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Abstract: Analyzing rice yields and multidimensional environmental factors at a fine scale facilitates
the discovery of the planting environment patterns that guide the spatial layout of rice produc-
tion. This study uses Pucheng County, Fujian Province, a demonstration county of China Good
Grains and Oils, as the research area. Using actual rice yield sample data and environment data,
a yield simulation model based on random forest regression is constructed to realize a fine-scale
simulation of rice yield and its spatial distribution pattern in Pucheng County. On this basis, we
construct a method system to identify spatial combination patterns between rice yields and fine-
scale multidimensional environmental planting suitability using rice yield data and environmental
planting suitability evaluation data. We categorize the areas into four combination model areas to
analyze the spatial correlation model of planting suitability, multidimensional environment, and
yield: higher-yield and higher-suitability cluster–comprehensive environmental-advantage areas,
high-yield and high-suitability cluster–soil condition-limited areas, moderate-yield and moderate-
suitability cluster–irrigation and drainage condition-limited areas, and low-yield and low-suitability
cluster–site condition-limited areas. The following results are found. (1) The rice yield simulation
model, which is based on random forest regression, considers the various complex relationships
between yield and natural as well as human factors to realize the refined simulation of rice yields
at a county scale. (2) The county rice yield has a strong positive spatial correlation, and the spatial
clustering characteristics are obvious; these relationships can provide a basis for effectively imple-
menting intensive rice planting in Pucheng County. (3) We construct a spatial combination pattern
recognition method based on rice yield and environmental planting suitability. We can use this
method to effectively identify the spatial relationship between yield and planting suitability as well
as the shortcomings and advantages of different regions in terms of the climate, soil, irrigation,
site, mechanical farming, and similar factors. On this basis, we can provide regional rice planting
guidance for Pucheng County. In addition, this method system also provides a new perspective and
method for research into spatial combination models and related spatial issues.

Keywords: GIS; rice yield simulation; multidimensional environment; cluster analysis; spatial
pattern recognition

1. Introduction

Rice is currently one of the most popular food crops worldwide, and its planting
environment significantly affects its quality and yield. Evaluation of the rice-planting
environment is important to effectively utilize regional environmental resources, explore
arable land, and achieve large yields of high-quality rice [1]. The spatial distribution of
the crop-planting environment provides an important decision-making basis for adjusting
agricultural planting strategies. Identifying agricultural planting environmental patterns
can improve the natural and human–environmental resources and promote sustainable
agricultural development [2].
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Rice yields are affected by natural environmental factors such as soil, topography,
climate, farmland management, agricultural mechanization, and other artificial environ-
mental factors [3–5]. Due to the large workload and slow speed of traditional on-site
sampling survey methods [6], sampling point data can be obtained from only some fields.
Methods for high-precision simulation of rice yields that combine this rice yield data with
environmental factor data have become a research hotspot. Existing research indicates that
the relationship between rice yield and environmental factors is complicated [7–9]. There-
fore, using a single model to simulate a regional rice yield cannot accurately determine the
relationship between rice yield and environmental factors, and the model’s simulated rice
yield may be unstable when there are many changing environmental factors. Therefore,
when comparing the accuracy and fit of different rice yield simulation models, choosing a
high-precision rice yield simulation model with a better fit would make it possible to obtain
yield data for an entire region using the rice yield data from the sampling points. Such a
model would provide researchers with a method for obtaining high-precision prediction
data with minimal time and economic cost.

Analyzing the spatial relationship between yield and multidimensional environmental
factors and then exploring effective strategies can achieve the rice yield–environment dual
goal of rice production spatial pattern. These patterns can support decision making that
optimizes the rice production structure and the quality of agricultural development [10].
Most existing research on the spatial relationship between rice yield and environmental
factors focuses on natural factors, such as climate and soil, or other factors, such as crop
models [11–13]. There is little comprehensive analysis of the impact of natural factors
and human factors. Human factors include accessibility to cultivated land, irrigation, and
drainage, and the feasibility of mechanization. Most of the available research considers
whether environmental factors impact yield [14–16] and the mechanism of effect [17–20],
while research on the identification and analysis of the spatial combination pattern between
yield and environmental factors is relatively lacking. The scale of most studies has been
at the macro level, examining an entire country and its provinces [21–23]; relatively few
related studies consider mining a combined model that includes crop yield and the planting
environment at the micro level with the county as the regional unit.

This study uses Pucheng County, Fujian Province, as the research area. Firstly, rice
yield simulation models are constructed based on a geographically weighted regression
model, multilayer perceptron model, and random forest regression model. After com-
paring the three models, random forest is ultimately selected for this study due to its
relatively high simulation accuracy, low mean absolute error, and low root mean square
error. The random forest model simulates a refined spatial rice yield distribution on the
county’s arable land. Secondly, based on the rice yield simulation data and the multidi-
mensional environmental rice planting suitability evaluation results, the local Moran’s I
index is chosen to analyze the rice yield separately; in addition, k-means clustering and
variance analysis are used to identify the spatial combination pattern of rice yield and
environmental planting suitability. Finally, on this basis, we find obstacles in the model and
propose corresponding countermeasures and suggestions that take advantage of regional
environmental resources and optimize the grain-planting structure and industrial layout.

The remainder of this paper is structured as follows. Section 2 introduces the datasets
and methods used in this study. Section 3 presents the results and analysis. Section 4
provides a discussion. Finally, a summary of the conclusions is presented in Section 5.

2. Materials and Methods
2.1. Study Area

Pucheng County is under the jurisdiction of Nanping City, Fujian Province and is lo-
cated in the province’s northernmost region. Its geographical position is between 118◦11′ E
and 118◦49′ E and between 27◦32′ N and 28◦22′ N (Figure 1). Pucheng County is a China
Good Grain and Oil demonstration county, and it is the largest grain-producing area in
Fujian Province [24]. It is in a mountainous and hilly area with a significant temperature dif-
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ference between day and night. The county’s annual average sunshine hours is 1893 h, the
annual average temperature ranges from 13.3 to 18.0 ◦C, the total accumulated temperature
is 6391.5 ◦C, the ≥10 ◦C accumulated temperature ranges from 4500 to 5300 ◦C, the annual
average precipitation is 1100–2400 mm, and the distribution of cultivated land in the county
is generally 200–500 m above sea level. The total area of Pucheng County is 3374.7 km2, of
which the total area of cultivated area accounts for about 11.87%. The soil types in Pucheng
County vary with altitude, and most of the river valley basins at an altitude of 168–300 m
are paddy soil. Paddy soil is the primary cultivated soil in Pucheng County, accounting for
99.37% of the county’s total cultivated area [25]. The natural environmental advantages
and resources in Pucheng County have given it a reputation as the “North Fujian Granary”.
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Figure 1. Location of the study area.

2.2. Introduction to Data Sources

The data used in this study include actual rice yield sample data and a multidimen-
sional environmental rice planting suitability evaluation dataset. The specific data sources
are as follows:

Actual rice yield sample data: The actual rice yield sample data came from the
Department of Agriculture and Natural Resources of Pucheng County, which ensures
the reliability of the data. We use an average value of 571 rice yield samples in Pucheng
County from 2010 to 2018. We spatialize the actual rice yield sample data to obtain rice
yield vector data.

Multidimensional environmental rice planting suitability evaluation dataset: These
data are derived from Xingfeng Wang’s research results [26]. This study constructed a
raster dataset of rice planting environmental suitability evaluation indicators with the
spatial resolution of 5 m. The dataset contains environmental indicator data (Table 1) as
well as the corresponding planting suitability values, where the planting suitability value
ranges from 0 to 100. We use GIS software to assign planting suitability values to the
corresponding plots to obtain rice planting suitability evaluation vector data. Figure 2
shows the distribution of rice planting suitability values in Pucheng County.
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Table 1. Multidimensional environmental index dataset *.

Dimension Index

Multidimensional
environmental index

soil conditions

pH
soil texture

organic matter
total nitrogen

total potassium
available potassium

available phosphorus
alkali-hydrolyzable nitrogen

site conditions

altitude
slope
aspect

topsoil thickness

climate conditions

annual average temperature
annual sunshine duration
≥10 ◦C accumulated

temperature

irrigation and drainage conditions irrigation conditions
drainage conditions

mechanical farming conditions
field size

field regularity
accessibility to cultivated land

* Data accuracy: 5 m × 5 m.
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Figure 2. Results of rice planting suitability evaluation in Pucheng County.

This dataset is based on the principles of regionality, dominance, intra-county differ-
ences, and relative stability [27], which is combined with expert experience as well as select
soil conditions (pH, soil texture, organic matter, total nitrogen, total potassium, available
potassium, available phosphorus, alkali-hydrolyzable nitrogen), site conditions (altitude,
slope, aspect, and topsoil thickness), irrigation and drainage conditions (irrigation condi-
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tions and drainage conditions), climate conditions (annual average temperature, annual
sunshine duration and ≥10 ◦C accumulated temperature), and mechanical farming condi-
tions (field size, field regularity, and accessibility to cultivated land), totaling 20 indicators
in 5 categories. These indicators construct an evaluation index system for rice planting
suitability in Pucheng County.

The suitability value described above is based on the calculated weight of each evalu-
ation index, where each index’s weight is multiplied by the level experience score of the
corresponding index, and the suitability of each sample is accumulated. The formula for
the rice planting suitability evaluation model is expressed as:

SV = ∑n
i=1 Wi × Pi , (1)

where SV is the rice planting suitability value, Wi represents the weight of environmental
indicators, and Pi represents the experience score of multidimensional environmental
indicators [26].

In the dataset, the meteorological data originate from the average value of data from
1989 to 2018 of the China Meteorological Data Network (http://data.cma.cn/ (accessed on
2 January 2021)). The sampling data of the cultivated land fertility survey, soil testing, and
formula fertilization pilot data are from the average value of the corresponding data from
the Pucheng County Agricultural Department from 2010 to 2018. The road vector data and
DEM data are from the Pucheng County Natural Resources Department.

The multidimensional environmental indicator data in this dataset provide support
for the rice yield simulation, and the planting suitability value provides environmental
suitability values that contribute to the combined analysis of rice yield and planting
suitability in this study.

2.3. Research Process and Methods

Figure 3 presents the overall framework of our study. First, based on the multidi-
mensional environmental rice planting suitability evaluation raster dataset and actual rice
yield sample vector data, a geographically weighted regression (GWR) model, a multilayer
perceptron (MLP) model, and a random forest regression (RFR) model were used to con-
struct rice yield simulation models. Through testing, the optimal model was selected by
examining the simulation results from the three models to determine the rice yield spatial
distribution at a fine scale. Then, Moran’s I index was used to analyze the rice yield’s
spatial clustering characteristics. K-means clustering and variance analysis were used to
analyze the spatial combination pattern between the rice yield and environmental planting
suitability; then, we searched for obstacles in the planting environment and identified
the spatial model that appropriately combines the rice yield and environmental planting
suitability. Finally, we put forward corresponding countermeasures and suggestions.

2.3.1. Simulation Model of Rice Yield Spatial Distribution

Based on the GWR, MLP, and RFR models, three rice yield spatial distribution simula-
tion models were constructed in this study. First, we cleaned and normalized the original
data. Then, the 571 sets of measured rice output vector data and the environmental factor
data were used as the training set, and finally, the optimal model was selected to simulate
the spatial distribution of Pucheng County’s rice output data.

(1) GWR Model

A GWR [28,29] adds the data’s spatial coordinates to the model and uses the observed
values from adjacent areas in the sample data to fit the regression parameters of the local
area. When the spatial coordinates of the authority domain change, these parameters
change accordingly. While the ordinary least squares regression model (OLS) uses global
data to estimate parameters [30], the GWR model extends the OLS model.

http://data.cma.cn/
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The structure of the GWR model is as follows:

yi = β0(ui, vi) + ∑k βk(ui, vi)xik + εi, (2)

where y is an n× 1-dimensional rice yield simulation value, βk(ui, vi) represents the regres-
sion coefficient of multidimensional environmental factor variable k at regression point i,
x is an n × k-dimensional matrix of environmental factor variables, (ui, vi) represents the
spatial coordinates of the i-th sample point, and ε is an n× 1-dimensional vector.
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In this study, GWR4 software was used to perform geographically weighted regres-
sion. During the modeling process, the traditional geographic weighted regression model
is selected as the model parameter, that is, the Gaussian function is selected as the weight
function. The adaptive Gaussian was used as the kernel function for calculating geographic
weights, the interval search method is used to generate a series of bandwidths, and cor-
rected Akaike information criterion (AICc) was used as the criterion for judging the pros
and cons, and then, the model was solved. After multiple geographically weighted regres-
sions, the best bandwidth, which minimizes the AICc value and demonstrates the best
performance, was finally obtained. That is, the best bandwidth (the number of neighbors)
was 59, and its AICc value was 9818.182. After adjustment, R2 was 0.526.

(2) MLP Model

An MLP [31,32], a common artificial neural network model, is composed of an input
layer, a hidden layer, and an output layer. In this paper, the MLP model uses only one
hidden layer. The MLP process is supervised, and the model is trained by continuously
inputting and outputting complete data. This mode establishes the best-fitting model
between the input and output layers through continuously training and learning the
sample data; finally, it uses the model that maximizes the fit for the simulation. The specific
modeling steps are as follows:
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• Take the rice yield of the measured sample point as the dependent variable, use the
normalized data of 20 environmental impact factors as covariates, and use the partition
variables to allocate the training set and test set data.

• The system structure is automatically selected, the minimum number of units in the
hidden layer is set to one, the maximum number of units is set to 50, and Softmax is
selected as the activation function.

• The model is trained with the training set data, and a simulation model is established.
• The test set data tests the model’s simulation ability.

This paper used SPSS software to build a multilayer perceptron simulation model.
In the process of model training, after many adjustments, it was found that 70% of the
571 sets were used as simulation set data. The remaining 30% of the sample data was used
to test the model’s simulation ability, and the effect of the obtained rice yield simulation
model is the best.

(3) RFR Model

RFR obtains a more accurate result than the other models [33,34]. Breiman [35]
proposed that a random forest is a combination of tree predictors. The RFR method is a
random combination of multiple classification and regression trees that uses the calculated
results of each regression tree to comprehensively define the output results. The model-
building steps are as follows:

• The data are used as the sample dataset for RFR. Bootstrap is repeatedly used to ran-
domly select a certain number of subsamples from the dataset. After each subsample
is randomly selected, it is put back into the total sample.

• When generating a decision tree, an environmental factor feature variable is randomly
selected from the multidimensional environmental factor dataset and designated
the split feature set. Then, the mean square error is used to select each node in the
decision tree.

• The extracted subsample sets are used to build classification regression trees. The
decision tree is allowed to grow freely without pruning. Due to the random nature of
the RFR model, the classification and regression trees will not appear to fit.

• Calculate the weighted average of the output results of the independent and equally
important decision trees as the value of the rice yield simulation result for the
RFR model.

This study used the RandomForestRegressor package in Python to simulate the spatial
distribution of rice production in Pucheng County. A certain proportion of sample data
were randomly selected from the training data set as the training set samples. After testing,
the model simulation ability was the best when the training set samples were divided
into 469 groups. During the modeling process, all environmental factor data were used as
characteristic variable sets, and the rice yield was used as the simulation target variable
when constructing the model. After repeated training and testing, and based on historical
experience and test results, the number of decision trees in the random forest regression
simulation model was set to 100, and the number of multi-dimensional environmental
factor features was set to 17; that is, the model used 100 decision trees and 17 feature
variables. An additional 102 groups of data were used as test set samples to test the model’s
simulation accuracy.

2.3.2. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis is based on Tobler’s first law of geography [36,37], in
which the correlation of a specific variable is analyzed at different locations. It encompasses
global and local autocorrelation analysis [38]. In this study, local autocorrelation was used
to explore the spatial distribution patterns of the rice yield in Pucheng County. Moran’s I is
calculated as follows:

I =
∑n

i=1 ∑n
j=1 Wij(xi − x)

(
xj − x

)
S2S0

(3)
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where xi is the rice yield, {xi} is the attribute value in position i, x = 1
n ∑n

i=1 xi indicates
the average value of the rice yield, S2 = 1

n ∑n
i=1(xi − x)2 represents the variance of the rice

yield, S0 = ∑n
i=1 ∑n

j=1 Wij represents the sum of the spatial weights of all rice yields in the
region, n is the total number of rice production samples, and Wij is an element in the spatial
weight matrix W, which refers to the spatial weight between location i and j. We set Wij = 1
if the space unit i and j are adjacent, and otherwise, Wij = 0.

The key to calculating Moran’s I index is the spatial weight matrix of all variables in
the region. The calculated result of the spatial weight matrix varies with the variable’s
adjacency rule algorithm at different spatial positions [39]. The adjacent relationship refers
to assigning a spatial weight value according to whether the spatial units are adjacent to
each other. If they are adjacent, Wij = 1, and otherwise, Wij = 0. The distance relationship
refers to the preset distance threshold L. If the space unit is adjacent and the distance is less
than or equal to L, Wij = 1, and otherwise, Wij = 0. The nearest K point relationship refers
to setting the number of adjacent units or units closest to the space unit as K (the distance
between the space units is not considered); if it belongs to one of the sets of K-adjacent
or similar spatial units, Wij = 1, and otherwise, Wij = 0. Considering the applications of
different spatial weight matrices and the data in this paper, the study chose the nearest
K-point relationship first-order adjacency rule to construct the spatial weight matrix.

Therefore, this paper used the simulated rice yield vector data from Pucheng County,
which is based on grid cells, the simulated rice yield in Pucheng County as the research
variable, and Moran’s I index to analyze the spatial clustering characteristics of the rice
production areas. Among them, the spatial adjacency relationship was defined by the
K-nearest neighbor (K = 6) first-order adjacency method, and the spatial weight matrix was
calculated using this rule.

2.3.3. Pattern Recognition of Rice Yield–Multidimensional Environmental Planting Suitability

Based on evaluating the results of rice planting suitability, this study used k-means
clustering to perform attribute clustering. The rice yield and rice planting suitability
values in each grid unit were used as the clustering attributes. The number of clusters
was based on the determination coefficient, semi-biased determination coefficient [40],
and the regional environmental characteristics. Four types of clusters were obtained, and
then, variance analysis was used to analyze the soil condition suitability, site condition
suitability, climate condition suitability, and irrigation and drainage conditions in different
concentration areas. Differential statistical analysis was carried out on the degree and
suitability values of mechanical farming conditions to identify the spatial patterns of the
rice yield–multidimensional environmental planting suitability. When the environmental
planting suitability values from different spatial patterns were statistically significant,
the obstacle factors were determined separately for each rice yield–multidimensional
environmental planting suitability spatial pattern.

(1) K-Means Clustering

The k-means clustering algorithm is an analysis and calculation method that contin-
uously updates the center value of the cluster through multiple iterations to obtain the
optimal solution of the clustering result. The k-means clustering algorithm is popular due
to its simplicity, convenience, and high computational efficiency suitable for continuous
data [41,42]. The algorithm’s specific steps are as follows:

• The rice yield and planting suitability values are selected as clustering indicators.
• The number of clusters based on the determination coefficient, semi-biased determina-

tion coefficient, and regional environmental characteristics is determined.
• The distance between each object and each cluster center is calculated.
• The data are divided into the closest clusters.
• Multiple iterations are performed until certain conditions are met and the clustering

and partitioning of rice yield–multidimensional environmental planting suitability
values are complete.
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(2) Variance analysis

The basic principle of the variance method is to divide the total dispersion of data
indicators into two parts: the dispersion caused by level changes and the dispersion caused
by errors. Then, the F statistic is calculated and tested to verify the significance of the
factors (i.e., determine whether they are usable) [43,44]. The specific calculation process is
as follows:

• Various environmental planting suitability values from different clusters are selected
for analysis.

• Calculate and count the degrees of freedom and squares of the suitability values from
various dimensions in different clusters.

• Calculate the F value and make judgments based on the p-value corresponding to the
F value.

3. Results
3.1. Rice Yield Simulation Model Comparison

Mean absolute error (MAE) and root mean square error (RMSE) are the two most
commonly used indicators to measure the accuracy of the variables. MAE [45] represents
the average absolute values of the error between the simulated and actual rice yield values.
RMSE [46,47] measures the deviation between the simulated rice yield and the actual rice
yield values. The smaller the MAE and RMSE values, the smaller the deviation between
the simulated values and the fitted values, the better the simulation performance, and
vice versa. R2 represents the model’s fit: that is, the degree to which the variance of the
independent variables can be explained by the model results. Its value ranges from 0 to 1.
The larger the value of R2, the better the fit of the model [48,49].

Table 2 shows the MAE, RMSE, and R2 of the simulated and true rice yield values
based on the three models: GWR, MLP, and RFR. It can be seen that the R2 of RFR is bigger
than that of the GWR and MLP models. Therefore, we initially concluded that the RFR
model has the best overall fit. Then, we compared the MAE values of different models and
found that the RMSE value of RFR is smaller than those of the GWR and MLP models. At
the same time, we found that the RMSE value of RFR is also lower than the other models.
Then, we comprehensively considered the fitting effect reflected by the three indicators and
concluded that the RFR model performs well in terms of fit, model stability, and simulation
error, and thus, this study used it to simulate rice yield in Pucheng County.

Table 2. Error comparison of simulation results of different models.

Model MAE RMSE R2

GWR 836.035 1056.360 0.526
MLP 1056.971 1348.318 0.386
RFR 492.368 765.827 0.762

3.2. Spatial Pattern of Rice Yield

Using the RFR model to simulate the spatial distribution of the rice output in Pucheng
County reveals obvious regional differences (Figure 4). The cultivated land in higher-yield
areas lies primarily in Xianyang Town, Guancuo Town, Nanpu Town, Wanan Town, Binhe
Town, Liantang Town, Yongxing Town, Linjiang Town, and Shipo Town, which are located
in the central and southwestern regions of Pucheng County. The moderate-yield and
high-yield areas lie primarily in Zhongxin Town, Fuling Town, Shuibeijie Town, Panting
Town, Jiumu Town, Guanlu Town, and other peripheral areas of Pucheng County such
as the eastern, northern, and southern regions. The low-yield areas lie primarily in the
southern and western regions of Pucheng County, such as Gulou Town, Fengxi Town,
Shanxia Town, and Haocun Town. According to the statistical data for Pucheng County,
Nanping City, and Fujian Province [50], the rice yield in Pucheng County is higher in the
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middle, east, and north, and it is lower in the west and south. It can be seen that the spatial
distribution of the simulated yield is approximately the same as the actual yield.
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Figure 4. Simulated rice yield results on cultivated land in Pucheng County.

Using ArcGIS and GeoDa, a local Moran’s I analysis was carried out on farmland rice
yield. The Moran’s I value of the farmland rice yield in the entire county was 0.999, which
shows a high degree of spatial aggregation, indicating that Pucheng County’s rice yield
has a very strong positive spatial correlation. This result was further categorized according
to the local indicator of spatial analysis (LISA), which clustered the cultivated land by type
(Figure 5). The high yield–high yield areas, which have a positive correlation for cultivated
rice yield, accounted for 47.65% of the total cultivated area and primarily include Nanpu
Town, Wan’an Town, Binhe Town, Liantang Town, Yongxing Town, Linjiang Town, and
other areas. These high yield–high yield areas should be developed intensively to improve
industrial efficiency while reducing production costs and increasing farmers’ income. The
number of units in low yield–low yield positively correlated clustering areas accounts for
38.54% of the cultivated land, and these are primarily located in Zaigulou Town, Fengxi
Town, Shanxia Town, and Haocun Town. The positive-correlation type accounts for 86.19%
of the total cultivated area, indicating that the rice yield from cultivated land in Pucheng
County has a strong, positive spatial correlation. The spatial clustering characteristics are
relatively obvious. Such areas should adopt methods such as farming reform, fertilization,
and soil improvement, and they should improve environmental defects in the area. Low
yield–high yield and high yield–low yield clustering areas account for 1.95% and 0.53% of
the total cultivated area, respectively. The number of negatively correlated types of units
only accounted for 2.48% of the total cultivated area. Rice yields alternate between high
and low values in the regions. The factors that affect the productivity of the two types of
regions are different; the primary defects should be addressed, and we should prescribe
the appropriate solutions to improve regional production capacity.
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3.3. Spatial Pattern of Rice Yield and Environmental Planting Suitability

To identify the spatial combination patterns of rice yield and rice planting environ-
mental suitability, and to conduct a more in-depth analysis of the spatial characteristics and
influencing factors of these different patterns, this study is based on rice yield simulation
data and a rice environmental suitability evaluation dataset. Using the planting suitability
values and rice yield simulation data as clustering indicators as well as the GeoDa platform,
K-means clustering was performed. The number of clusters was determined based on
the determination coefficient, semi-biased determination coefficient [40], and regional
environmental characteristics, and finally, four types of cluster partitions are obtained. On
this basis, the ArcGIS platform was used to perform statistical analysis on the four types of
clusters (Table 3).

Table 3. Group analysis results.

Mean Planting Suitability Value * Yield (kg/hm2)

Class I cluster 79.016 10,989.60
Class II cluster 77.737 10,240.50
Class III cluster 72.696 9618.83
Class IV cluster 68.483 8422.50

* 0 ≤ Planting Suitability Value ≤ 100.

The four types of cluster areas, which include higher yield and higher suitability, high
yield and high suitability, moderate yield and moderate suitability, and low yield and low
suitability, are hereafter referred to as class I, II, III, and IV clusters (Figure 6).



ISPRS Int. J. Geo-Inf. 2021, 10, 612 12 of 19
ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 13 of 20 
 

 

 

Figure 6. Spatial pattern of rice yield and environmental planting suitability in Pucheng County. 

Based on the clustering results, variance analysis was used for various statistical 

analyses of the soil, site, climate, irrigation and drainage, and mechanical farming 

condition suitability values in different clustering areas. The results of the variance 

analysis demonstrated that the environmental planting suitability values from different 

clustering areas showed highly significant differences (p < 0.01) (Table 4). 

Table 4. Variance analysis results. 

Planting Suitability Value *** 
Cluster Area (Mean ± Standard Deviation) 

F p 
I II III IV 

Irrigation and drainage suitability value 72.59 ± 20.99 75.07 ± 18.28 71.50 ± 19.24 73.49 ± 14.40 684.281 0.000 ** 

Mechanical farming suitability value 83.55 ± 2.67 82.96 ± 2.99 80.65 ± 4.16 81.31 ± 3.76 13,818.739 0.000 ** 

Site suitability value 80.63 ± 11.73 80.72 ± 10.74 76.43 ± 10.29 67.83 ± 10.73 14,020.066 0.000 ** 

Climate suitability value 84.15 ± 3.15 81.16 ± 4.46 71.79 ± 4.94 65.84 ± 3.14 91,877.973 0.000 ** 

Soil suitability value 70.10 ± 8.81 68.95 ± 9.06 68.48 ± 9.04 67.38 ± 7.68 924.390 0.000 ** 

** p < 0.01 *** 0 ≤ Suitability Value ≤ 100. 

3.4. Rice Yield and Multidimensional Environmental Planting Suitability Spatial Model 

Rice planting suitability and rice yield are affected by many factors, such as the soil, 

site, climate, irrigation and drainage, and mechanical farming. This study considered the 

actual Pucheng County soil, site, climate, irrigation and drainage, and mechanical farming 

conditions, which were selected from 20 indicators in five dimensions to analyze the rice 

yield and environmental planting suitability factors (Table 1). The multidimensional 

environmental characteristics were analyzed based on the grouping results and the spatial 

distribution characteristics of the environmental indicators (Figure 7). The influencing 

factors on various clusters of cultivated land in Pucheng County were determined based 

Figure 6. Spatial pattern of rice yield and environmental planting suitability in Pucheng County.

Based on the clustering results, variance analysis was used for various statistical
analyses of the soil, site, climate, irrigation and drainage, and mechanical farming con-
dition suitability values in different clustering areas. The results of the variance analysis
demonstrated that the environmental planting suitability values from different clustering
areas showed highly significant differences (p < 0.01) (Table 4).

Table 4. Variance analysis results.

Planting Suitability Value ***
Cluster Area (Mean ± Standard Deviation)

F p
I II III IV

Irrigation and drainage suitability value 72.59 ± 20.99 75.07 ± 18.28 71.50 ± 19.24 73.49 ± 14.40 684.281 0.000 **
Mechanical farming suitability value 83.55 ± 2.67 82.96 ± 2.99 80.65 ± 4.16 81.31 ± 3.76 13,818.739 0.000 **

Site suitability value 80.63 ± 11.73 80.72 ± 10.74 76.43 ± 10.29 67.83 ± 10.73 14,020.066 0.000 **
Climate suitability value 84.15 ± 3.15 81.16 ± 4.46 71.79 ± 4.94 65.84 ± 3.14 91,877.973 0.000 **

Soil suitability value 70.10 ± 8.81 68.95 ± 9.06 68.48 ± 9.04 67.38 ± 7.68 924.390 0.000 **

** p < 0.01 *** 0 ≤ Suitability Value ≤ 100.

3.4. Rice Yield and Multidimensional Environmental Planting Suitability Spatial Model

Rice planting suitability and rice yield are affected by many factors, such as the soil,
site, climate, irrigation and drainage, and mechanical farming. This study considered the
actual Pucheng County soil, site, climate, irrigation and drainage, and mechanical farming
conditions, which were selected from 20 indicators in five dimensions to analyze the
rice yield and environmental planting suitability factors (Table 1). The multidimensional
environmental characteristics were analyzed based on the grouping results and the spatial
distribution characteristics of the environmental indicators (Figure 7). The influencing
factors on various clusters of cultivated land in Pucheng County were determined based on
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these results. Finally, we obtained the rice yield and the environmental planting suitability
spatial model for Pucheng County (Figure 8).
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3.5. Identification of Obstacle Factors and Planting Guidance
3.5.1. Higher Yield, Higher Suitability—Comprehensive Environmental-Advantage Areas

This type of arable land accounts for 32.46% of the county’s total arable land and lies
primarily in Shipi Town, Haocun Town, central Beishuijie Town, Liantang Town, Nanpu
Street, Binhe Street, and other areas. These areas are characterized by flat terrain and
excellent indicators, among which the climate and mechanical farming conditions have
obvious advantages (Figure 7). The environmental characteristics of the clustering area are
as follows: the≥10 ◦C accumulated temperature >5000 ◦C, the annual average temperature
>14.0 ◦C, the annual average sunshine hours >1500 h, and there is abundant light and heat
provided by a beneficial climate; in addition, the soil nutrients are relatively high. The basic
infrastructure and various other conditions are relatively good. Generally speaking, these
areas meet the environmental conditions required for the growth and development of rice.
For higher-yield and higher-suitability areas, intensive development should be adopted to
make full use of these conditions to ensure high yields, reduce production costs, improve
farmers’ income, and effectively protect the fertility of the existing soil.

3.5.2. High Yield, High Suitability—Soil Condition-Limited Areas

This type of arable land accounts for 42.92% of the county’s total arable land and is
located primarily in Linjiang Town, Fuling Town, Xianyang Town, west of Guancuo Town,
Yongxing Town, and other areas. The irrigation and drainage, site, and mechanical farming
conditions in these areas are good, However, the soil condition suitability index is lower
than that of higher yield and higher suitability areas (Figure 7). Combined with the local
arable land fertility survey sampling data and soil testing as well as formula fertilization
pilot data, we comprehensively analyzed the spatial distribution characteristics of various
indicators, such as organic matter, available potassium, total nitrogen, and pH. The results
revealed that available phosphorus is relatively scarce, and most of the arable land is
sandy loam and gravel soil with poor soil texture; therefore, the biggest obstacle in this
area is the soil quality. All regions should fertilize reasonably; increase soil nitrogen,
phosphorus, and potassium content; focus on applying organic fertilizers; control soil
pollution; moderately adjust soil pH; strengthen soil improvement measures; popularize
high-quality rice varieties with good planting adaptability; and increase the rice planting
quality to guarantee rice production.

3.5.3. Moderate Yield, Moderate Suitability—Irrigation and Drainage Condition-Limited Areas

This type of arable land accounts for 19.03% of the county’s total arable land and is
located primarily in Shanxia Town, Gulou Town, west of Jiumu Town, in the middle of
Guanxi Town, in the middle of Zhongxin Town, and south of Guancuo Town. The irrigation
and drainage suitability in this area is low, as most of the arable land has “normal” or
“poor” irrigation conditions, and the drainage capacity is “average”. Therefore, irrigation
conditions and drainage capacity are the primary obstacles affecting the planting suitability
in the clustering area (Figure 7). For this type of arable land, farmland improvement
should be carried out first, water conservancy facilities should be built, field irrigation
channels should be optimized, detailed farmland management should be strengthened,
and engineering funds should be invested appropriately to ensure water conservancy for
the arable land.

3.5.4. Low Yield, Low Suitability—Site Condition-Limited Areas

This type of arable land accounts for 5.58% of the county’s total arable land and is
located primarily in Fengxi Town, east of Jiumu Town, and west of Xianyang Town. Such
areas lie primarily in high-altitude areas with steep slopes. A comprehensive analysis of the
spatial distribution characteristics of various indicators revealed that the biggest obstacle
is site condition (Figure 7). The high altitude results in a lower average temperature.
Simultaneously, this land type is located in a mountainous area, which often results in
insufficient sunshine. Furthermore, the mountain-dominated topography causes the soil
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in this area to be dominated by sand, and the soil elements such as organic matter are
also low. Various factors have led to lower production in this area. Therefore, for such
areas, scientific planting should be strengthened, and appropriate varieties of rice should
be selected and combined with the changes in regional temperature to achieve “cold tail
and warm head, grab clear sowing”. The area can also adopt indirect irrigation to ensure
soil moisture to increase the regional production capacity as much as possible.

4. Discussion
4.1. Rice Yield Simulation Model

The method of rice yield simulation can solve the time-consuming and labor-intensive
problem of traditional on-site sampling survey methods, which will improve the efficiency
of rice yield acquisition. Jianghua [51] used the improved ORYZA model to simulate rice
yield with different soil organic carbon content, and Roushani et al. [52] used the AquaCrop
model to simulate and predict rice yield based on water management conditions. However,
due to the complexity of the relationship between rice yield and the environmental factors,
the use of a single simulation model may not produce adequate results. Therefore, it is
important to construct different rice yield simulation models and compare their accuracy
and fitting to choose a high-precision rice yield simulation model.

In this paper, we constructed rice yield simulation models based on GWR, MLP neural
networks, and RFR. Among these, the GWR model found the mathematical expression
that best represents the relationship between output and influencing factors by studying
the relationship between multiple variables; however, it is not applicable when there
are many influencing factors or nonlinear factors [53]. Although the MLP model can
adequately solve nonlinear problems [32,54], analyzing many influencing factors with a
small amount of training data causes the performance to be unstable, which may cause
the model to produce significant errors between the simulated yield results and actual
rice yields [55]. The RFR model can solve both linear and nonlinear complex problems,
accounting for multiple factors in crop yield simulation [56], and its algorithm performance
is also better than the MLP model. In addition, the model construction process is relatively
straightforward [57,58]. The results show that using the RFR model to simulate rice yield
produces the RAE and RMSE that are smaller than those of the other two models, and it
has the best fit.

4.2. Rice Yield Has a Strong Spatial Clustering

Studying the spatial rice yield distribution pattern is of great significance to under-
standing the environmental suitability of different planting areas. Pucheng County, as a
typical example, is located in a mountainous and hilly area with a complex topography,
which is of great significance because many farmland regions exhibit this topography. We
found that although Pucheng County is located in a mountainous region, the rice yield of
cultivated land in the county has strong spatial clustering characteristics. The cultivated
land rice output has a strong spatial positive correlation: the proportion of positive correla-
tion types in the spatial clustering area of cultivated land rice yield is as high as 86.19%. Its
spatial clustering characteristics are more obvious. Therefore, it is necessary to effectively
implement intensive rice planting in this area to realize precision agriculture.

4.3. Rice Yield–Multidimensional Environmental Planting Suitability Spatial Pattern Recognition

Mastering the rice yield–multidimensional environmental planting suitability spatial
combination model, and analyzing the environmental factors using different models, can
provide scientific guidance for taking advantage of regional environmental resources and
optimizing the grain planting structure and industrial layout. In previous research, Lobell
et al. [59] studied the spatial distribution of global crop production under the influence
of the climate, and Lasini et al. [60] used statistical and machine learning techniques
to analyze the spatial relationship between rice yield and climate variables in a major
region in SriLanka. Ostrowski et al. [61] analyzed the effects of climate and environmental
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factors on European grass species and the influence of the spatial distribution pattern
of the relationship with wheat planting. Gazolla-Neto et al. [62] used precision farming
techniques to assess the spatial dependence between soil chemistry and yield components
in soybeans. Resop et al. [63] constructed a new crop model based on natural factors,
such as weather and soil, and analyzed the spatial distribution of potato production in
Maine using that model. Parry et al. [64] analyzed the impact of global human and climate
scenarios on the spatial distribution of cereal production based on the Special Report on
Emissions Scenarios (SRES). These studies analyzed only some environmental factors and
rice yields, and they did not systematically identify and analyze the combined patterns
of yield and multidimensional environmental spatial distribution. However, our research
found that in the actual agricultural production process, yield is often the result of a
combination of many factors. By effectively identifying the combination model of yield
and planting suitability, the shortcomings and advantages of different regions in terms of
climate, soil, irrigation, site, and mechanical farming can be obtained. Therefore, in the
process of rice production, it is necessary to adjust planting strategies according to different
rice yield–multidimensional environmental suitability combination model areas, so as to
improve the yield and quality of rice.

5. Conclusions

We have constructed a method system for the identification of rice yield and multidi-
mensional environmental suitability spatial combination pattern at a fine scale. First, we
constructed a rice yield simulation model that simulates the refined spatial distribution of
rice yield at the county level, analyzed the rice yield spatial pattern, and finally identified
the spatial combination pattern of rice yield and multidimensional environmental suitabil-
ity. Our research results show that Pucheng County’s rice output has a strong positive
spatial correlation with obvious spatial clustering characteristics. The spatial combination
pattern recognition of rice yield and multidimensional environmental suitability provides
Pucheng County with regional rice planting guidance, and at the same time, it provides a
new perspective for exploring the spatial pattern of the rice planting environment. How-
ever, there several limitations of this research. First, the impact of human activity is not
comprehensive, and due to the lack of data on pests and diseases, this study does not take
these into consideration. Second, the feasibility of mechanization of agricultural operations
is an important indicator to measure the suitability of cultivated land. However, due to
limited data, our measurement of the feasibility of mechanization is not perfect. Future
work will improve the relevant indicator system of the model. Third, when simulating
rice yield, the sensitivity analysis of numerical models can be used to realize the output
variations of numerical models are studied in function of the input variations. Therefore,
the sensitivity analysis of the numerical model can be considered to optimize the rice yield
simulation model in future research.
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