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Abstract: Studying population prediction under micro-spatiotemporal granularity is of great sig-
nificance for modern and refined urban traffic management and emergency response to disasters.
Existing population studies are mostly based on census and statistical yearbook data due to the
limitation of data collecting methods. However, with the advent of techniques in this information
age, new emerging data sources with fine granularity and large sample sizes have provided rich
materials and unique venues for population research. This article presents a new population predic-
tion model with micro-spatiotemporal granularity based on the long short-term memory (LSTM)
and cellular automata (CA) models. We aim at designing a hybrid data-driven model with good
adaptability and scalability, which can be used in more refined population prediction. We not only
try to integrate these two models, aiming to fully mine the spatiotemporal characteristics, but also
propose a method that fuses multi-source geographic data. We tested its functionality using the
data from Chongming District, Shanghai, China. The results demonstrated that, among all scenarios,
the model trained by three consecutive days (ordinary dates), with the granularity of one hour,
incorporated with road networks, achieves the best performance (0.905 as the mean absolute error)
and generalization capability.

Keywords: population distribution prediction; micro-spatiotemporal granularity; long short-term
memory (LSTM); cellular automata (CA); integrated model

1. Introduction

Population distribution prediction refers to estimating the population of a specific
geographic unit, taking into account the impact of natural geography and the socioe-
conomic environment and applying scientific methods (predictive models) to estimate
population development in another temporal period [1]. However, traditional population
prediction generally has extremely coarse spatiotemporal granularity. With the advent
of information handling techniques, new data collection methods, data processing algo-
rithms, and improvements in computing power have made population prediction with
micro-spatiotemporal granularity possible. Since ancient times, population estimation
and prediction have been essential in human society for policymaking and socioeconomic
planning, such as urban and health care planning at different administration levels. Studies
on population prediction can be traced back to the United Kingdom in 1695 [2]. After years
of exploration and efforts by mathematicians, statisticians, demographers, geographers,
and other scholars, a series of models for population prediction is proposed.

In general, population prediction models can be grouped into four categories, given
the approaches they adopt: (1) mathematical models, (2) statistical models, (3) demographic
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models, and (4) machine learning models. In the past, many mathematical models were
proposed [3,4]. Due to insufficient assumptions, however, data utilization is limited in
these mathematical models, and it is difficult to determine parameters in an objective
manner. The above constraints led to the development and application of statistical models
in population prediction. Statistical models in population prediction mainly include
regression, such as linear regression and non-linear regression models (e.g., Gompertz
models), and time series models such as the autoregressive integrated moving average
model (ARIMA) that combines differential, moving average, and autoregressive analysis.
For example, Zakria and Muhammad [5] applied this model to simulate the population
dynamics in Pakistan from 1951 to 2007, and they predicted that the country’s population
would reach 229 million by 2025. Despite more data and parameters that ultimately
improve the prediction results, statistical models often fail to consider other factors that
play significant roles in population growth, such as factors regarding societal settings and
economic influences. In comparison, demographic models such as the cohort-component
models consider not only the information of birth-rate, mortality-rate, and migration-
rate but also age-specific information, providing detailed descriptions on the population
spectrum, thus rendering more accurate results compared to pure statistical methods [6]. A
study by Stoto found that the distribution of error statistics in the US Census Bureau and
the UN’s forecast samples was relatively stable, and such information could be utilized
to predict the total population of the United States in 2000 [7]. Lee and Carter [8] used
the time series method to predict age-specific mortality in the United States between 1990
and 2065. In 1996, based on an expert’s judgment on the trends and uncertainties of future
birth rate, mortality, and migration rates in global regions, Lutz et al. [9] predicted the
demographics at global and selected regions by 2100.

Based on this study’s perspectives, all methods mentioned above can be classified
as the traditional methods because they largely rely on structured census and statistical
data from yearbooks. Moreover, their predictions tend to have coarse spatiotemporal
granularity, with yearly temporal units and coarse spatial scales (e.g., national or global).
Recently, the improvement of data collecting methods and the arrival of the Big Data era,
the development of Big Data analytics, and the increasing maturity of machine learning
have fostered new ideas in population prediction studies. For example, Reichstein et al. [10]
argued that the next-generation researches in geographic sciences should involve hybrid
models that integrate physical and machine learning models. Robinson et al. [11] trained a
Convolutional Neural Network (CNN) [12] with one-year synthetic remote sensing images
of Landsat with a grid resolution of 0.01 × 0.01 (unit: degree) to predict the US population.
Griffith et al. [13] observed the increasing popularity of fine-scale population studies and
indicated that the future prediction methods could start at the family or even the individual
level, thanks to the development of new modeling algorithms, such as agent models and
artificial neural networks (ANN).

LSTM is a variation of recurrent neural networks (RNN) first proposed by Hochreiter
and Schmidhuber in 1997 [14]. Since RNNs often experience problems of gradient vanishing
during training, such networks can only retain short-term memory. LSTM relies on a
unique set of internal mechanisms (e.g., gates and memory cells) to grant the networks
the capability of long-term memory. It has been widely adopted in handwriting [15] and
speech recognition [16]. However, we have found that this feature is particularly suitable
for expressing the irregularities within the population change. The cellular automata (CA)
with discrete states and local spatiotemporal interactions were proposed by American
mathematician Stanisław Marcin Ulam in the 1940s and were used by Von Neumann to
study the logical nature of self-replicating systems (White and Engelen, 1993) [17]. At
present, CA models are mainly used for modeling complex systems. Compared with
mathematical models, CA can simulate the evolution of natural phenomena in a more
accurate manner [18], and therefore it has been adopted in simulation studies such as
human migration, urban development, and land-use dynamics [19,20].
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This study uses mobile phone signaling data, an emerging type of population data
different from population data collected by traditional methods. Mobile phone data
enables population prediction with micro-spatiotemporal granularity, characterized by
fine-grained spatiotemporal granularity compared with traditional methods. The temporal
resolution can be as fine as hours or even minutes, and the spatial resolution can be at
a sub−1 km scale. Mobile phone signaling data have extensive spatial coverages, high
data collection frequencies, long temporal spans, and spatial grid as a regular statistical
unit. Based on the literature, extremely few methods can handle population datasets with
such spatiotemporal granularity. LSTM has the ability to solve long-term dependency
problems, given its unique design structure. Its design makes it suitable for processing
and predicting important events with long intervals and delays in time series, ideal for
investigating population dynamics. CA is a dynamic grid model with discrete time, space,
and state. Since its spatial interactions and time causality are local-focused, CA is often
adopted to simulate the process of the spatiotemporal evolution of complex systems (e.g.,
geographical environment). In addition, the concept of cells in CA is suitable to express
the spatial distribution of the population.

Although there exist some efforts that integrate LSTM and CA models [21,22], their
models lack the ability to integrate multi-source geographic information and, to our best
knowledge, no effort has been made to investigate such integration in predicting the spatial
distribution of population. In light of the background of population prediction with micro-
spatiotemporal granularity and the unique characteristics of such data, we attempt to build
a data-driven population prediction framework by integrating two basic models: LSTM
and CA.

2. Study Area and Data
2.1. Overview of the Study Area

This study uses data from Chongming District (extending 121◦09′30′′ E to 121◦54′00′′ E
and 31◦27′00′′ N to 31◦51′15′′ N), which is a municipal district in Shanghai, China. It
borders the Yangtze River to the west and the East China Sea to the east. On the northern
side, it borders Haimen City and Qidong City. Towards the south, the Chongming District
is surrounded by three other districts of Pudong, Jiading, and Baoshan (Figure 1). With
a total area of 1413 square kilometers, the Chongming District is mainly composed of
islands that include Chongming Island, Hengsha Island, and Changxing Island. Among
these, Chongming Island is the third-largest Chinese island and the world’s largest estuary
alluvial island [23].

Located at the midpoint of the Chinese coastline, Chongming District is the estuary of
the Yangtze River, the longest river in China. The terrain of Chongming Island is largely
flat, and the elevation of more than 90% of the area is between 3.21 m and 4.20 m (Wujing
Elevation). According to the 2018 Shanghai Yearbook Statistics, by the end of 2017, the
registered population in Chongming District was 675,900, including 694,600 permanent
residents and 141,900 foreign residents. In the whole district, the density of population is
586 people per square kilometer. The natural population growth rate was −0.51%. In 2017,
according to the Statistical Communique of National Economic and Social Development of
Chongming District, the per capita disposable income of all residents in the region was 5654
US dollars, and the per capita disposable income of rural residents was 3930 US dollars.
The annual GDP was 5.14 billion US dollars, of which the tertiary industries grew up more
by 12.8% over the previous year, thus making a total of 2.66 billion US dollars, equivalent
to 51.8% of the region’s GDP.
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private information, the actual data has been aggregated to 10 min as the temporal unit 
and to regular grids of 250 m by 250 m. We are not involved in the mobile phone signaling 
data collection and aggregation process, but we can confirm that the data we retrieve has 
been anonymized. This dataset collects mobile phone signaling data, precisely reflecting 
the number of mobile services, thus serving as an ideal proxy to population distribution. 
The file size is about 871 MB (MByte), with a total of 21,833,490 lines of records. The orig-
inal data is in text format, with each line storing one record and fields separated by “|” 
(Figure 2). There are four attribute fields. Table 1 presents detailed descriptions of each 
field. The longitude and latitude is the central point of the aggregated population data, 
and central point value suggests the number of people in each grid of 250 m by 250 m. 

 
Figure 2. Raw format of mobile phone signaling data. 

  

Figure 1. Location of the study area: Chongming District.

2.2. Data Characteristics

The data used in this study are mobile phone signaling data collected by China
Unicom, covering the entire Chongming District, Shanghai, with a temporal span from
27 September 2018, to 10 October 2018. As mobile phone signaling data involve sensitive
and private information, the actual data has been aggregated to 10 min as the temporal
unit and to regular grids of 250 m by 250 m. We are not involved in the mobile phone
signaling data collection and aggregation process, but we can confirm that the data we
retrieve has been anonymized. This dataset collects mobile phone signaling data, precisely
reflecting the number of mobile services, thus serving as an ideal proxy to population
distribution. The file size is about 871 MB (MByte), with a total of 21,833,490 lines of records.
The original data is in text format, with each line storing one record and fields separated by
“|” (Figure 2). There are four attribute fields. Table 1 presents detailed descriptions of each
field. The longitude and latitude is the central point of the aggregated population data,
and central point value suggests the number of people in each grid of 250 m by 250 m.
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Table 1. Field descriptions of mobile phone signaling data.

Field Meaning Format Remark

Time Counting time year/month/day/hour: minute Accurate to 10 min
Longitude Floating point number retained to six decimal places WGS-84 geographic coordinate system
Latitude Floating point number retained to six decimal places WGS-84 geographic coordinate system
Statistics Integer Mobile users in the grid

The original data contain collected time, latitude, and longitude information. Since
the integrated model requires serialization characteristics for the input data, we re-ranked
the data according to the timestamp and divided them into individual files by day. Finally,
14 text files are obtained, ranging from 27 September 2018 to 10 October 2018, sorted by
timestamp. Thus, data of different longitudes and latitudes at the same time are gathered
together. It should be noted that all data are referenced on the World Geographic Coordinate
System (WGS-84), and their spatial sampling accuracy (250 m × 250 m) is determined
during collection. Since it is difficult to determine spatial characteristics of data in text
format, we used the Geospatial Data Abstraction Library (GDAL) to convert these text
files into raster format to facilitate visual representation. Figure 3 presents the population
distribution at 12:00 p.m. on 27 September 2018 in Chongming District in a raster format.
The cell attribute indicates the number of people in each grid.
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27 September 2018.

3. Method of Model Integration
3.1. Overview of the LSTM and CA Models

In this study, the temporal period for data collection is considerably long. Compared
with classic time series models, LSTM can benefit the extraction of long-term features in the
temporal dimension and the extraction of those features in an unsupervised manner, largely
increasing its utility and generalizability. The internal structure of the neural networks is
presented in Figure 4. Xt denotes the original input in the current time step. Ct−1 and Ct
represent the memory units of the previous time step and the current time step, respectively.
Ht−1 and Ht represent the hidden state of the previous time step and the current time
step, respectively.
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As mentioned above, to mitigate the problem of short-term memory, LSTM constructs
a special structure inside the networks with memory cells, which can pass the information
along the sequence, and the structure can be understood as the “memory” of the networks.
It includes three gates: forget gate, input gate, and output gate.

Given time step t, the calculating process of the forget gate, input gate, and output
gate can be presented as follows:

ft = σ
(

xtWx f + ht−1Wh f + b f

)
(1)

it = σ(xtWxi + ht−1Whi + bi) (2)

ot = σ(xtWxo + ht−1Who + bo) (3)

where ft, it, ot ∈ Rn∗h (n is the number of samples and h is the number of hidden units)
are forget gate, input gate, and output gate, respectively. The current time step xt ∈ Rn∗d

(d is the number of features) is the input, and the hidden state of the previous time
step is ht−1 ∈ Rn∗h. Wx f , Wxi, Wxo ∈ Rd∗h and Wh f , Whi, Who ∈ Rh∗h are the weights.
b f , bi, bo ∈ R1∗h denote the bias parameters.

At time step t, the candidate memory cell C̃t ∈ Rn∗h is calculated as:

C̃t = tanh(xtWxc + ht−1Whc + bc) (4)

where Wxc ∈ Rd∗h and Whc ∈ Rh∗h are the weights of the parameters, and bc ∈ R1∗h is the
bias parameter. The update of the memory cells is based on the memory cells passed in the
previous time step. The combination of the forget gate, and the input gate is able to control
the flow of internal information:

Ct = ftCt−1 + itC̃t (5)

where the forget gate ft determines how much information is retained in the memory
cell Ct−1 ∈ Rn∗h, and the input gate it determines how much information is added in the
candidate memory cell C̃t.

The hidden state is realized by controlling the flow of internal information of the
memory cell through the output gate. The calculating process of the hidden state is
as follows:

ht = ot ∗ tanh(Ct) (6)

With the gates mentioned above, LSTM can effectively extract long-term temporal
patterns in mobile phone signaling data.
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A CA system contains four basic elements: cells, states, neighborhoods, and conver-
sion rules. Cells are the basic objects (or units) of a CA system. Space formed by all cells is
called cell space. States of cells (generally discrete) have different choices based on different
scenarios. However, the population data in this study are continuous. Conversion rules
act on local scopes, and neighboring cells need to be defined to form neighborhoods. The
conversion rule is a function that determines the state of the next moment according to the
current state of the cell and the states of the neighboring cells. Therefore, this study aims to
determine the neighborhood and extract the conversion rules effectively.

3.2. Model Integration

The integrated model we proposed is a data-driven model that can adapt to the
spatiotemporal characteristics of mobile phone signaling data. Due to the high frequency
and long acquisition period, classic time series methods such as ARIMA may not be
feasible, as they cannot analyze multi-dimensional data and require stationary data or
stationary after differentiating. LSTM benefits the extraction of both short-term and long-
term temporal features. In addition, the population data is collected at the grid level, similar
to the concept of cells in CA. Moreover, the neighborhood and extraction algorithms of
conversion rules in CA have good scalability. Therefore, we integrate these two models to
build a population prediction model with a micro-spatiotemporal granularity that can fully
adapt to the characteristics of mobile phone signaling data. In the process of integrating
LSTM and CA models, we consider two main aspects. First, we need to take advantage of
the respective advantages of LSTM in sequence data and CA in spatial simulation. Second,
we need to ensure the generalizability of the model.

From a macro perspective, a CA model is the upper-level framework of the integrated
model, which defines the interaction between the cells in the simulation space through
varying definitions of neighborhoods. The LSTM can be seen as an underlying algorithm
for automatically extracting conversion rules in CA. In this study, LSTM is able to handle
sequential data with the input of a three-dimensional tensor that includes samples (cor-
responding to the grids), timesteps, and features. Relying on the upper-level CA model,
features can incorporate geographical information from various neighboring scenarios.
The output of the CA-LSTM-integrated model is a two-dimensional tensor that includes
samples (grids) and the corresponding population counts (in this study, mobile user counts).
In this integration framework, CA and LSTM, respectively, handle information from spatial
and temporal perspectives. Their integration benefits efficient spatiotemporal data fusion
that leads to accurate population prediction. Specifically, there are two considerations: one
is to use the cells in the CA to represent the grid. Different definitions of the neighborhood
can incorporate more spatial information into the model. The second is to take advantage
of the unique mechanism of LSTM for extracting complex time series features in population
data. Figure 5 presents the schematic diagram of the integration between LSTM and CA.

In Figure 5, X denotes the original input while X′ denotes the model input after
temporal selection and neighborhood construction. Different uses of t represent different
timestamps. Ct−1, Ct, Ht−1, and Ht are the intermediate input and output of the LSTM unit
during the training process, and y represents the model output.

In general, the integrated model first selects the time series of the original data, then
builds features in the attribute dimension according to the definition of the neighborhood
in CA. Further, structurally transformed data are fed into the LSTM for training. The
calculation at each time step generates new memory cells and hidden states. At the end of
the entire training process, LSTM learns a set of parameters inside the model that can be
used for later predictions.
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Another consideration of this model integration is whether the model itself is with
sufficient scalability and universality. The structural requirements of the integrated model
for the input data are three-dimensional tensors with the form of sample, timestep, and
feature, where the timestep corresponds to the information on the time series, and the
feature corresponds to the definition of the neighborhood in the CA. The training of
the integrated model is data-driven, and the information in the temporal and spatial
dimensions is implicit in the input data. As no additional controls are required besides the
adjustment of input data, the integrated model is with strong scalability and generalizability.
In addition, given that internal parameters are with acceptable initialization settings,
manual adjustments are not required, which demonstrates the robustness and automaticity
of the proposed model.

3.3. Spatial Extension

The spatial extension of the model in this paper is achieved via the perspective of
neighborhood construction. In the experiment, we select three different neighborhoods: the
special neighborhood of the central cell, the Moore neighborhood (R = 1), and the extended
Moore neighborhood (R = 1) by extracting cell weights based on road networks.

The first neighborhood construction is relatively simple, that is, the choice of the
central cell while ignoring its neighborhoods. The Moore neighborhood (R = 1) is a classic
method of defining neighborhood, as shown in Figure 6.
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The combination of the Moore neighborhood (R = 1) and algorithm for extracting cell
weights based on road networks is another way to build neighborhoods. This paper draws
on the idea of “decay neighborhood with distance” [24–26] from the previous studies and
uses data of road networks to ensure that proper spatial information is considered. Figure 7
presents the road networks in Chongming District.
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The method of constructing neighborhoods from road networks is based on the
assumption that population movements are affected by surrounding areas of interest (such
as roads, tourist areas, etc.). With the consideration of road elements, people are with a
tendency to move towards the road in a random state, as the cells closer to the road have a
greater impact on the central cell. To ensure that the total impact weight of all cells is 1, the
weights are normalized via the following formula:

Wi =
e−Di

e∑9
j=1 −Dj

(7)

where Wi represents the weight of the i-th cell, and Di represents the distance of the i-th cell
from the nearest road. Given the distance to the nearest road, the weights are first calculated
considering an exponential decaying effect, then normalized after the summation.

With the use of the Moore neighborhood (R = 1), road data are integrated into the
model, as cell weights of the neighborhood are calculated based on the road network. Such
information affects the extraction of spatial features during model training.

4. Experiments and Results

In the first experiment, we selected the central cell without considering its neigh-
borhood. Since the period of the data covers the Chinese National Day (1 October) and
ordinary dates, the training was conducted separately to investigate the heterogeneity in
the temporal pattern of population changes. In addition, the minimum time granularity of
the data (10 min) and different time granularities (i.e., 1 h) were used to show the impact on
the generalization effect of the different models. We also considered combining data from
multiple days to reveal the longer-term characteristics in the time series. An additional
experiment was conducted by applying extended neighborhoods that aim to include spatial
information in the model. Figure 8 presents the specific training method.
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In total, we trained six models, in which the first four models were constructed based
on a single temporal dimension, and the other two were composite models that integrated
spatiotemporal perspectives. For purposes of evaluating the generalization effect of the
model, we used two evaluation methods: an absolute evaluation and a relative evaluation.
The absolute evaluation applies the mean absolute error (MAE) as the evaluation metric:

J(yi, f (xi; θ)) =
1
n

n

∑
i=1
|yi − f (xi; θ)| (8)

where yi is the true value, θ is the training weights, and f (xi; θ) is the model output.
Relative evaluation is a baseline assessment. Before training the model, an ideal

model based on common sense as a reasonable reference point was established. After
comparing the trained model with the baseline model, the relative quality of the model
can be judged. Since our research problem targets time series population prediction, the
simplest model assumption is that the predicted results at the current time step in the test
set are the same as the value at the same time in the training set. In this study, the division of
training set and testing set is unique, given the fact that our model has spatial and temporal
dependencies. Therefore, unlike the traditional method of splitting the dataset in a fixed
ratio, we train with data for a period of time and predict with data for another period of
time. All implementations in this study are completed via Python programming language,
specifically using TensorFlow and Keras libraries. In this study, the hyperparameters for
all models are the same. We use RELU as the activation function with the Adam algorithm
as the optimizer (default setting).

4.1. Time Dimension

Neural network training requires a balance between optimization and generalization.
One of the focuses of this study is to improve the generalizability of the model, as the
application of population prediction models requires a certain degree of robustness. Since
neural networks have a strong ability in data fitting, the problem of overfitting often occurs
during training. We added an L2 regular term to the loss function when designing the
model to solve this problem. Another possible solution is to perform manual adjustment
by regulating the number of learning parameters. The number of learning parameters
determines the number of features that a model can learn, and the larger the number, the
more complex the model. A small number of parameters can lead to underfitting, while
a high number can lead to overfitting, which greatly affects the model’s generalization
ability. Therefore, the adjustment of hyperparameters in studies should primarily target this
parameter. Despite that, there are many hyperparameters in the deep learning framework
(e.g., batch size and epoch); only the number of learning parameters remained adjustable
in this experiment with other hyperparameters fixed to ensure comparability in this study.

Four models were trained, respectively, using 1 h granularity data on 27 September
2018 (Model 1), 1 h granularity data on 1 October 2018 (Model 2), 10 min granularity
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data on 27 September 2018 (Model 3), and 1 h granularity data on 27–29 September 2018
(Model 4). The numbers of best learning parameters are, respectively, set as 10, 10, 18, and
22. The baseline errors are 1.245, 1.636, 1.245, and 1.871, respectively. The generalization
performance on the test set is shown in Tables 2–5. Figure 9 presents the generalization
error plot of the four models on the test set. Baseline error is calculated from baseline
assessment, and the test error is derived from the prediction of the trained model.

Table 2. Errors on the entire test set of the 10-parameter model by 1 h granularity on 27 September
2018 (Model 1).

Date Baseline Error Test Error

28 September 2018 1.245 1.161
29 September 2018 1.459 1.122
30 September 2018 2.31 1.161

1 October 2018 6.141 1.174
2 October 2018 6.587 1.229
3 October 2018 6.73 1.27
4 October 2018 6.626 1.314
5 October 2018 6.022 1.131
6 October 2018 5.478 1.187
7 October 2018 5.289 1.371

Table 3. Errors on the entire test set of the 10-parameter model by 1 h granularity on 1 October 2018
(Model 2).

Date Baseline Error Test Error

27 September 2018 6.141 1.216
28 September 2018 6.104 1.202
29 September 2018 5.901 1.168
30 September 2018 5.177 1.176

2 October 2018 1.636 1.286
3 October 2018 1.949 1.334
4 October 2018 2.076 1.369
5 October 2018 1.97 1.138
6 October 2018 2.393 1.102
7 October 2018 3.107 1.21

Table 4. Errors on the entire test set of the 18-parameter model by 10 min granularity
27 September 2018 (Model 3).

Date Baseline Error Test Error

28 September 2018 1.245 0.902
29 September 2018 1.459 0.997
30 September 2018 2.31 1.214

1 October 2018 6.141 2.034
2 October 2018 6.587 2.215
3 October 2018 6.73 2.42
4 October 2018 6.626 2.359
5 October 2018 6.022 2.136
6 October 2018 5.478 2.133
7 October 2018 5.289 1.92
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Table 5. Errors on the entire test set of the 22-parameter model by 1 h granularity during
29 September 2018–27 September 2019 (Model 4).

Date Baseline Error Test Error

30 September 2018 1.871 0.963
1 October 2018 5.901 0.956
2 October 2018 6.325 0.992
3 October 2018 6.439 1.04
4 October 2018 6.351 1.134
5 October 2018 5.749 0.982
6 October 2018 5.273 0.919
7 October 2018 5.166 0.961
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According to Figure 9, it is observed that with an increase in the amount of data and
the decrease in time granularity, the number of optimal learning parameters of the model
increases, suggesting that the model needs more parameters to express such characteristics
in the time dimension. When comparing Model 1 and Model 2, we found that there exists a
certain periodic feature in the single-day population data, and the expression of this feature
on the normal date and the National Day is different. Despite such discrepancies, the
similarity of changes in population dynamics during one day is notable. We also observed
that this rule performs better on data of ordinary dates. When comparing Model 1 and
Model 3, we found that a small time granularity does not necessarily perform better. The
generalization error of the data at 1 h granularity is lower than that of the data at 10 min. As
in certain occasions, specific characteristics exist under a specific granularity. Sometimes,
data with a fine time granularity may lose key features. In addition, even random data can
express certain correlations, as some scholars have found that some correlations can be
found even for data with complete noises [21]. When comparing Model 1 and Model 4,
we found that the multi-day data generally contain richer information and have hidden
features on the long-term sequence. Given its great performance, the subsequent model
training is based on Model 4.
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4.2. Spatiotemporal Dimension

The above four models only consider a single time dimension and do not adopt the
concept of neighborhood. In this experiment, we incorporate spatial attribute information
into the model from two perspectives: (1) the classic Moore neighborhood (R = 1) (Model 5),
and (2) the extended Moore neighborhood (R = 1) combined with extracting cell weights
based on road networks (Model 6). The best learning parameters are set as 30 and 35,
respectively, and the baseline errors are both 1.871. The generalization errors on the test set
are shown in Tables 6 and 7. Figure 10 presents the errors for all six models.

Table 6. Errors on the entire test set of the 30-parameter model by 1 h granularity and Moore
neighborhood 29 September 2018–27 September 2019 (Model 5).

Date Baseline Error Test Error

30 September 2018 1.871 0.922
1 October 2018 5.901 0.935
2 October 2018 6.325 0.96
3 October 2018 6.439 0.978
4 October 2018 6.351 1.06
5 October 2018 5.749 0.906
6 October 2018 5.273 0.845
7 October 2018 5.166 0.931

Table 7. Errors on the entire test set of a 35-parameter model by 1 h granularity and extended
neighborhood 29 September 2018–27 September 2019 (Model 6).

Date Baseline Error Test Error

30 September 2018 1.871 0.874
1 October 2018 5.901 0.899
2 October 2018 6.325 0.909
3 October 2018 6.439 0.947
4 October 2018 6.351 1.048
5 October 2018 5.749 0.882
6 October 2018 5.273 0.813
7 October 2018 5.166 0.867
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We observed that the quality of the models is further improved with the consideration
of spatial information. The spatial assumption of the Moore neighborhood is spatially
contiguous, which limits model performance to a certain degree. In comparison, Model 6
fuses road network information, allowing more detailed spatial information to be intro-
duced into the model, thereby further improving the quality of the model. However, the
introduction of road network information leads to increased model complexity.

5. Discussion

Population distribution prediction has always been a hot research topic in geogra-
phy and other spatial science-related fields. Better population distribution knowledge
is expected to benefit a wide range of domains that include smart cities [27], regional
planning [28,29], transportation management [29], and disaster mitigation [30], to list a
few. After reviewing traditional population distribution prediction models, we notice that
traditional methods, largely relying on the structured census, tend to have coarse spa-
tiotemporal granularity. In recent years, the advances in information handing techniques,
the introduction of data processing approaches, and improved computational power led to
the popularity of population distribution prediction with fine spatiotemporal granularity.
Entering the Big Data era, scholars start to resort to machine learning and automated
algorithms, aiming to address the challenges in fine-scale population modeling studies.

LSTM and CA are popular approaches that, respectively, address temporal and spatial
problems. Given its design, LSTM is featured by its capability in predicting events with
long intervals and delays in time series, making it an ideal algorithm for population distri-
bution prediction. On the other hand, CA has the capability of simulating spatiotemporal
evolutions. The unique features from LSTM and CA motivate us to think about their
potential integration, with CA as the upper-level framework and LSTM as the underlying
algorithm to derive the conversion rules. Taking advantage of the mobile phone signaling
data collected by China Unicom, we test the proposed CA-LSTM-integrated model in
predicting the population distribution in Chongming District, Shanghai by setting different
time granularity, timesteps, and neighboring scenarios. The results suggested that models
with finer time granularity do not guarantee better performance, as data separated by
finer granularity may lose key features, posing challenges for the models when they are
making the prediction. We also notice that an increase in data put benefits the accuracy of
the prediction, which is expected because deep learning models rely on data to establish
a robust mapping between the input and the output. As for neighboring scenarios, we
notice that models that consider spatial information outperform models that do not, which
proves the important role of spatial dependency in population distribution prediction.
In addition, we observe that models that consider spatial information characterized by
road networks outperform models that consider spatial information characterized by the
Moore neighborhood (spatially contiguous). This result points to the fact that population
dynamics are more intertwined with road network settings than spatial closeness. Further
efforts can be made to involve other spatial scenarios in population distribution prediction,
aiming to better capture the factors that drive population movement.

Unfortunately, the mobile phone signaling data we have only lasted 14 days, which, to
some degree, limits our investigation. In addition, cellphone counts only capture a certain
spectrum of the population, while people who do not have access to mobile devices or
who do not carry devices outside are underrepresented. In our future work, we plan to
explore the capability of the proposed model in handling a longer time period and include
different time granularities. In addition, the performance of different granularities needs to
be tested with more case studies. We also intend to integrate more geographic information
to investigate the potential improvement of the model’s performance.

6. Conclusions

Although there exist some efforts that integrate LSTM and CA models, their models
lack the ability to integrate multi-source geographic information and, to our best knowl-
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edge, no effort has been made to investigate such integration in predicting the spatial
distribution of population. Taking mobile phone signaling data as input and Chongming
District of China as the study case, we proposed a model that integrates LSTM and CA to
extract population dynamics from spatiotemporal dimensions. The integrated model is
constructed in an unsupervised manner with great scalability and the capability of fusing
multi-source geographic data. We also applied different time granularities and varying
methods of spatial neighborhoods.

Despite the great performance of the proposed model, challenges still remain. In this
case study, we observed that the generalization abilities of trained models differ greatly,
indicating that the training methods should be dependent on different research data types
and scenarios. That is to say, different training data can lead to different best parameter
settings. The internal parameters of the model should be adjusted appropriately in order
to achieve optimal performance. The best model obtained in this paper is based on the
training data of the extended Moore neighborhood (R = 1), combined with three-day
ordinary dates, one-hour granularity, and extracting cell weights from road networks. The
calculated testing error (MAE) for all cells is 0.905. The generality and robustness of the
integrated model can be further improved by including more data sources. Benefiting
from the proposed method of neighborhood construction, other data sources can be easily
incorporated into our proposed model.
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