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Abstract: Taxi demand forecasting plays an important role in ride-hailing services. Accurate taxi
demand forecasting can assist taxi companies in pre-allocating taxis, improving vehicle utilization,
reducing waiting time, and alleviating traffic congestion. It is a challenging task due to the highly non-
linear and complicated spatial-temporal patterns of the taxi data. Most of the existing taxi demand
forecasting methods lack the ability to capture the dynamic spatial-temporal dependencies among
regions. They either fail to consider the limitations of Graph Neural Networks or do not efficiently
capture the long-term temporal dependencies. In this paper, we propose a Spatial-Temporal Diffusion
Convolutional Network (ST-DCN) for taxi demand forecasting. The dynamic spatial dependencies are
efficiently captured through a two-phase graph diffusion convolutional network where the attention
mechanism is introduced. Moreover, a novel temporal convolution module is designed to learn
various ranges of temporal dependencies, including recent, daily, and weekly periods. Inside the
module, convolution layers are stacked to handle very long sequences. Experimental results on two
large-scale real-world taxi datasets from New York City (NYC) and Chengdu demonstrate that our
method significantly outperforms seven state-of-the-art baseline methods.

Keywords: demand forecasting; spatial-temporal dependencies; graph neural networks; attention
mechanism

1. Introduction

The popularity of taxi requesting services nowadays has largely changed the travel
behavior of people in the urban area. Taxi order forecasting plays a critical role in taxi
requesting service as it could influence the preallocation of resources to fulfill the travel de-
mand. Designing more accurate taxi order forecasting models could increase the efficiency
of the taxi service and alleviate traffic congestion.

Benefiting from the wide deployment of GPS sensors in taxi vehicles, a large amount
of taxi trip data have been collected, which brings opportunities to design more powerful
data-driven models to improve the accuracy of taxi demand forecasting. However, taxi
order data in real-life scenarios generally follow complex spatial-temporal patterns [1,2].
Figure 1a shows an example of the spatial distribution of one hour’s taxi orders in New
York City (NYC). It can be observed that the orders also tend to gather around hot spot
areas in the city. The temporal distribution of the taxi orders is visualized in Figure 2
where the hourly demand is temporally correlated and contains both short-term and
long-term periodicity. Another common pattern that is not shown here but has been
observed in previous work is the correlations of demand in distant regions due to similar
functionalities [3] or connections by public transportation system [1].

Taxi demand forecasting can be regarded as a special case of a more general spatial-
temporal data forecasting problem. In addition to taxi order data [4–7], other types of
spatial-temporal datasets have also been studied for prediction, including traffic vol-
ume [8–12], traffic flow [2,13–16], and bike-sharing demand [17]. Since taxi orders are
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continuously distributed in space, preprocessing is commonly performed to aggregate
the data to grids [1,4,6], zones [18], or partitions created from the road network [2]. Con-
sequently, the problem is transformed into predicting a matrix or graph where the chal-
lenges lie in modeling the complex and dynamic spatial-temporal dependencies in the
demand data.

(a) (b)

Figure 1. Spatial distribution of one hour’s taxi order data in New York City (a) and virtual stations
discovered by clustering (b). Each dot in (a) represents a taxi order origin and the underlying heatmap
highlights the hot spots in the city.
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Figure 2. Temporal distribution of hourly taxi order along one week period (a) and over day of
week (b).

Conventional travel demand forecasting methods modeled the temporal correlation us-
ing time series analysis such as autoregressive integrated moving average (ARIMA) [19–21].
They could be weak in handling the complex spatial-temporal patterns in travel demand
data. The recent advances in deep learning have largely promoted the usage of neural
network models in travel demand forecasting. Zhang et al. [1] developed ST-ResNet
where both local and global regional dependencies were captured by stacking multiple
convolutional layers. The same approach was adopted in DMVST-Net [3], where semantic
dependency was further considered by constructing a graph to represent the similarity
between demand patterns among regions. Graph convolutional network (GCN) was also
widely used to model the spatial dependencies in travel demand forecasting. Lin et al. [17]
proposed GCN with graph filter for bike-sharing demand prediction where a graph fil-
ter encodes multiple features, including spatial distance, demand pattern, average trip
duration, etc. Geng et al. [4] developed a multi-graph graph convolutional network to
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consider three types of adjacency graphs encoding spatial proximity, functional similarity,
and transportation connectivity. Bai et al. [5] designed a hierarchical GCN that stacked
multiple GCN layers to capture long-term spatial-temporal correlations. Sun et al. [2] fused
the output of five GCN layers capturing different types of temporal views. Zhang et al. [18]
performed clustering of taxi demand, then designed a multi-level recurrent neural net-
work (MLRNN) to utilize inter-zone heterogeneity to improve the prediction. In order
to capture the temporal dynamics, Ye et al. [22] developed a coupled layer-wise graph
convolution mechanism where each GCN layer has a different adjacency matrix that is
iteratively updated. Some studies further investigated the prediction of demand from an
origin to destination (OD) region. Liu et al. [6] performed the convolution on the OD matrix
to model the local spatial dependency. Wang et al. [7] developed a multi-task learning
scheme with periodic-skip long short-term memory (LSTM) network for predicting the OD
matrix and the inbound and outbound traffic flow of a grid.

Although many studies have been conducted to model the spatial-temporal dependen-
cies in taxi demand data, they cannot capture the spatio-temporal dependencies effectively.
On the one hand, the problem of the limitations of graph convolutional neural networks is
not taken into account by any existing methods. On the other hand, although dilated causal
convolution can learn longer-term temporal dependencies compared to Recurrent Neural
Network (RNN) methods, it has the problem of gridding effects. Our proposed method,
Spatial-Temporal Diffusion Convolutional Network (ST-DCN), effectively addresses these
two challenges. The contributions of our work are summarized as follows:

1. We design a two-phase graph diffusion convolutional network, which can effectively
address the limitations of graph convolutional neural networks. During the diffusion
process of the convolution, we use two types of adjacency matrices and introduce the
attention mechanism to capture the dynamic spatial dependencies adaptively;

2. Hybrid Dilated Causal Convolution is used to capture the temporal dependencies,
which can tackle the grid effect problem of conventional dilated convolution. We use
a gating mechanism to efficiently control the information flow of nodes and further
consider the periodicity of taxi demand data;

3. We evaluated our approach on two large-scale real-world datasets. The experimental
results demonstrate that ST-DCN outperforms seven existing state-of-the-art base-
line methods.

2. Preliminary

Virtual Station: Taxi order requests tend to gather in certain areas in a transportation
mode like taxis. For example, at the entrance of a university or a residential area, which
unconsciously forms a virtual station, there are usually more distinctive taxi demand
characteristics [23]. The discovery of these virtual stations can help capture taxi demand
characteristics and make the forecasting more accurate. It is worth mentioning that most
existing works on transportation demand forecasting divide the city into grids and then
consider each grid as a graph’s node. Similar to CCRNN [22], we employ the Density Peak
Clustering (DPC) [24] approach to partition regions into virtual stations and treat them
as graphs’ nodes. It more closely matches the structure of the road network in realistic
scenarios and assists in achieving more accurate forecasting results.

Taxi demand forecasting: Given a graph G = (V, E, A), where V represents a set of
nodes of the graph (|V| = N), which are virtual stations; E is a set of edges, which represent
the connections between nodes. A ∈ RN×N is a weighted adjacency matrix of the graph,
where each element Aij stores a weight representing the strength of the connection between
node i and j. At time step t, the graph G has a graph signal Xt ∈ RN×C, C is the number of
feature dimensions of input. Two features are considered, including the number of pick-up
and drop-off of each node at time step t. Given a graph G and its history of H time step
graph signals, the taxi demand forecasting problem is formulated as finding a mapping
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function f that can predict its taxi pick-up for the next P time steps. The mapping relation
can be defined as:

f (X(t−H+1):t, G)→ X(t+1):(t+P) (1)

where X(t−H+1):t ∈ RH×N×C and X(t+1):(t+P) ∈ RP×N×C.

3. Methodology

In this section, we elaborate the proposed ST-DCN model with the technical details.
As shown in Figure 3, the proposed ST-DCN network consists of (a) an input layer, (b)
a temporal convolution module, (c) a spatial convolution module, and (d) an output
layer. The temporal and spatial convolution modules consist of multiple T-blocks and
S-blocks; each block correspondingly consists of stacked temporal and spatial convolution
layers. Both temporal and spatial convolution layers are finally incorporated with residual
connections to avoid the problem of gradient vanishing [25].

recentdailyweekly time

T-block

��� � �

��� � �

Concat

S-block MLP

Conv

Conv

predicting

+

T-block T-block T-block

Relu
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a

Figure 3. Illustrative architecture of the proposed spatial-temporal diffusion convolutional network
(ST-DCN). ST-DCN consists of (a) an input layer, (b) a temporal convolution module, (c) a spatial
convolution module, and (d) an output layer.

3.1. Spatial Dependency Modeling

The modelling of spatial dependencies is an important prerequisite study for achieving
taxi demand forecasting. The rise of various graph neural networks in recent years has
facilitated the task of dealing with data types that are graphical. Graph neural networks can
be used to model intricate road networks when dealing with the problem of taxi demand
forecasting. It addresses the limitations of Convolutional Neural Networks (CNNs) in
coping with non-Euclidean data.

This paper applies diffusion convolution proposed by DCRNN [8] and employs the
self-adaptive adjacency matrix designed in Graph WaveNet [11] for spatial dependency
modeling. Specifically, we use Ā to denote the stationary adjacency matrix where each
value stores the distance between two nodes and Ã to denote the self-adaptive adjacency
matrix with the following definition

Ã = so f tmax(ReLU(M1, MT
2 )) (2)
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h =
K

∑
k=0
P kXWk1 + ÃkXWk2 (3)

where M1, M2 ∈ RN×c are source and target node embeddings, P is the transition matrix,
X denotes the input, and W denotes the model parameter matrix.

Equation (3) does not consider the different effects of the spatial dependencies rep-
resented by different adjacency matrices, which is important for effective learning spatial
dependencies. Similarly, in the diffusion process of convolution, the different influences of
each step should also be taken into consideration. Therefore, we adopt a diffusion process
of convolution to control the flow of information on the nodes, consisting of two main
phases: the information diffusion phase and the information control phase. The information
diffusion phase is defined as follows:

Xk = αXk−1 + (1− α)ÃXk−1 (4)

where α is a hyperparameter used to control the retaining rate of the original node’s
information. The same relation applies to stationary adjacency matrix by just replacing Ã
with Ā in the above equation.

The information diffusion phase will recursively diffuse the information of the nodes
along with a given graph structure. One problem that needs to be overcome with graph
convolutional networks is that the number of neighborhood nodes will grow exponentially
when a multi-layer graph network is used. The problem of over-squashing will occur: a
large amount of information about neighboring nodes has to be compressed into the feature
vector of a single node [26]. As a result, information cannot be effectively propagated, and
the model has poor performance. To solve this problem, we retain a certain percentage of
the original information of the nodes during the information diffusion process, which can
simultaneously retain the information of the original nodes and can effectively deepen the
exploration of the neighboring nodes.

Graph convolutional networks also face the problem of over-smoothing [27,28]. After
multiple graph convolutional layers, node features converge to the same or similar vectors,
making them indistinguishable. The information control phase is adopted to address this
problem effectively and can control the information generated by the nodes. Here, we
use the attention mechanism [29] to control the information flow of nodes adaptively. The
attention mechanism can concentrate limited attention on important information, thus
saving computing resources and quickly acquiring the most helpful information. After
combining the two phases of the diffusion process of convolution, Equation (3) will become
the following Equation (6):

Wi =
exp(Conv(Xi))

∑K
j=1 exp(Conv(Xj))

(5)

h =
K

∑
i=1

WiXi (6)

where K is the depth of information diffusion, X is the output of the previous step of
information diffusion, which is used as the input for the subsequent information diffusion,
and W is the self-learned weights coefficient using the attention mechanism.

3.2. Temporal Dependence Modeling

In this section, we first discuss the importance of accounting for temporal periodicity
when capturing temporal dependencies. Secondly, we describe the concept of conventional
dilated causal convolution and its advantage over RNN to capture long-term temporal
dependencies effectively. Then, Hybrid Dilated Convolution (HDC) is used to solve
the gridding effect problem in conventional dilated convolution. Finally, to effectively
control the information flow of nodes, a gating mechanism is used to improve the model’s
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performance further. More specifically, the details of the temporal dependence model are
presented as follows.

Temporal periodicity: Taxi demand data usually exhibit a strong daily or weekly
periodic pattern. Figure 2 provides an example of one week’s taxi demand data in New
York. It can be observed that the demand curves from Monday to Friday are quite different
from those on weekends.

Similar to ASTGCN [9] and ST-ResNet [1], this paper also considers taxi demand data’s
recent, daily, and weekly dependencies. Assuming that the current time is τ0 , the historical
time window size is TH , the size of the time window to be predicted is TP . The blue, red,
and green parts in Figure 4 indicate the recent, daily, and weekly periods, respectively.

………  …
!"!#!#!#!#

6/28/2016 Tue.
17:30-18:00

6/27/2016 Mon.
17:30-18:00

6/26/2016 Sun.
17:30-18:00

6/21/2016 Tue.
17:30-18:00

6/28/2016 Tue.
17:00-17:30

recentdaily periodweekly period

$%

Figure 4. An example of constructing the input of time series segments (suppose the size of both
historical and forecasting windows are 30 min).

It is necessary to note that in our model: TH ≥ TP. Because the periodicity of taxi
demand will have some fluctuation, it is not strictly periodic [13]. For example, the peak
hours on weekdays usually fluctuate in the afternoon between 17:30 p.m. and 19:30 p.m.

Dilated Causal Convolution: The dilated causal convolution networks can exponen-
tially increase the receptive field by stacking the depth of the network layers. Compared to
RNN-based methods, dilated causal convolution networks can tackle long-term sequences
in a non-recursive manner, enabling parallel computation and alleviating the gradient
explosion issue [30]. Dilated causal convolutional networks keep the chronological causal-
ity sequence by padding zeros to the inputs. This way, it ensures that only historical
information is used to predict without leaking any future information. More formally, for a
one-dimensional sequence of inputs X ∈ RT and the filter f : {0, . . . , n− 1}, the dilation
convolution operation F in the input sequence with element t can be defined as:

F(t) =
n−1

∑
i=0

f (i)Xt−d·i (7)

where d is the dilation rate, n is the filter size, and t− d · i represents the past direction.
Hybrid Dilated Convolution: Wang et al. [31] points out that the conventional dilated

convolution framework has the problem of gridding, i.e., dilated convolution inserts zero
values between two sampled pixels of the convolution kernel. If the dilation rate becomes
too large, the convolution will be too sparse and detrimental to learning because not
all pixels are involved in the computation. This way, one will lose the consistency of
information, which is fatal for pixel-level tasks (Figure 5a). Therefore, this paper use HDC
to overcome the problems caused by the gridding effect. HDC uses a series of dilation
rates, rather than a single one, to make the final receptive field fully cover the entire region
with no holes or missing edges. At the same time, the receptive field of the network is also
expanded to aggregate global information.

Hybrid dilated convolution is a simple solution proposed to overcome the gridding
effect, which has the following three main features:

1. The dilation rate of a stacked dilated convolution should not have a common factor
greater than 1. For example, [2, 4, 6] would not be a suitable three-layer convolution
as it still has gridding effects;

2. The dilation rate is designed as a jagged structure, e.g., a cyclic structure like [1, 2, 5, 1,
2, 5];
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3. The dilation rate needs to satisfy the equation:

Mi = max(Mi+1 − 2di, Mi+1 − 2(Mi+1 − di), di) (8)

where the di is the dilation rate of the i-th layer, and Mi is the maximum dilation rate at
the i-th layer. Assuming there are n layers and the default is Mn = dn. If applied to a
convolution kernel with size k× k , the goal is to let M2 ≤ k.

As shown in Figure 5, increasing the dilation rates tend to change its focus from the
local features to global ones. By only using a small number of dilated convolution layers,
the receptive field can be significantly increased.

Dilation=2

Dilation=2

Dilation=2

(a)

Dilation=1

Dilation=2

Dilation=4

(b)

Figure 5. Illustration of the gridding problem. Dilated casual convolution with kernel size 2. (a) all
convolutional layers have a dilation rate d = 2. (b) subsequent convolutional layers have dilation
rates of d = 1, 2, 4, respectively.

Gated TCN: We adopt the Gated TCN designed by Graph WaveNet [11] to control
the inflow of valid information and discard invalid information in the TCN. One temporal
convolution is followed by a tangent hyperbolic activation function working as a filter.
The other temporal convolution is followed by a sigmoid activation function that acts as a
gate to control the amount of information passing out. Specifically, the Gated TCN takes
the form:

Z = tanh(Θ1 ∗ X + b1)� σ(Θ2 ∗ X + b2) (9)

where Θ1, Θ2, b1 and b2 are learnable parameters, � denotes the element-wise multiplica-
tion operator, σ(·) is a sigmoid function, ∗ is the dilated convolution operation. Figure 6
illustrates the structure of Gated TCN.
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Figure 6. Components of temporal block.
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3.3. Extra Components

Skip Connection: As the depth of the network increases, it causes extra problems of
gradient vanishing or explosion, which makes the training of deep learning models difficult.
Meanwhile, Orhan and Pitkow [32] demonstrate that skip connection breaks the symmetry
of the network forcibly and alleviates the degradation of the neural network. Therefore,
we introduce skip connection to enhance the learning capability of the network, which can
acquire activation from one network layer and then quickly give feedback to another layer
or even deeper layers of the neural network.

Output Module: To achieve the goal of multi-step taxi demand forecasting, the output
module of our ST-DCN network consists of a Multi-Layer Perceptron (MLP) and two 1 × 1
standard convolutional layers that convert the input dimensions into the desired output
dimensions. ST-DCN treats the output X(t+1):(t+P) as a whole, which can effectively handle
the dimensional inconsistency problem between training and testing. We can use the
historical H consecutive time steps to predict the future P consecutive steps, just to set the
temporal size of the expected output as P.

4. Experiments
4.1. Experimental Settings

Dataset Description: Experiments are conducted on two real-world datasets collected
from NYC OpenData and Didi Chuxing.

• NYC Taxi (https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page (accessed
on 5 May 2021)): This dataset includes 91 days of 35 million taxi trip records of NYC
in yellow taxis from 1 April 2016 to 30 June 2016.

• Didi Taxi (https://outreach.didichuxing.com/research/opendata/en/ (accessed on
7 July 2021)): The dataset contains taxi requests from 1 November 2016 to 30 November
2016 for the city of Chengdu with more than 7 million taxi trip records.

We only utilize the following information: pick-up and drop-off dates/times, pick-up
and drop-off locations. In the experiments, we divide the training dataset, validation
dataset, and testing dataset into the ratio of 7:1.5:1.5.

Preprocessing: We preprocess the data following the approach used in CCRNN [22].
The raw taxi records are aggregated into a 30 minute time window where missing values
are replaced with zero and outliers are filtered out. We use a sliding window on training,
validating, and testing data for sample generation. Z-score normalization is adopted to
standardize the data inputs. The station-less NYC taxi orders are clustered into 248 virtual
stations, as shown in Figure 1b. Chengdu Taxi orders are aggregated into 34 virtual stations;

Parameter setting: All experiments are conducted under the environment with one
Intel(R) Xeon(R) Gold 6132 CPU @ 2.60 GHz and one NVIDIA Tesla P40 GPU card. The
input data has dimension C of 2. We use the historical H = 12 continuous time steps to
predict the taxi demand in the next P ∈ {3, 6, 12} time intervals (i.e., short, mid, long-term)
when testing the prediction result.

To cover the input sequence length, we use 9 layers Gated TCN with a sequence of
dilation rates of [1, 2, 5, 1, 2, 5, 1, 2, 5]. We use Equation (6) as our graph convolution layer
with a diffusion step K = 3. Our model is trained by the Adam optimizer [33] with an initial
learning rate of 0.0015 and decays at a rate of 0.2 for every 5 epochs. Dropout is set as 0.3.
The retain ratio from the information diffusion is set to 0.05. We also use the validation
dataset with patience of 20 to early-stop our training algorithm for each model based on
the best validation score.

We use three evaluation metrics, including Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and Pearson Correlation Coefficient (PCC), to evaluate the perfor-
mance of all methods. RMSE between the estimator and the ground truth is used as the
loss function.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://outreach.didichuxing.com/research/opendata/en/
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4.2. Baselines

This paper only compares our model with more recent deep learning models. We com-
pare the performance of our proposed model (ST-DCN) with the following seven baselines:

• LSTM [34]: Long Short-Term Memory Network, a special RNN model for time series
prediction;

• DCRNN [8]: Diffusion Convolutional Recurrent Neural Network, which combines
diffusion graph convolutional networks with GRU in an encoder-decoder manner;

• STGCN [35]: A Spatial-Temporal Graph Convolutional Network uses ChebNet graph
convolution and 1D convolutional networks to capture spatial dependencies and
temporal correlations, respectively;

• GWNet [11]: A Spatial-Temporal Graph Convolutional Network integrates adaptive
adjacency matrix into diffusion graph convolutions with 1D dilated casual convolutions;

• ASTGCN [9]: Attention Based Spatial-Temporal Graph Convolutional Networks,
which introduces spatial attention and temporal attention mechanisms to model
spatial and temporal dynamics, respectively. For fairness, we only take its recent
components;

• MTGNN [36]: A Graph Neural Network designed for multivariate time series fore-
casting by adding a graph learning layer to capture the hidden relationships among
time series data;

• CCRNN [22]: A Coupled Layer-wise Graph Convolution designed for transportation
demand prediction.

4.3. Performance Comparison

Table 1 demonstrates the results of ST-DCN and baselines on the dataset NYC taxi. It
shows that our ST-DCN outperforms other baseline models consistently and overwhelm-
ingly in all metrics except the PCC reported from the short-term prediction experiment with
p = 3. More specifically, our ST-DCN method achieves 4.31%, 4.04%, and −0.07% relative
improvement when p = 3; 7.22%, 8.37%, and 0.44% relative improvement when p = 6; 9.89%,
9.16%, and 0.49% relative improvement when p = 12 over the best performance among
baseline methods, respectively. Table 2 demonstrates the results of ST-DCN and baselines
on the Chengdu Taxi dataset. It shows that our ST-DCN outperforms other baseline models
consistently and overwhelmingly in all metrics. More specifically, our ST-DCN method
achieves 8.78%, 10.91%, and 0.07% relative improvement when p = 3; 15.59%, 14.59%, and
0.09% relative improvement when p = 6; 15.74%, 11.40%, and 0.08% relative improvement
when p = 12 over the best performance among baseline methods, respectively.

Table 1. Performance comparison of ST-DCN and other baseline models on the NYC taxi dataset.

Models p = 3 p = 6 p = 12
MAE RMSE PCC MAE RMSE PCC MAE RMSE PCC

LSTM 22.2593 35.3812 0.0396 22.2777 35.3053 0.0846 22.3101 35.3657 0.0744
DCRNN 5.2734 8.7323 0.9691 5.3217 8.9063 0.9679 5.4931 9.1450 0.9665
ASTGCN 5.4692 9.4815 0.9650 5.3771 9.4569 0.9638 5.6197 9.9337 0.9608
MTGNN 5.4587 9.2379 0.9654 6.1552 10.4912 0.9554 7.3898 12.7436 0.9344
STGCN 6.2332 10.5332 0.9547 6.4520 10.8703 0.9517 6.6751 11.2684 0.9485
GWNet 5.2345 8.7947 0.9717 5.1035 8.8489 0.9690 5.3518 9.2376 0.9674
CCRNN 4.8576 8.2347 0.9754 5.2650 9.1107 0.9699 5.4746 9.5675 0.9672
ST-DCN 4.6481 7.9022 0.9747 4.7352 8.1085 0.9742 4.8226 8.3074 0.9721
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Table 2. Performance comparison of ST-DCN and other baseline models on the Chengdu Taxi dataset.

Models
p = 3 p = 6 p = 12

MAE RMSE PCC MAE RMSE PCC MAE RMSE PCC

LSTM 186.5467 316.6753 0.0491 186.3385 316.9454 0.0271 185.8830 315.5982 0.0944
DCRNN 13.1659 25.6185 0.9967 13.3274 25.9840 0.9967 13.7034 25.9839 0.9966
ASTGCN 17.0968 34.7806 0.9940 17.2186 34.7206 0.9940 18.2122 37.4844 0.9930
MTGNN 14.2991 27.8156 0.9963 15.0434 30.1220 0.9956 16.2260 32.4549 0.9948
STGCN 16.5549 34.1537 0.9944 17.7299 37.1672 0.9932 19.9882 41.4199 0.9917
GWNet 12.0914 24.5351 0.9970 13.7161 27.4267 0.9963 14.1064 29.5471 0.9957
CCRNN 14.6755 28.3034 0.9962 15.2797 31.2508 0.9955 19.3367 40.3984 0.9933
ST-DCN 11.0293 21.8581 0.9977 11.2490 22.1927 0.9976 11.5460 23.0216 0.9974

The low performance of LSTM indicates the limitation of considering only temporal
correlations and the necessity of utilizing the spatial dependencies of the spatial-temporal
network. Methods like STGCN, DCRNN, and ASTGCN highly rely on a predefined graph,
which may not capture crucial dependencies between nodes, therefore leading to worse
performance. However, thanks to combining the encoder-decoder architecture for time
series prediction with graph convolution, DCRNN has better performance. Benefiting from
the self-learned adjacency matrix, MTGNN achieves competitive accuracy in short-term
forecasting experiments. Although less competitive than our model, GWNt and CCRNN
still report relatively high accuracies, which might be explained by adopting adaptive
graphs in modelling relationships between nodes. It indicates that adaptive graph-based
methods could effectively exploit valuable and latent spatial dependencies from historical
taxi demand data.

Figure 7 shows the comparison of the forecasting results of various methods as the
forecasting time increases. We exclude the results of LSTM since it performs poorly. Overall,
as the forecasting time becomes longer, the forecasting becomes more difficult, and therefore
the forecasting error becomes larger. As it is shown in the figure, MTGNN performs well
compared to STGCN for short-term forecasting. However, when the forecasting time
increases, its forecasting accuracy drops dramatically. The errors of the other approaches
increase slowly when the forecasting time becomes longer, and their overall performance
is relatively good. Our ST-DCN model achieves the best forecasting performance at all
forecasting times, and its errors are the smallest and increase the slowest, indicating that
our model is highly stable. All of these results suggest the effectiveness of our proposed
method for spatiotemporal correlations modelling.
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Figure 7. Comparison of the performance of different methods as the forecasting time increases on
the NYC taxi dataset.
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4.4. Component Analysis

To further evaluate the effect of different components of ST-DCN, we design six
variants of the ST-DCN model. We compare these six variants with the ST-DCN model
on the NYC Taxi dataset when p = 12. The difference between these seven models are
described as below:

1. Basic: This model does not equip with hybrid dilated convolution, two-phase graph
diffusion convolution, and temporal periodicity;

2. +HDC: This model uses hybrid dilated convolution to overcome the gridding effect;
3. Two-phase: This model uses two-phase graph diffusion convolution to address two

limitations of graph convolution, but it does not employ hybrid dilated convolution;
4. One T-block (1 day): This model considers the daily period in one T-block (only

yesterday is included);
5. Multi T-block (1 day): This model considers the daily period in multi T-blocks (only

yesterday is included);
6. One T-block (7 day): This model considers the daily and weekly period in one T-block;
7. ST-DCN (multi T-block (7 day)): This model considers the daily and weekly period in

multi T-blocks. It is the complete version of our proposed approach ST-DCN.

As shown in Table 3, we can observe that the complete version of ST-DCN outperforms
other variants. The impact of HDC is significant in terms of MAE but less apparent in RMSE.
The evident effect of two-phase graph diffusion convolution indicates the effectiveness of
selecting useful information at each convolutional diffusion process. Compared with the
model considering only daily periodicity, introducing the weekly periodicity into the model
also improves its accuracy. In addition, the model outperforms its competitors after using
multiple T-blocks instead of only one to process all the temporal dependencies. Hence,
each designed sub-module has positive effects for forecasting performance improvement.

Table 3. Evaluation of different variants on the NYC taxi dataset.

Models MAE RMSE PCC

basic 5.4035 9.2762 0.9664
+HDC 5.3371 9.2543 0.9655

two-phase 5.3327 9.1792 0.9671
one T-block (1 day) 5.2181 9.0306 0.9679

multi T-block (1 day) 5.1653 8.8413 0.9685
one T-block (7 day) 5.0545 8.8018 0.9698

ST-DCN (multi T-block (7 day)) 4.8226 8.3074 0.9721

5. Discussion

It is necessary to model the spatio-temporal information effectively to improve the
taxi demand forecasting accuracy. Compared with HA, ARIMA, and LSTM, which only
consider temporal information. ST-ResNet, STDN [13], and DMVST-Net, which combine
spatio-temporal information, have improved forecasting accuracy, although these methods
use CNN to obtain spatial information. The main idea of such methods is to consider
traffic data like images and process their spatial correlation by CNN. However, in traffic
forecasting tasks, the distribution properties of the data spatially are different from images,
so there are limitations in the application of CNN-based methods to traffic problems. For
example, in the taxi demand forecasting problem, there may be time-delayed correlations
in the data of the origin and destination spatially. The origin-destination hotspot areas
may cross all regions in the network. Data from regions with the same attributes are also
spatially correlated, and their distributions are not restricted to fixed geometric regions.

Due to the ability of GCN to model complex road networks, scholars have used
GCN-based methods for traffic forecasting in recent years. For example, STG2Seq [5], STS-
GCN [14], STFGNN [16], and the baselines method chosen in this paper aim to improve the
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adjacency matrix of GCN. However, they all missed the limitations of graph convolutional
neural networks, which is one of the difficulties overcome in this paper.

In terms of temporal dependence, most deep learning-based models use RNN methods,
such as ST-ResNet, STDN, DMVST-Net, DCRNN, CCRNN, etc. However, from the model
optimization standpoint, RNNs cannot capture long-term dependencies well and suffer
from gradient disappearance or explosion problems. There are also approaches using TCN,
such as Graph WaveNet, STFGNN, and MTGNN, which cannot effectively improve the
forecasting accuracy due to the grid effect problem of conventional dilated convolution.
ST-DCN uses TCN to capture the long-term temporal dependence while using hybrid
dilated convolution to overcome the grid effect problem, enabling ST-DCN to achieve high
forecasting accuracy. Whether using NYC taxi’s three-month dataset or Chengdu taxi’s
one-month dataset, the ST-DCN achieves state-of-the-art forecasting accuracy, which also
proves the effectiveness of ST-DCN.

It should be mentioned that although ST-DCN can achieve high forecasting accuracy,
it requires more memory and a longer training time compared to other methods. Although
ST-DCN uses two types of adjacency matrix to capture spatial dependencies adaptively,
it is essentially still a fixed graph structure, and the model’s effectiveness may be further
improved if dynamic graphs can be used to model spatial dependencies. The ST-DCN uses
separate modules to capture temporal and spatial correlations, not simultaneously, which
ignores the heterogeneity in spatio-temporal data.

6. Conclusions and Future Work

This paper proposes a novel spatial-temporal diffusion convolutional model called
ST-DCN and successfully applies it to forecasting taxi demand. ST-DCN could capture
spatial dependencies effectively in a two-phase graph diffusion convolutional network.
Furthermore, our model considers the dynamic attribute in spatial correlation by using
the attention mechanism. ST-DCN can learn long-term temporal dependencies through
a hybrid dilated convolution, which stacks its convolutional layers exponentially to in-
crease the receptive field. Moreover, we also consider the temporal periodicity to obtain
more accurate prediction results. Experiments on two large-scale real-world taxi datasets
demonstrate that our method can achieve state-of-the-art prediction performance, which
illustrates the superiority of our model.

For future work, we will further optimize the network structure and parameter settings.
Moreover, we plan to apply the proposed model to other spatial-temporal forecasting tasks.
In addition, taxi demand is also affected by many external factors, such as weather and
urgent events. In the future, we will take some external influences into account to further
improve forecasting accuracy.
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