly less spatial influence in nearly
all temporal models when compared to other urban features, particularly fast-food restau-
rants [69]. On the contrary, many positive RSSS, particularly in theft, on all the sides, except
on the CS and FNS, showed that it had a greater spatial diffusion effect throughout a spatial
extent. This finding contradicted the distance decay effect that was empirically validated
by previous research [1,2,4,28,46]. However, a body of research similarly reported some
urban features (e.g., schools and pubs, etc.) have an increased spatial influence in further
areas [5,45]. As a possible explanation, the existence of a bus stop may represent a haven for
potential victims because of the presence of other people waiting for or getting off the bus
who can act as informal security agents [14]. This increased number of capable guardians
drives potential offenders to the more desolate places (i.e., alleyways and connection roads,
etc.) causing a spatial spillover effect into nearby areas. Another interesting result indicated
a positive robbery RSSSs of pubs on the SS in all temporal models. In contrast, their theft
RSSSs strongly supported the distance decay effect on the same side. In sum, these results
clearly showed that the risk intensity and risk strength dramatically changed based on
space, time, and crime type.

The results of comparative RSSS analysis through the Wilcoxon signed rank and
Kruskal-Wallis test provided mixed support for spatiotemporal differences conditioned by
crime type [70]. The insignificant intraday differences were consistent with the findings of
Bernasco, Ruiter, and Block [38], who found only limited intraday crime level differences
around urban features during weekdays and the time of day. In this study, we found an
intraday RSIS difference only for fast-food restaurants, which had significantly less theft
intensity in the first shift than in others. Given that most of the fast-food restaurants were
closed during late-night hours (00:00–07:59), such a result was not surprising. We found,
however, considerable evidence for temporal differences in RSIS and RSSS around urban
features. For example, a Wilcoxon signed rank test indicated higher robbery intensity
around pubs during weekends when compared to weekdays. These findings lend em-
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pirical support for cyclic crime opportunity patterns that recur on a weekly basis around
places [39,44,66].

Spatiotemporal RSIS and RSSS analysis found a higher spatial influence of urban
features on FNS, FSWS and, FSES, which are located in the north and south boundaries
of Chicago, IL. Examining the possible interactions between side-level characteristics and
the degree of spatial influence, the correlation analysis found a strong positive correlation
between theft and robbery RSISs of gas stations and concentrated disadvantage. On the
other hand, an inverse relationship was reported between theft and robbery RSISs of pubs
and CD, but only in the first shift model. Given the CS is the most advantaged side of
Chicago, IL and is the heart of the city in terms of business, nightlife, and entertainment, the
increased robbery and theft intensity around pubs is not surprising due to the larger pres-
ence of intoxicated persons who may be unable defend themselves properly [20,21]. These
results provided mixed support for previous research [15,16] that identified a negative
association between concentrated disadvantage and spatial influence. These contradicting
results showed that the effect of concentrated disadvantage on spatial influence is mediated
by the type of urban feature.

5. Conclusions

The current study introduced a crime-specific spatiotemporal approach for signal-
like spatial influence broadcasted from urban features (i.e., RSSS). To test this approach,
we created 54 spatiotemporal models aggregating robbery and theft incidents at various
spatial (i.e., sides of Chicago) and temporal (i.e., default, intraday, and weekly models)
configurations. After eliminating insignificant spatiotemporal crime clusters by using
network K analysis, we fitted distance-aware risk signal functions that model the spatial
influence of an urban feature within a spatial extent. Devised from these functions are
two novel scores, RSIS and RSSS, which quantified the intensity and strength of spatial
influence signals. The main results of spatiotemporal influence analysis confirmed the
existence of possible dead zones, where spatial influence of urban features on particular
crime types does not exist at all. The next important finding indicated that the distance
decay effect was conditioned by the type of urban feature and spatiotemporal context. For
instance, bus stops had a demonstrated distance decay effect on robbery and theft across all
temporal levels on the CS and FNS, but not on the other sides. We found that the direction
of the relationship between spatial influence and concentrated disadvantage may depend
on the type of urban features.

5.1. Research Implications

This study has some research implications. Firstly, it provided strong empirical
support for the need for spatial influence analysis with a crime-specific spatiotemporal
approach that was implied by the notion of environmental backcloth [7–9]. Accordingly, a
crime generator or attractor in one context may remain irrelevant in another. Furthermore, it
was clearly shown that the distance decay effect was mainly influenced by the type of urban
features. We found an increased spatial diffusion effect for urban features with further dis-
tances across some spatiotemporal models, as well as intracity spatial influence differences
across the sides of Chicago, IL. This finding was well-aligned with Feng et al. [68] who
reported similar regional differences across the five boroughs of New York City, NY. Lastly,
this study showed that spatial influence was mediated by concentrated disadvantage only
for some urban features in some periods.

5.2. Practical Implications

The current study provides many useful insights for law enforcement professionals.
First, a preliminary spatiotemporal clustering approach may help eliminate or augment pa-
trol routes depending on the situation. Second, the proposed risk signal functions allowed
for the quantification and comparison of the spatial influence of urban features at any given
bandwidth across selected spatiotemporal units by modeling different cumulative crime
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densities within a spatial extent. Third, when aggregated at the street segment level, RSIS
and RSSS values quantified the overall crime risk level of a segment. The aggregated values
could then be used to create various spatiotemporal crime hotspot maps on street networks.
It thus allows for the effective usage of resources along with more targeted interventions
by informing decision-makers about optimal patrolling routes for any given period across
the regions of a city. Moreover, an in-depth analysis of these places that are consistently
ranked at the top by RSIS and RSSS may provide additional insights into these criminogenic
environmental settings. As a possible crime prevention through environmental design
(CPTED) [71] practice, these values may guide safety upgrades through environmental
enhancements such as streetlights [28,72] or additional CCTV cameras [39].

5.3. Limitations

This study has several limitations. First and foremost, the performance of risk signal
functions was heavily reliant upon the spatial and temporal precision of data, given that
lower precision levels may jeopardize the validity of the estimated functions. Second, the
modifiable areal unit problem (MAUP) [73] and modifiable temporal unit problem [74] also
pose important threats to the validity of the analysis. Third, the computational intensity
of network K analysis and the exponentially increasing number of space x time x crime x
urban feature configurations were inhibitive factors that hampered using spatiotemporal
units at finer resolution levels. Fourth, the set of urban features that we included in the
spatiotemporal analysis can be extended to include additional features. For example,
Fox et al. [75] found vacancy as the key driver of violent crime across the north and south
sides of St. Louis, MO. Lastly, the sample is limited to Chicago, IL, which significantly
curbs the generalizability of this study to other cities. We, therefore, highly recommend
replication studies in other urban contexts.

5.4. Future Research

Although we selected appropriate spatial and temporal units to overcome the data
sparsity [38] and computational intractability of K-function [65], an analysis with a finer
spatiotemporal granularity level may still promise noteworthy relationships and provide
useful insights in future research. Another potential research avenue is to examine the
alternative forms of the proposed risk signal function. For instance, a nonlinear function,
rather than a linear one as in the current study, may better capture a curvilinear spatial
influence within a spatial extent. With the increasing availability of GPS data to researchers,
it is now becoming possible to measure the level of human activity along streets with greater
accuracy. An analysis utilizing this measure would also provide valuable information about
the interplay between spatial influence and ambient population in crime risk across streets.
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Appendix A

Table A1. The spatiotemporal network K results matrix.

Robbery Theft
Sides Default WD WE FS SS TS Default WD WE FS SS TS

B
us

St
op

Center 3 3 3 3 3 3 3 3 3 3 3 3
Far North 3 3 3 3 3 3 3 3 3 3 3 3
Far South East 3 3 3 3 3 3 3 3 3 3 3 3
Far South West 3 3 3 3 3 3 3 3 3 3 3 3
North 3 3 3 3 3 3 3 3 3 3 3 3
North West 3 3 3 3 3 3 3 3 3 3 3 3
South 3 3 3 3 3 3 3 3 3 3 3 3
South West 3 3 3 3 3 3 3 3 3 3 3 3
West 3 3 3 3 3 3 3 3 3 3 3 3

Fa
st

Fo
od

R
es

ta
ur

an
t Center 3 3 3 3 3 3 3 3 3 3 3 3

Far North 3 3 3 3 3 3 3 3 3 3 3 3
Far South East 3 3 3 3 3 3 3 3 3 3 3 3
Far South West 3 3 3 3 3 3 3 3 3 3 3 3
North 3 3 3 3 3 3 3 3 3 3 3 3
North West 3 3 3 3 3 3 3 3 3 3 3 3
South 3 3 3 3 3 3 3 3 3 3 3 3
South West 3 3 3 3 3 3 3 3 3 3 3 3
West 3 3 3 3 3 3 3 3 3 3 3 3

G
as

St
at

io
n

Center 5 3 5 5 5 5 5 5 5 5 5 5
Far North 3 3 3 3 5 5 3 3 3 3 3 3
Far South East 3 3 3 3 3 3 3 3 3 3 3 3
Far South West 3 3 3 3 3 3 3 3 3 3 3 3
North 3 5 5 5 5 5 3 5 3 3 5 5
North West 3 3 3 3 3 3 3 3 3 3 3 3
South 3 3 3 3 3 3 3 3 3 3 3 3
South West 3 3 3 3 3 3 3 3 3 3 3 3
West 3 3 3 3 3 3 3 3 3 3 3 3

G
ro

ce
ry

St
or

e

Center 3 3 3 3 3 3 3 3 3 3 3 3
Far North 3 3 3 3 3 3 3 3 3 3 3 3
Far South East 3 3 3 3 3 3 3 3 3 3 3 3
Far South West 3 3 3 3 3 3 3 3 3 3 3 3
North 3 3 3 3 3 3 3 3 3 3 3 3
North West 3 3 3 5 3 3 3 3 3 3 3 3
South 3 3 3 3 3 3 3 3 3 3 3 3
South West 3 3 3 3 3 3 3 3 3 3 3 3
West 3 3 3 3 3 3 3 3 3 3 3 3

Pu
b/

Ta
ve

rn
s

Center 3 3 3 3 3 3 3 3 3 3 3 3
Far North 3 3 3 3 3 3 3 3 3 3 3 3
Far South East 3 3 3 3 3 3 3 3 3 3 3 3
Far South West 3 5 3 3 5 3 3 3 3 3 3 3
North 3 3 3 3 3 3 3 3 3 3 3 3
North West 3 3 3 3 3 3 3 3 3 3 3 3
South 3 3 5 5 3 3 3 3 3 3 3 3
South West 3 3 5 5 3 5 3 3 3 3 3 3
West 3 5 3 3 5 3 3 3 3 3 3 3

Note: WD = Weekday, WE: Weekend, FS = First Shift (00:00–17:59), SS = Second Shift (08:00–15:59), TS = Third Shift (16:00–23:59),
3 = Significant relationship, 5 = non-significant relationship
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Appendix B

Table A2. The spatiotemporal RSIS results matrix.

Robbery Theft
Sides Default WD WE FS SS TS Default WD WE FS SS TS

B
us

St
op

Center 1.74 1.81 1.73 1.80 1.94 1.69 1.62 1.63 1.58 1.56 1.62 1.62
Far North 2.21 2.43 1.83 2.45 2.07 2.12 1.77 1.76 1.78 1.69 1.92 1.64
Far South East 2.15 2.12 2.20 2.06 2.30 2.10 2.09 2.12 2.05 1.59 2.28 2.09
Far South West 2.07 2.10 2.01 2.03 1.99 16.56 1.79 1.75 1.93 1.51 1.94 13.00
North 1.58 1.52 1.65 1.71 1.51 1.48 1.56 1.54 1.59 1.52 1.58 1.56
North West 1.43 1.42 1.46 1.40 1.84 1.38 1.56 1.57 1.54 1.41 1.74 1.48
South 1.38 1.35 1.37 1.37 1.38 1.34 1.39 1.39 1.39 1.30 1.43 1.38
South West 1.42 1.42 1.48 1.38 1.49 1.49 1.51 1.49 1.56 1.25 1.62 1.51
West 1.40 1.45 1.32 1.36 1.40 1.42 1.29 1.31 1.26 1.21 1.36 1.26

Fa
st

Fo
od

R
es

ta
ur

an
t Center 2.77 2.85 2.62 2.24 3.23 2.94 2.56 2.73 2.26 1.91 2.87 2.39

Far North 3.56 3.72 3.32 2.87 4.01 3.89 3.52 3.48 3.59 3.80 3.94 2.98
Far South East 5.13 4.55 6.08 3.87 5.96 5.04 6.48 6.15 6.69 3.50 7.05 6.92
Far South West 4.07 4.49 3.99 3.79 6.38 2.96 3.05 2.97 3.06 2.25 3.19 3.31
North 2.82 2.77 2.91 2.80 2.91 2.85 3.11 3.07 3.23 2.61 3.37 3.07
North West 2.32 2.34 2.35 1.95 3.11 2.15 4.95 4.80 5.33 2.41 6.07 4.83
South 2.08 1.97 2.22 2.04 1.90 2.20 2.42 2.44 2.52 1.99 2.63 2.36
South West 2.41 2.45 2.46 2.19 2.75 2.43 3.71 3.59 3.98 1.84 4.27 3.92
West 3.56 1.92 1.60 1.55 2.00 1.77 4.83 3.04 2.77 2.27 3.47 2.68

G
as

St
at

io
n

Center 0.00 1.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Far North 1.86 1.91 1.77 2.46 0.00 0.00 1.63 1.62 1.65 1.96 1.51 1.61
Far South East 3.23 3.16 3.59 4.04 3.03 2.83 2.65 2.69 2.54 2.99 2.81 2.37
Far South West 3.76 3.70 4.25 3.33 3.56 4.40 2.66 2.65 2.67 2.64 2.76 2.52
North 1.51 0.00 0.00 0.00 0.00 0.00 1.13 1.05 1.39 1.80 0.00 0.00
North West 2.21 2.21 2.19 1.90 2.47 2.30 2.08 2.09 2.07 2.01 1.73 2.16
South 1.82 1.76 1.92 2.15 1.89 1.69 1.92 1.91 1.95 1.47 2.04 1.90
South West 2.12 1.85 2.36 1.94 2.09 2.14 2.30 2.29 2.33 2.28 2.25 2.32
West 4.01 2.29 2.28 2.54 1.93 2.30 4.32 1.62 1.71 1.76 1.65 1.60

G
ro

ce
ry

St
or

e

Center 1.74 1.75 0.00 1.81 1.80 1.67 1.81 1.84 1.84 1.85 1.88 1.71
Far North 4.28 4.39 4.07 4.22 4.80 4.03 3.22 3.12 3.40 3.08 3.43 3.05
Far South East 3.72 3.57 4.03 3.22 4.21 3.87 3.19 3.29 2.99 2.32 3.61 3.11
Far South West 4.43 4.31 4.53 4.64 4.26 4.19 3.62 3.33 4.27 1.92 4.19 3.82
North 1.90 0.00 0.00 2.18 2.16 1.66 1.90 1.83 2.05 1.98 1.97 1.91
North West 1.89 1.71 2.22 0.00 2.39 2.05 1.92 1.83 2.19 1.52 2.12 1.93
South 2.17 2.22 2.05 2.11 2.41 2.05 2.13 2.11 2.19 1.88 2.23 2.12
South West 2.42 2.44 2.41 1.91 2.54 2.60 2.21 2.11 2.21 1.84 2.31 2.15
West 5.37 1.79 1.77 1.67 1.93 1.73 5.22 2.03 2.13 1.71 2.11 2.15

Pu
b/

Ta
ve

rn
s

Center 2.61 2.16 3.23 4.09 1.71 1.97 2.22 1.90 2.76 4.69 1.76 2.03
Far North 2.37 2.76 1.67 2.30 3.26 2.00 2.20 2.04 2.63 2.39 2.15 2.23
Far South East 2.33 2.26 2.48 2.51 2.50 2.27 2.43 2.26 2.09 1.62 2.19 2.42
Far South West 2.20 0.00 3.50 2.27 0.00 2.83 2.04 2.00 2.15 2.45 2.03 1.86
North 2.25 2.00 2.58 2.83 1.44 1.94 2.36 2.00 2.99 3.75 1.84 2.29
North West 1.92 1.66 2.30 2.05 1.79 1.87 1.53 1.51 1.56 1.72 1.51 1.56
South 1.58 1.65 0.00 0.00 1.70 1.48 1.48 1.36 1.70 1.34 1.53 1.52
South West 1.22 1.33 0.00 0.00 1.55 0.00 1.47 1.47 1.48 1.27 1.52 1.52
West 3.66 0.00 1.28 1.23 0.00 1.11 4.58 2.34 3.14 2.76 2.18 2.98

Note: WD = Weekday, WE: Weekend, FS = First Shift (00:00–17:59), SS = Second Shift (08:00–15:59), TS = Third Shift (16:00–23:59).
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Table A3. The spatiotemporal RSSS results matrix.

Robbery Theft

Sides Default WD WE FS SS TS Default WD WE FS SS TS

B
us

St
op

Center −2.62 −1.22 3.41 −1.07 −20.70 2.41 −30.84 −30.47 −32.21 33.36 −32.39 −34.54
Far North −4.66 −4.44 −5.26 −22.41 −12.34 20.02 −10.14 −6.55 −16.79 −26.61 −7.34 −4.87
Far South East −0.46 7.13 −67.90 1.20 1.93 −3.09 20.17 27.04 7.40 38.63 18.16 18.05
Far South West 16.73 13.16 −2.97 6.22 5.05 128.43 76.50 96.62 89.63 316.88 91.26 113.40
North 11.19 20.36 −3.95 −18.50 64.16 53.11 54.39 49.89 42.75 23.82 41.99 70.11
North West 84.68 74.59 109.42 51.56 6.97 66.47 53.25 54.50 51.28 53.17 70.69 46.34
South 20.46 33.65 5.01 7.55 10.43 26.56 90.14 81.51 110.47 69.86 102.87 85.03
South West 2.64 2.33 14.15 −32.45 27.52 12.37 76.78 79.00 53.71 114.18 59.62 48.66
West 9.24 5.47 16.69 15.41 12.57 3.71 36.81 37.29 36.17 47.36 43.92 25.46

Fa
st

Fo
od

R
es

ta
ur

an
t Center −38.22 −48.14 −36.47 −33.36 −29.65 −50.03 2.49 0.36 7.98 31.00 −3.79 −8.63

Far North −61.38 −64.72 −52.40 −31.48 −57.54 −67.63 −41.16 −41.23 −41.31 −44.27 −43.51 −35.58
Far South East −56.32 −55.54 −48.06 −2.09 −69.18 −42.66 −58.00 −54.32 −62.67 −11.16 −56.44 −63.04
Far South West −89.52 −91.61 −35.55 −89.42 −91.24 −81.75 −77.55 −79.34 −75.71 −72.70 −76.12 −80.33
North −67.75 −71.90 −57.39 −60.69 −70.45 −72.05 −59.12 −59.32 −56.99 −53.63 −61.06 −62.41
North West −59.02 −64.90 −0.95 −46.89 −79.89 40.81 −75.37 −71.98 −79.16 −66.64 −74.75 −77.33
South −51.79 −57.37 −42.05 −72.04 1.23 −45.67 −35.22 −39.02 −33.20 −32.70 −51.69 21.65
South West −81.63 −80.83 −80.97 −85.00 −75.58 −80.77 −86.57 −86.52 −86.71 −76.33 −86.68 −87.87
West 74.57 −58.19 −7.47 −46.53 −67.34 −16.09 7.60 −53.87 −84.38 −54.67 −58.38 −51.37

G
as

St
at

io
n

Center 0.00 89.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Far North −33.12 −36.37 −25.50 −26.68 0.00 0.00 −23.11 −28.73 −7.66 −36.94 −18.50 −17.84
Far South East −51.37 −48.28 −55.81 −67.12 534.04 −56.54 −7.98 −3.75 −19.27 −53.44 12.69 −3.63
Far South West 98.39 418.20 −7.03 3.38 247.40 54.44 −10.97 −15.58 0.14 12.23 0.11 −28.61
North −37.71 0.00 0.00 0.00 0.00 0.00 −3.47 5.24 36.65 39.62 0.00 0.00
North West −9.27 116.58 −47.44 −11.13 −52.88 44.49 −22.21 −18.15 −29.51 −33.05 142.11 −29.71
South −12.06 70.96 −58.32 −33.04 −46.92 −56.72 −46.96 −45.76 −49.11 43.43 −45.57 −49.97
South West −41.10 −31.14 −56.32 −53.88 −62.11 −56.02 −68.11 −67.93 −68.41 −73.24 −61.46 −70.17
West 10.53 −60.42 −67.64 −72.17 93.28 −61.87 5.16 −55.29 −59.49 −70.87 −52.09 −53.18

G
ro

ce
ry

St
or

e

Center −38.82 −30.43 −47.26 −34.95 −11.55 −50.02 −57.06 −54.56 −57.07 −64.00 −55.43 −35.39
Far North −44.10 −44.09 −44.07 −42.25 −59.23 −30.88 −55.96 −54.74 −58.15 −61.85 −54.28 −55.08
Far South East 7.66 36.23 −23.35 −38.53 −16.73 46.00 2.97 −0.41 12.39 42.60 0.70 −1.86
Far South West −35.46 −43.76 2.67 3.42 −12.62 −45.93 −78.20 −73.70 −83.50 −55.05 −78.63 −81.33
North −35.67 −36.30 −42.33 −13.95 −78.56 −67.46 −50.99 −48.93 −53.94 −54.75 −43.71 −63.92
North West −47.19 −44.30 −52.40 0.00 −53.02 −45.29 −74.30 −75.51 −66.95 −69.98 −74.77 −74.21
South −55.03 −52.92 −56.25 −57.65 −58.44 −50.46 −64.66 −65.51 −59.17 −43.02 −68.37 −65.18
South West −35.86 −46.74 −11.97 −15.98 −46.97 −37.08 −69.82 −61.37 −71.04 −52.61 −70.72 −63.83
West 129.55 −33.88 −50.45 −20.03 −47.05 −42.43 23.75 −64.93 −62.82 −38.87 −69.00 −63.67

Pu
b/

Ta
ve

rn
s

Center −45.66 −22.87 −53.52 −52.01 −41.13 −32.50 −64.51 −60.45 −66.64 −68.30 −61.48 −61.47
Far North −38.69 −40.99 −30.96 −46.71 −32.97 −27.13 −41.93 −32.52 −57.66 −65.24 −30.36 −40.95
Far South East 8.73 91.32 −37.52 −40.00 677.99 −23.79 36.42 10.31 105.73 251.67 119.07 5.60
Far South West −32.01 0.00 −22.26 −71.84 0.00 89.16 −51.35 −35.89 −69.66 −73.16 −21.81 −33.89
North −36.62 −9.79 −57.76 −50.49 −54.80 −16.92 −51.75 −43.14 −60.49 −67.54 −34.46 −47.46
North West −65.86 −71.38 −56.39 −71.88 43.83 −73.14 21.96 34.09 1.73 −42.16 8.97 120.68
South 129.35 112.56 0.00 0.00 30.94 304.44 −27.92 11.37 −57.40 −35.98 −17.83 −36.72
South West −9.44 −35.20 0.00 0.00 −30.61 0.00 −81.58 −81.08 −82.51 −85.09 −80.62 −80.81
West 188.85 0.00 −57.35 −18.97 0.00 −38.86 38.08 −35.20 −63.97 −66.79 −35.91 −50.76

Note: WD = Weekday, WE: Weekend, FS = First Shift (00:00–17:59), SS = Second Shift (08:00–15:59), TS = Third Shift (16:00–23:59).
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