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Abstract: The digital elevation model (DEM) is known as one kind of the most significant fundamen-
tal geographical data models. The theory, method and application of DEM are hot research issues
in geography, especially in geomorphology, hydrology, soil and other related fields. In this paper,
we improve the efficient sub-pixel convolutional neural networks (ESPCN) and propose recursive
sub-pixel convolutional neural networks (RSPCN) to generate higher-resolution DEMs (HRDEMs)
from low-resolution DEMs (LRDEMs). Firstly, the structure of RSPCN is described in detail based on
recursion theory. This paper explores the effects of different training datasets, with the self-adaptive
learning rate Adam algorithm optimizing the model. Furthermore, the adding-“zero” boundary
method is introduced into the RSPCN algorithm as a data preprocessing method, which improves
the RSPCN method’s accuracy and convergence. Extensive experiments are conducted to train the
method till optimality. Finally, comparisons are made with other traditional interpolation methods,
such as bicubic, nearest-neighbor and bilinear methods. The results show that our method has
obvious improvements in both accuracy and robustness and further illustrate the feasibility of deep
learning methods in the DEM data processing area.

Keywords: DEM; super-resolution; interpolation; recursion; deep learning

1. Introduction

The digital elevation model (DEM [1]) is a digital simulation of a terrain surface
using limited terrain elevation data, which contains rich topographic information for
the application and analysis of geosciences [2]. DEM has the characteristics of simple
geographical data organization, intuitive terrain information representation and efficient
terrain factor interpretation. It is widely used in geomorphology, hydrology, soil and other
related fields and plays an important role in the practice of surveying and mapping, soil
and water conservation, hydrogeological disaster monitoring and controlling and land
use managing and planning [3]. Resolution in our paper denotes “pixel size”, which is
an important index for DEM to describe the size of the smallest unit. It is important to
explore terrain modeling solutions for generating higher-resolution DEMs (HRDEMs)
from captured low-resolution DEMs (LRDEMs) [4–6], referred to as super resolution
(SR) solutions. During the process of SR, a clearer image is reconstructed by using the
information of at least one low-resolution image [7–10]. SR technology has high application
need and application prospect, especially for applications that demand higher-resolution
and higher-fidelity terrain information. There are some examples: (1) real-time terrain
simulations serving for vehicle route planning and fast adaptation; (2) realistic terrain
rendering technology used for ranging simulations, entertainment and 3D high realistic
gaming graphic environments [5]; (3) the SR mode on satellites (such as SPOT5 satellite)
to achieve HRDEMs from low-resolution cameras [11,12]. In our study, we focus on the
terrain modeling process of LRDEMs with an aim to obtain HRDEMs terrain models with
high fidelity to the real terrain structures.
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The image SR algorithm was first proposed by Tsai and Huang [13]. Since then, many
researchers have been dedicated to SR algorithms [14–18]. Currently, SR algorithms are
usually classified into three types: interpolative types, reconstructive types and learning
types [19]. The interpolation methods [14,20–26] are commonly used and have good results
on terrain modeling, such as the bilinear algorithm [27,28], bicubic interpolation [29,30],
inverse distance to a power [31,32], the radial basis function [10], the spline function [33],
Coons surface [34,35], the numerical approximation expression [36–38], the statistical
method of cross validation [39], the recursive algorithm [40], wavelet transformation [41],
Delaunay triangulation interpolation [42], B-splines [43], etc. After the deep learning
(DL) algorithm became popular, the SR algorithm based on DL appeared in 2014 [44].
Researchers have proposed a variety of classic DL-based super-Resolution algorithms,
such as iterative back projection [45], maximum likelihood estimate [46], maximum a
posterior [47,48], multi-task learning [49], support vector regression [50], super resolution
convolutional neural networks (SRCNN) [44], etc. Then, researches began focusing not
only on images but also on videos and higher dimensional multimedia data, especially
DEMs [51,52].

The landmark work on DL-based SR is based on the convolutional neural networks
(CNN) model for single image super-resolution (SISR), called SRCNN [44,53]. However,
due to the simple three-layer convolution structure [54,55] of SRCNN, it usually causes
over-smooth errors for severely changing terrain data [56] and a long computational time.
Many improved SRCNN algorithms have been studied. For example, Dong et al. [57,58]
and Shi et al. [59] presented modified SRCNN algorithms to speed up the feature extraction
process by directly dealing with sub-feature maps or sub-pixel convolution layers. Deeply
recursive cortical networks [60] were proposed to reduce the depth of CNN and improve
the calculation efficiency and training stability. Lim et al. [61] proposed an optimized
version of the ResNet structure for SR in their enhanced deep residual networks for SISR. O.
Argudo et al. [6], Ashish A Kubade et al. [5] and Mengjiao Qin et al. [62] added information
from aerial images or remote sensing images to increase the DEM resolution. However,
there is still great potential for visualization based on SR [63].

In this paper, we introduce efficient sub-pixel convolutional neural networks (ES-
PCN) [59] into the DEM SR process and propose the recursive sub-pixel convolutional
neural networks (RSPCN) to build HRDEMs. The proposed method is like an interpolator
that over-samples the DEM, which starts with a single image and ends with the same
single image but with a finer density of pixels. Compared with the SRCNN method, our
RSPCN method recursively deals with sub-pixel convolution layers and speeds up the
feature extraction process. Compared with other traditional interpolation methods (bicubic,
bilinear, nearest-neighbor), it eases the over-smooth issues and improves the accuracy.
Compared with ESPCN, it introduces recursive idea and reduces the depth of networks.
The results imply that it is especially useful for visualization applications, such as real-time
terrain simulations and realistic terrain rendering.

2. Study Datasets and Data Preprocess

To show and compare different terrain modeling methods in a straightforward manner,
we chose a publicly available collection [64] of single-scale elevation models of represen-
tative landforms as our experimental datasets. These HRDEMs of archetypal landform
types are derived from the United States Geological Survey (USGS) 3D Elevation Program
(3DEP) LiDAR sources with resolution ranging from 2 to 10 m. The six archetypal landform
datasets include an eroded plateau (Bryce Canyon, UT, USA, Figure 1, Full), a volcanic
caldera (Crater Lake, OR, USA, Figure 2, Full), active sand dunes (Great Sand Dunes,
CO, USA, Figure 3, Full), a braided riverbed (Jackson Hole, WY, USA, Figure 4, Full), a
shield caldera (Kı̄lauea, HI, USA, Figure 5, Full) and stabilized sand dunes (Sandhills, NE,
USA, Figure 6, Full). The datasets are intercepted and made into the same size DEM of
1000× 1000 by downsampling DEMs with medium interval from above DEMs. Then, these
six classes of datasets are normalized, as shown in Formula (1), shown as preprocessed
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DEMs in Figures 1–6. Finally, we obtain 500×500 LRDEMs by downsampling DEMs
with medium interval from 1000×1000 DEMs. These 500×500 preprocessed datasets are
obtained as experimental DEMs, the detailed information about which is shown in Table 1. x(i, j) = x(i,j)−min{x(i,j)}

max{x(i,j)}−min{x(i,j)}

y(i, j) = y(i,j)−min{y(i,j)}
max{y(i,j)}−min{y(i,j)}

. (1)

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 3 of 18 
 

 

USA, Figure 6, Full). The datasets are intercepted and made into the same size DEM of 
1000 × 1000 by downsampling DEMs with medium interval from above DEMs. Then, 
these six classes of datasets are normalized, as shown in Formula (1), shown as prepro-
cessed DEMs in Figures 1–6. Finally, we obtain 500 × 500 LRDEMs by downsampling 
DEMs with medium interval from 1000 × 1000 DEMs. These 500 × 500 preprocessed da-
tasets are obtained as experimental DEMs, the detailed information about which is shown 
in Table 1. 𝒙 𝑖, 𝑗 = 𝒙 , 𝒙 ,𝒙 , 𝒙 ,𝒚 𝑖, 𝑗 = 𝒚 , 𝒚 ,𝒚 , 𝒚 , . (1)

 
Figure 1. Eroded plateau (Bryce Canyon, UT, USA) [64]: 1000 × 1000 with pixel size of 3 m. 

 
Figure 2. Volcanic caldera (Crater Lake, OR, USA) [64]: 1000 × 1000 with pixel size of 9.99 m. 

 
Figure 3. Active sand dunes (Great Sand Dunes, CO, USA) [64]: 1000 × 1000 with pixel size of 9.99 m. 

Figure 1. Eroded plateau (Bryce Canyon, UT, USA) [64]: 1000 × 1000 with pixel size of 3 m.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 3 of 18 
 

 

USA, Figure 6, Full). The datasets are intercepted and made into the same size DEM of 
1000 × 1000 by downsampling DEMs with medium interval from above DEMs. Then, 
these six classes of datasets are normalized, as shown in Formula (1), shown as prepro-
cessed DEMs in Figures 1–6. Finally, we obtain 500 × 500 LRDEMs by downsampling 
DEMs with medium interval from 1000 × 1000 DEMs. These 500 × 500 preprocessed da-
tasets are obtained as experimental DEMs, the detailed information about which is shown 
in Table 1. 𝒙 𝑖, 𝑗 = 𝒙 , 𝒙 ,𝒙 , 𝒙 ,𝒚 𝑖, 𝑗 = 𝒚 , 𝒚 ,𝒚 , 𝒚 , . (1)

 
Figure 1. Eroded plateau (Bryce Canyon, UT, USA) [64]: 1000 × 1000 with pixel size of 3 m. 

 
Figure 2. Volcanic caldera (Crater Lake, OR, USA) [64]: 1000 × 1000 with pixel size of 9.99 m. 

 
Figure 3. Active sand dunes (Great Sand Dunes, CO, USA) [64]: 1000 × 1000 with pixel size of 9.99 m. 

Figure 2. Volcanic caldera (Crater Lake, OR, USA) [64]: 1000 × 1000 with pixel size of 9.99 m.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 3 of 18 
 

 

USA, Figure 6, Full). The datasets are intercepted and made into the same size DEM of 
1000 × 1000 by downsampling DEMs with medium interval from above DEMs. Then, 
these six classes of datasets are normalized, as shown in Formula (1), shown as prepro-
cessed DEMs in Figures 1–6. Finally, we obtain 500 × 500 LRDEMs by downsampling 
DEMs with medium interval from 1000 × 1000 DEMs. These 500 × 500 preprocessed da-
tasets are obtained as experimental DEMs, the detailed information about which is shown 
in Table 1. 𝒙 𝑖, 𝑗 = 𝒙 , 𝒙 ,𝒙 , 𝒙 ,𝒚 𝑖, 𝑗 = 𝒚 , 𝒚 ,𝒚 , 𝒚 , . (1)

 
Figure 1. Eroded plateau (Bryce Canyon, UT, USA) [64]: 1000 × 1000 with pixel size of 3 m. 

 
Figure 2. Volcanic caldera (Crater Lake, OR, USA) [64]: 1000 × 1000 with pixel size of 9.99 m. 

 
Figure 3. Active sand dunes (Great Sand Dunes, CO, USA) [64]: 1000 × 1000 with pixel size of 9.99 m. Figure 3. Active sand dunes (Great Sand Dunes, CO, USA) [64]: 1000× 1000 with pixel size of 9.99 m.



ISPRS Int. J. Geo-Inf. 2021, 10, 501 4 of 18ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 4 of 18 
 

 

 
Figure 4. Braided riverbed (Jackson Hole, WY, USA) [64]: 1000 × 1000 with pixel size of 6 m. 

 
Figure 5. Shield caldera (Kīlauea, HI, USA) [64]: 1000 × 1000 with pixel size of 3 m. 

 
Figure 6. Stabilized sand dunes (Sandhills, NE, USA) [64]: 1000 × 1000 with pixel size of 30 m. 

Table 1. The detailed information of six study areas and experimental datasets (500 × 500). 

Details
Experimental Datasets 

Pixel Size 
(m) Projection Data Source Data Processing 

Bryce Canyon 6 
UTM/NAD83 

Zone 12 
3DEP downsampled from 3 to 6 m 

Crater Lake 19.8 
UTM/NAD83 

Zone 10N 
3DEP downsampled from 9.9 to 19.8 m 

Great Sand Dunes 19.8 
UTM/NAD83 

Zone 13N 
3DEP downsampled from 9.9 to 19.8 m 

Jackson Hole 12 
UTM/NAD83 

Zone 12N 
3DEP downsampled from 6 to 12 m 

Kīlauea 6 
UTM/NAD83 

Zone 5 
airborne Lidar 

U.S. Geological Survey 
downsampled from 3 to 6 m 

Sandhills 60 
UTM/NAD83 

Zone 14N 
3DEP downsampled from 30 to 60 m 

  

Figure 4. Braided riverbed (Jackson Hole, WY, USA) [64]: 1000 × 1000 with pixel size of 6 m.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 4 of 18 
 

 

 
Figure 4. Braided riverbed (Jackson Hole, WY, USA) [64]: 1000 × 1000 with pixel size of 6 m. 

 
Figure 5. Shield caldera (Kīlauea, HI, USA) [64]: 1000 × 1000 with pixel size of 3 m. 

 
Figure 6. Stabilized sand dunes (Sandhills, NE, USA) [64]: 1000 × 1000 with pixel size of 30 m. 

Table 1. The detailed information of six study areas and experimental datasets (500 × 500). 

Details
Experimental Datasets 

Pixel Size 
(m) Projection Data Source Data Processing 

Bryce Canyon 6 
UTM/NAD83 

Zone 12 
3DEP downsampled from 3 to 6 m 

Crater Lake 19.8 
UTM/NAD83 

Zone 10N 
3DEP downsampled from 9.9 to 19.8 m 

Great Sand Dunes 19.8 
UTM/NAD83 

Zone 13N 
3DEP downsampled from 9.9 to 19.8 m 

Jackson Hole 12 
UTM/NAD83 

Zone 12N 
3DEP downsampled from 6 to 12 m 

Kīlauea 6 
UTM/NAD83 

Zone 5 
airborne Lidar 

U.S. Geological Survey 
downsampled from 3 to 6 m 

Sandhills 60 
UTM/NAD83 

Zone 14N 
3DEP downsampled from 30 to 60 m 

  

Figure 5. Shield caldera (Kı̄lauea, HI, USA) [64]: 1000 × 1000 with pixel size of 3 m.
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Table 1. The detailed information of six study areas and experimental datasets (500 × 500).

Experimental Datasets
Details Pixel Size

(m)
Projection Data Source Data Processing

Bryce Canyon 6 UTM/NAD83
Zone 12 3DEP downsampled from 3 to 6 m

Crater Lake 19.8 UTM/NAD83
Zone 10N 3DEP downsampled from 9.9 to 19.8 m

Great Sand Dunes 19.8 UTM/NAD83
Zone 13N 3DEP downsampled from 9.9 to 19.8 m

Jackson Hole 12 UTM/NAD83
Zone 12N 3DEP downsampled from 6 to 12 m

Kı̄lauea 6 UTM/NAD83
Zone 5

airborne Lidar
U.S. Geological

Survey
downsampled from 3 to 6 m

Sandhills 60 UTM/NAD83
Zone 14N 3DEP downsampled from 30 to 60 m
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3. Methodology
3.1. Efficient Sub-Pixel Convolutional Neural Networks (ESPCN)

The specific process of the algorithm is as follows: LRDEM data are used as the input
data into the network, which enter into the three sub-pixel convolutional layers using
rectified linear unit (ReLU) as activation function. After entering into the first sub-pixel
convolutional layer with kernel 4 × 4, the datasets will turn into 64-channel datasets.
Then, second sub-pixel convolutional layer with kernel 3 × 3 finally outputs 4-channel
datasets, which means that the length and width of the DEM grid data increases by one
time, respectively. The self-adaptive learning rate Adam [65] algorithm is used to optimize
the model. The specific structure of our method is shown in Figure 7. The process of the
data formation is shown in Figure 8.
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Figure 8. Sketch map of the process of the formation of the SR DEMs.

In our method, we use common loss function in the network and mean-square error
(MSE) between the real DEM data xi,j and the generated super-resolution DEM data yi,j,
as shown in Formula (2), where n is the square matrix’s number of rows/columns.

Cost =
∑n

i=1 ∑n
j=1
(

xi,j − yi,j
)2

n2 (2)

3.2. Recursive Sub-Pixel Convolutional Neural Networks (RSPCN)

Based on ESPCN, the proposed RSPCN model is presented by introducing the idea of
recursion. The network is outlined in Figure 9, containing three sub-networks: embedding,
recursion and reconstruction networks. The embedding network is used to generate feature
maps from LRDEMs. Next, the recursion part finishes the SR part. After this, final feature
maps in the recursion part are fed into the reconstruction network to generate the output
HRDEMs.
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recursion net is unfolded in Figure 7, as mentioned above.

The embedding network takes the input LRDEMs and extracts their features. The
input parameter N denotes magnification factor. Firstly, LRDEMs are normalized and
turned into binary codes. Secondly, six different types of terrain are labeled as tensors
(from 0 to 5). Finally, these tensors will be passed into the recursion layer.

The recursion network is the main network, containing recursive three-layer CNN to
solve the task of SR. Every recursive step completes one ESPCN process with the parameter
n counting, until n = N. Meanwhile, every recursion makes the cell size of DEM smaller
and outputs the tensors with labels.

The reconstruction network transforms these tensors (2 channel) back into the LRDEM
space (3 channel), generating HRDEMs of different terrain.

4. Experiments and Results
4.1. Adding-“Zero” Data Preprocessing Method

During the convolutional layers, the boundary pixels of the DEMs cannot be convo-
luted. The reason is that the boundary pixels cannot completely overlap the convolution
kernel. For example, the edge of one pixel will not be processed with a kernel 3 × 3.
Therefore, we add “zero” (representing value = 255 in the gray picture) to the boundary of
the DEMs. In the results, we will delete the “zero” boundary of the generated DEMs and
finally obtain the SRDEMs to do the comparison and analysis. The specific data processing
steps are as follows.

Firstly, we add “zero” to the boundary of the 500 × 500 LRDEMs to build
600 × 600 LRDEMs as the training datasets. Then, after the training process, we ob-
tain 1200 × 1200 generated DEMs. Finally, we obtain the final 1000 × 1000 SRDEMs by
deleting the boundary. The whole process are shown in Figure 10. By comparing with
the preprocessed 1000 × 1000 DEMs, which are shown in Figures 1–5, the accuracy of the
final 1000 × 1000 SRDEMs is analyzed. The experimental environment is a modest laptop
computer (a 64-bit AMD Ryzen 54,600U with Radeon Graphics @ 2.10 GHz, RAM 16 GB).
Visual Studio 2015 and Opencv 3.1.0 are used to transform the normalized data into binary
data that is trained in the Tensorflow platform.
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4.2. Data Augmentation (DA)

During the experimental process, the input datasets we use are different types of the
LRDEMs, divided into six types (0 to 5), and the training datasets are HRDEMs derived
from 3DEP. The training datasets have only one DEM per type. Thus, in order to alleviate
the effect of over-fitting problems and expand the training datasets, we use the data
augmentation (DA) method [66] to expand them. The detailed step is adding 100 times of
Gaussian noise ε ∼ N(0, ∆d) into each type of the DEM, where ∆d means the resolution
of the LRDEMs. Thus, we obtain 100 DEMs per type and 600 DEMs in total; test samples
contain merely six DEMs in total, with 1 DEM per type.

4.3. Selection of Training DataSets

Through the above steps, we have two ways to generate training datasets.
Training datasets No. 1: six types with 100 DEMs of each type (by DA).
Training datasets No. 2: six types with 1 DEM of each type.
The results are compared and analyzed by two different types of training datasets. As

for the evaluation indexes of the experiments, root mean square error (RMSE) [67,68], peak
signal to noise ratio (PSNR) and structural similarity (SSIM) [69] are used. The smaller the
RMSE is, the higher the accuracy of the DEM super-resolution is, as shown in Formula (3).
The bigger the PSNR is, the more similar the super-resolution DEM is to the real DEM data,
as is shown in Formulas (4) and (5). SSIM is another index to measure the similarity of
two images, which is modeled as a combination of brightness, contrast and structure. The
value of SSIM is in the range of −1 to 1. The closer the SSIM is to 1, the more similar the
super-resolution DEM is to the real DEM data, as shown in Formulas (6)–(8) [69].

RMSE =

√√√√ 1
n2

n

∑
i=1

n

∑
j=1
‖x(i, j)− y(i, j)‖2 , (i = 0, 1, · · ·) (3)

PSNR = 10× log10

(
(2p − 1)2

MSE

)
(4)

MSE =
1
n2

n

∑
i=1

n

∑
j=1
‖x(i, j)− y(i, j)‖2 = RMSE2 (5)

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µx2 + µy2 + c1

)((
σx2 + σy2 + c2

)) (6)

c1 = (k1L)2, k1 = 0.01 (7)

c2 = (k2L)2, k1 = 0.03 (8)
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In the above formulas, x is normalized 1000×1000 DEM data (shown in Figures 1–5),
and y is normalized final SRDEM data. In Formula (4), p is the number of bits for each
sample value, and MSE is the mean square error, as shown in Formula (5). In Formula
(6)–(8), µx, µy are the mean of x and y, respectively; σx, σy are the standard deviation of x
and y, respectively; σxy is the covariance of x and y; and c1, c2 are fixed parameters used to
maintain the stability of Formula (6), where L is the maximum value of the pixel (in this
paper, L ≈ 1, due to normalization).

We compare the different selections of Adam’s initial learning rate value
(δ = 0.01, 0.001, 0.0001) using two types of training datasets (No.1 and No.2), respec-
tively, as shown in Tables 2 and 3, where m denotes the number of training steps.

Table 2. Evaluation index of SR-DEM with different δ using No. 1 training datasets (m = 100).

Evaluation Index
Terrain Bryce

Canyon Crater Lake Great Sand
Dunes

Jackson
Hole Kilauea Sand Hills

RMSE
δ = 0.01 5.50991 8.62677 7.90989 1.35980 8.84151 2.41966
δ = 0.001 4.69826 9.04652 5.33902 1.11628 6.52938 2.07646

δ = 0.0001 4.22736 7.85174 5.20805 1.01796 5.74747 1.75736

PSNR
(dB)

δ = 0.01 64.2114 65.2327 71.8701 66.8205 64.7547 65.748
δ = 0.001 66.9796 64.4074 78.6985 70.2485 70.021 68.4052

δ = 0.0001 68.8144 66.8681 79.13 71.8502 72.2368 71.3037

SSIM
δ = 0.01 0.997758 0.998038 0.999808 0.999277 0.997903 0.998126
δ = 0.001 0.999453 0.997431 1.00022 1.00034 1.00002 0.999266

δ = 0.0001 1.00009 0.998964 1.00025 1.00063 1.00038 0.999936

Table 3. Evaluation index of SR-DEM with different δ using No. 2 training datasets (m = 500 ).

Evaluation Index
Terrain Bryce

Canyon Crater Lake Great Sand
Dunes

Jackson
Hole Kilauea Sand Hills

RMSE
(m)

δ = 0.01 4.87827 8.65312 5.22679 1.12233 5.41871 2.16812
δ = 0.001 4.75129 8.54755 5.08283 1.01830 5.35660 2.10352

δ = 0.0001 4.58169 7.74609 4.753035 0.99737 4.77073 1.98041

PSNR
(dB)

δ = 0.01 66.3266 65.1797 79.0675 70.1546 73.26 67.6548
δ = 0.001 66.7847 65.393 79.5527 71.8444 73.4602 68.1802

δ = 0.0001 67.4161 67.1034 80.7181 72.2052 75.4724 69.2279

SSIM
δ = 0.01 0.999143 0.998001 1.00023 1.00032 1.00051 0.999007
δ = 0.001 0.999393 0.99816 1.00024 1.00063 1.00051 0.999196

δ = 0.0001 0.999606 0.999054 1.00027 1.00068 1.00066 0.999496

The results show that the parameter δ is chosen as 0.0001 for both training datasets,
making the algorithm converge faster. Then, extensive experiments are conducted at the
same training steps (500) for both training datasets. The results are shown in Table 4.

Table 4. Evaluation index of SR-DEM with different types of training datasets (m = 500, δ = 0.0001).

Evaluation Index
Terrain Bryce

Canyon Crater Lake Great Sand
Dunes

Jackson
Hole Kilauea Sand Hills

RMSE
(Meter)

No.1 type 4.73405 8.93722 5.46223 1.11783 4.99111 2.14315
No.2 type 4.58169 7.74609 4.75304 0.99737 4.77073 1.98041

PSNR
(dB)

No.1 type 66.8479 64.6185 78.3022 70.2244 74.6879 67.856
No.2 type 67.4161 67.1034 80.7181 72.2052 75.4724 69.2279

SSIM
No.1 type 0.99941 0.997578 1.00021 1.00033 1.00061 0.999084
No.2 type 0.99961 0.999054 1.00027 1.00068 1.00066 0.999496
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It can be seen from Table 4 that different training datasets have different effects on
different types of landforms. Compared with the No. 1 training datasets, the training No.
2 datasets perform better, with the highest PSNR and the smallest RMSE. However, it has
the disadvantage of instability, as shown in Figure 11. When the Adam’s initial learning
rate is not that good (for example, δ = 0.01 in Figure 11), the No.2 training datasets make
the algorithm unstable. When the training steps are close to 100 steps, the cost values
become oscillating from 2.0166×10−4 (the 91st step) back to 0.02023 (the 99th step).
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When the chosen Adam’s initial learning rate δ is unsuitable, we use No. 1 training
datasets with the DA process to increase the stability and accuracy of the algorithm.
When the selected parameter δ makes the algorithm converge in an efficient way (such
as δ = 0.0001 in Table 3), the No. 2 training datasets could be chosen to reduce the
training time consumption. Thus, we choose the experiment with No. 2 training datasets
and δ = 0.0001. With the number of training steps set up as 10,000, the loss function
curves of the model in the training process are shown in Figure 12, showing that the
loss function is fast converging. During the training process, the cost goes down from
5.8823 × 10−3 to 5.2325 × 10−5. After about 400 training steps, the network finds the
distribution characteristics of the terrain by deep learning.
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5. Comparison and Analysis
5.1. Results Based on ESPCN

In this section, we use No. 2 datasets with δ = 0.0001 to generate HRDEMs. After
10,000 training steps, compared with traditional interpolation methods (bicubic, nearest-
neighbor, bilinear), the accuracy of different methods is shown in Table 5.
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Table 5. Accuracy of SR-DEM with different methods.

Evaluation Index
Terrain

Bicubic
Nearest-

Neighbor Bilinear ESPCN

PSNR
(dB)

Bryce Canyon 71.8991 72.0109 71.984 88.8061
Crater Lake 67.209 67.216 67.2109 83.3836

Great Sand Dunes 80.3492 80.5908 80.5498 87.5361
Jackson Hole 78.3517 78.2049 78.1226 80.088

Kilauea 96.5075 97.952 96.7137 91.5163
Sand Hills 76.0127 76.1237 75.9362 84.1242

SSIM

Bryce Canyon 1.00101 1.00104 1.00103 1.00138
Crater Lake 0.99942 0.999418 0.999419 1.00106

Great Sand Dunes 1.0004 1.00041 1.0004 1.00033
Jackson Hole 1.00126 1.00125 1.00125 1.0012

Kilauea 1.00095 1.00095 1.00095 1.00092
Sand Hills 1.00054 1.00054 1.00053 1.00062

RMSE
(m)

Bryce Canyon 3.53958 3.51686 3.52232 1.33745
Crater Lake 7.69915 7.69601 7.69827 3.03441

Great Sand Dunes 4.85507 4.78801 4.79932 3.21012
Jackson Hole 0.70015 0.706093 0.70945 0.63356

Kilauea 1.421371 1.30796 1.40460 1.89448
Sand Hills 1.340098 1.33156 1.34601 0.84014

According to Table 5, it can be seen that the RSPCN method performs better when
facing different terrain types than the other traditional interpolation algorithms, with
more PSNR values higher and more RMSE values smaller. As for Kilauea (shield caldera),
although the PSNR and RMSE values are not the best, those of our method are very close
to the best ones. These four methods all perform well regarding the SSIM index (close to 1).
As for the bicubic interpolation method, the PSNR and RMSE values of the Jackson Hole
DEM data perform best among the three traditional methods. As for the nearest-neighbor
interpolation method, the PSNR and RMSE values perform better except for Jackson Hole
than those of the other two traditional methods. As for the bilinear interpolation method,
its results are similar to those of the bicubic interpolation method, but it does not perform
well for Jackson Hole DEM data and Sand Hills DEM data. However, the evaluation
index values of the three traditional methods are very close to each other and only have
slight differences. The accuracy of the RSPCN model becomes higher every step during
the training process, while other traditional interpolation methods could not improve the
precision by learning. Therefore, the RSPCN algorithm has some advantages in improving
the accuracy of the DEM interpolation. The error maps of the generated SRDEMs of
different terrain types are shown in Figure 13. For each test site, the color bar scaling of
the errors is the same among different methods. From Figure 13, compared with other
methods, it can be seen that our method has smaller maximum error values except for the
Kı̄lauea terrain, which could effectively reconstruct the SRDEMs.
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5.2. Results Based on RSPCN

Based on the proposed RSPCN method in Section 3.2, we use 62× 62 LRDEMs to
build 992×992 HRDEMs by setting the magnification factor N = 4 (2N = 992

62 ). We choose
the dataset eroded plateau (Bryce Canyon, UT, USA), as shown in Figure 1. Firstly, we add
“zero” to the boundary of the 62×62 LRDEMs and generate 75×75 experimental DEMs
to generate 1200×1200 HRDEMs. After the training process, we delete the boundary and
finally obtain the 992×992 SRDEMs. The accuracy of RSCPN is shown in Table 6. After
10,000 training steps, the process of the RSPCN and the loss function curves are shown in
Figures 14 and 15.

Table 6. Accuracy of RSPCN with different methods.

Evaluation Index
Terrain PSNR

(dB) SSIM RMSE (m)

RSPCN Bryce Canyon 68.7828 1.00012 4.23506
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6. Discussion

As an important expression model of topography, DEM has been applied to the
dynamic simulation of ground surface, multi-scale modeling in geoscience, and other
related fields. The DEM interpolation method makes a prediction of the values of a primary
variable at scattered data within the same sampled area [70,71], which is an important way
to build a spatially continuous surface by DEM data.

At present, most common solutions for spatial interpolation focus on geostatistical
methods. In 1951, D.G. Krige [72] presented a linear least squares regression interpolation
method, the Kriging interpolation method. In the 1960s, Birkhoff and Garabdian [73]
proposed the two-dimensional spline function, and De Boor [74] introduced bicubic spline
interpolation. Spline interpolation could better fit the overall trend of the surface but
ignored the detailed information of the terrain. In 1964, Bengtsson and Nordbeck [75]
proposed a vector-based method, triangulated irregular network (TIN). TIN can reduce
the redundancy of flat areas and can represent topographic linear features well. The
research on TIN has not stopped [76–79]. However, TINs ignore non-linear information
and are unable to represent spatial terrain types, such as cliffs, caves or holes. In 1968,
Shepard [80] proposed the inverse distance weighting (IDW) method. IDW is simple and
fast to calculate, but it fails to incorporate the spatial structure and ignores information
beyond the neighborhood.

Among these common interpolation methods, the Kriging suite has been proven
to perform better in most of the DEM modeling with high geometric accuracy and has
become the most common method used in spatial interpolation. However, the goals of
Kriging are practically unattainable since the mean error and the variance of the errors are
always unknown [71]. Meanwhile, we use the Kriging algorithm programmed in MATLAB
software to deal with the 1000 × 1000 DEM array on the same computational environment
described in Section 4. The program exceeds the maximum array size preference in the
current computational environment. This shows that compared with our method, the
Kriging method is more computationally intensive.

Entering the 21st century, researchers also explored other theories to interpolate the
DEM. Based on the fractal geometry theory, Paramanathan P. and Uthayakumar R. [81],
Jiang P., et al. [82] and Liu L. and Wang X., et al. [83] have developed the fractal interpolation
method, which eliminates smoothing problems. However, it could be only used in regular
grid data. Based on the surface theory and differential geometry theory, Yue [71] presents
the high accuracy surface modeling (HASM) method to simulate the Earth’s surface system,
which has been proven to perform well in eco-environmental surface modeling. Based on
the deep learning theory, the “super-resolution” theory is commonly used in the image
processing field. When it comes to DEM construction, our RSPCN method presents a
deep-learning-based solution for spatial interpolation with higher accuracy than that of
the traditional linear interpolation methods. In order to express the comparison between
our method and the traditional method more intuitively, we have carried out a pixel-level
comparison, the result of which is attached as Supplementary Material. Moreover, the
paper provides a whole set of data processing steps from the preprocessing of raw terrain
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datasets to the final output. The simple codes make our method well-suited for various
data formats.

7. Conclusions

In this paper, we introduce and improve the ESPCN method. Then, based on the re-
cursion theory, we propose the recursive sub-pixel convolutional neural networks (RSPCN)
method. The experimental datasets are six archetypal landform datasets derived from
3DEP LiDAR sources, which have typical terrain characteristics, including an eroded
plateau, a volcanic caldera, active sand dunes, a braided riverbed, a shield caldera, and
stabilized sand dunes. Except for the shield caldera, the results of the SR by RSPCN are
better than the other traditional linear interpolation methods.

Our model could predict the terrain information of unmeasured points and be close
to the real terrain information with relatively high fidelity to the real terrain structures.
Compared with the traditional linear interpolation methods, the RSPCN method could
effectively learn the probability distribution characteristics of the terrain, which could better
balance the local characteristics and the overall characteristics. After extensive experiments,
except for the shield caldera terrain, our method performs better than bilinear interpolation,
bicubic interpolation, and nearest neighbor interpolation. Compared with the classic image
super-resolution method based on deep learning, SRCNN, the RSPCN method directly
processes on the sub-pixel level, decreasing the amount of computation. Compared with
the ESPCN method, the RSPCN method introduces recursive ideas to shorten the depth of
the network.

Meanwhile, we present a data preprocessing method by adding “zero” to the boundary
of input DEM data, which improves the RSPCN method’s accuracy and convergence. We
believe that this adding “zero” method provides an available data preprocessing method
in the CNN-based interpolation field. Further addressing and analyzing the effects of
the various data preprocessing methods is another focus of our future work. Finally, as
an alternative to other deep learning methods, the RSPCN method further explores the
application of deep learning models in the field of DEM modeling.
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RSPCN Recursive Sub-Pixel Convolutional Neural Networks
ESPCN Efficient Sub-Pixel Convolutional Neural Networks
DEM Digital Elevation Model
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3DEP 3D Elevation Program
ReLU Rectified Linear Unit
MSE Mean-Square Error
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