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Abstract: Accurate and efficient classification maps of urban functional zones (UFZs) are crucial
to urban planning, management, and decision making. Due to the complex socioeconomic UFZ
properties, it is increasingly challenging to identify urban functional zones by using remote-sensing
images (RSIs) alone. Point-of-interest (POI) data and remote-sensing image data play important roles
in UFZ extraction. However, many existing methods only use a single type of data or simply combine
the two, failing to take full advantage of the complementary advantages between them. Therefore,
we designed a deep-learning framework that integrates the above two types of data to identify urban
functional areas. In the first part of the complementary feature-learning and fusion module, we use a
convolutional neural network (CNN) to extract visual features and social features. Specifically, we
extract visual features from RSI data, while POI data are converted into a distance heatmap tensor
that is input into the CNN with gated attention mechanisms to extract social features. Then, we
use a feature fusion module (FFM) with adaptive weights to fuse the two types of features. The
second part is the spatial-relationship-modeling module. We designed a new spatial-relationship-
learning network based on a vision transformer model with long- and short-distance attention, which
can simultaneously learn the global and local spatial relationships of the urban functional zones.
Finally, a feature aggregation module (FGM) utilizes the two spatial relationships efficiently. The
experimental results show that the proposed model can fully extract visual features, social features,
and spatial relationship features from RSIs and POIs for more accurate UFZ recognition.

Keywords: multimodal data fusion; UFZ map; spatial relationship modeling; vision transformer

1. Introduction

Today, more than half of the world’s population lives in cities, yet cities cover only a
tiny fraction of the Earth’s surface. Asian and African countries are continuously urbanizing,
and the urban population continues to grow; the world’s urban population is expected
to increase by 500 million by 2030 [1]. Therefore, with a growing urban population, it
is critical to manage and monitor limited urban areas. An urban functional zone is a
concept that describes people’s different activities in a certain area, such as industrial areas,
commercial areas, or residential areas [2,3]. As a basic urban unit, an accurate UFZ map
is very important for urban planning, management, and decision making [4,5]. However,
with the rapid development of urbanization in the world, urban functional zone maps
managed by the government cannot be updated in a timely manner [6,7]. Therefore, it is
crucial to make accurate and timely UFZ maps.

With the rapid development of related disciplines and technologies, high-resolution
remote-sensing image data have gradually shown potential in the task of UFZ recognition.
Research based on remote-sensing images continues to develop, and the use of RSIs is
recognized as one of the most effective and efficient methods [8,9]. In the past, some
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traditional methods, such as the scale-invariant feature transform (SIFT) [10] and the
histogram of oriented gradients (HOG) [11,12], were used to identify UFZs from remote-
sensing images. These methods perform well in traditional land use and land cover
(LULC) classification tasks but do not perform well in urban area recognition tasks with
complex structures and fine semantics. Therefore, some scholars have proposed topic
models to further identify UFZs from remote-sensing imagery. Additionally, probabilistic
topic models [13,14] can further exploit the potential semantic relationships of urban
areas by using object features. However, such methods are still only based on low-level
manual features and cannot effectively represent the complex high-level semantic feature
relationships of UFZs. In recent years, computer science has developed rapidly, and
the advantages of many deep-learning methods [15–17] in identifying urban functional
zones and scenario-level LULC classification have become increasingly obvious. For
example, benefiting from the development of the transformer [18], Wang [19] designed
a U-shaped transformer network based on the UNet [20] model architecture to interpret
high-resolution urban scene images and obtained satisfactory results on four challenging
datasets. Zhou [21] introduced the concept of the super object (SO) and classified the
urban functional area based on the methods of frequency statistics and convolutional
neural networks. Du [22] mapped large-scale and fine-grained urban functional zones
from remote-sensing images using a multi-scale semantic segmentation network and an
object-based approach. In general, the use of high-resolution RSIs can achieve relatively
good results for producing fine-grained urban area classification maps [13,23,24]. However,
RSI data perform well in extracting the physical characteristics of ground objects, such
as the distribution of buildings and the spatial structure of cities, but they fail to reflect
the dynamically changing properties and human social activity information [25,26]. In
addition, some UFZ components are visually very similar, and the method based on remote-
sensing image data can extract the visual semantic features efficiently, but it cannot analyze
the social semantic features between and within different functional areas. The urban
functional zone contains various functional properties of regions that are directly related to
human social activities [27,28]. This relationship is complex to some extent. Therefore, it is
difficult to obtain high-precision UFZ classification maps using only RSI data.

It has been shown that social perception and human activities are better methods
for dynamically identifying urban areas [26,29]. Socioperceptual big data that record hu-
man activity in real time are becoming increasingly available, such as points of interest
(POIs) [2,30], mobile phone positioning data [31,32], social media check-in data [33], geo-
tagged photos [34,35], and vehicle GPS trajectory data [36,37]. Unlike remote-sensing
imagery, these data are byproducts of human social activities, and many have temporal
features; therefore, they contain rich socioeconomic attributes. For example, by fusing
remote-sensing image data and taxi trajectory data, Qian [38] used the road network as the
basic segmentation unit to identify urban functional districts based on the residual network
framework. Cao [39] proposed two strategies: enforcing cross-modal feature consistency
(CMFC) and cross-modal triplet (CMT) constraints. Time-dependent social sensing signa-
ture features were extracted based on a long short-term memory network (LSTM) and a
one-dimensional convolutional neural network and fused with the remote-sensing image
data for more accurate urban functional area classification. POIs are the main static data in
social sensing data; they are not only easy to obtain but can also provide comprehensive
land use information based on human activities and geographical locations [40]. Xu [41]
calculated the statistical features of POIs and fused them with remote-sensing image data
to identify UFZs. Lu [42] proposed a unified deep-learning framework that can simulta-
neously extract visual features, social features, and spatial relationship features from RSI
data and POI data. Bao [43] proposed the deeper-feature convolutional neural network
(DFCNN) and integrated remote-sensing data and POI data to identify urban functional
zones. There have been many efforts by scholars to recognize urban functional zones, but
many of the previous studies could not effectively identify the implicit relationship between
UFZs and POIs because the relationship between them is not one-to-one or one-to-many,
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and the synergy mechanism between POIs and RSIs has rarely been studied. Simple fusion
strategies (stacking or adding) [41,43] have difficulty taking full advantage of the comple-
mentary advantages of multimodal data. Additionally, fine-grained spatial relationships
are important for identifying UFZs for the following reasons [44]. The first is that the layout
of urban functional zones itself helps to reduce visual ambiguity. For example, determining
whether a retail area is a commercial or residential area requires information about the
surrounding area. Second, aggregating spatial information between and within different
urban functional areas is conducive to determining the types of UFZs. For example, there
are often recreational parks next to residential areas, while there are few large green-space
areas around industrial areas. This co-occurrence relationship is very clear to some extent.

To address the above problems, we built a unified deep-learning framework, Lufz-
CrossFormer (Lu-CF), which can efficiently exploit the complementary advantages between
RSIs and POIs and simultaneously capture the potential spatial relationships of urban
functional zones. The framework is divided into two parts: a complementary feature
fusion module and a spatial-relationship-modeling module. In the first module, we use a
common CNN to extract visual features from remote-sensing imagery data and a CNN with
a gated attention mechanism to extract social features from point-of-interest data. To utilize
the POIs conveniently, we first convert them into the corresponding hierarchical distance
heatmap tensor according to the number of POI categories. Then, we use a layer-weighted
model (LWM) to capture the possible co-occurrence relationship between POIs and UFZs.
Finally, an adaptive feature fusion module (FFM) is used to efficiently fuse the two types
of features. In the second part, the fused features are recoded according to the location
relationship. We designed a new network structure based on the long-short-distance
attention (LSDA) network CrossFormer [45], which can simultaneously capture the local
spatial relationships and global spatial relationships of the fused features. Finally, a feature
aggregation module (FGM) is used to efficiently utilize the two spatial relationships for
more accurate urban functional area recognition. The main contributions of this paper are
summarized as follows:

(1) We designed a unified deep-learning framework and integrated remote-sensing im-
ages and POIs to recognize urban functional zones. Our method can extract visual
features, social features, and spatial relationship features from different data for more
accurate urban functional zone recognition, while existing relevant studies rarely take
into account all three features simultaneously.

(2) We investigated which POI categories have a greater impact on the final urban func-
tional zone recognition accuracy, as well as the advantages of using POI data com-
pared to using RSI data, through a series of experiments, which contributes to a
further understanding of the role of multimodal data in the urban functional zone
recognition task.

(3) The synergy mechanism of remote-sensing image data and point-of-interest data in
the urban functional zone recognition task has rarely been studied. In this study, we
used a feature fusion module to adaptively fuse the visual and social features and
further analyzed the specific effects of this synergy mechanism for different urban
functional areas.

2. Data and Methods
2.1. Data Source

As shown in Figure 1, we used the CSU-RSISC10 dataset [44] as the main research
dataset, which was collected via Google Earth in Santa Monica, a coastal city in Los Angeles,
USA, that covers an area of approximately 20 km2. It contains 288 sample-level images
with a pixel resolution of 2000 × 2000 and a spatial resolution of 0.15 m per pixel. Each
sample-level image was further divided into 400 nonoverlapping patch-level images of
size 100 × 100. Figure 2 illustrates the two-level hierarchical structure of this dataset. The
first part of the model uses unordered patch-level images as training data. The second part
uses sample-level images containing spatial location information for training. In our
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experiments, we chose 70% of the data as the training set and the remaining data as the
test set. For the patch-level data, the distribution of the number of different UFZ categories
in the training and test sets is shown in Table 1. In addition, we downloaded 22,162 POIs
from the open-source OSM website and reclassified them into 9 classes: airport, industry,
supermarket, retail, hotel, institution, public service, nature, and residence. The distribution
of the number of each type of POI is shown in Table 2. Finally, according to the “Code for
Classification of Urban Land Use and Planning Standards of Development Land (GB 50137-
2011)” and the LBCS standards, we classified the urban functional zones into commerce,
industry, residence, construction, institution, transport, open space, and water.
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Table 1. Quantitative distribution of different UFZs in training and test sets.

Category Commerce Industry Residence Construction Institution Transport Open Space Water

Training set 6011 1396 30,407 346 1764 20,744 9418 10,714
Testing set 1269 698 15,127 206 570 8364 4811 3355

Table 2. Quantitative distribution of different POI categories.

Category Residence Retail Supermarket Nature Hotel Public Service Institution Industry Airport

Number
of POIs 21,045 447 310 13 91 56 62 118 20

2.2. Methods

The overall structure of the network framework established in this paper is shown in
Figure 3. In the first part, we use a CNN to extract visual and social features while fusing
them efficiently. In the second part, we design an architecture based on the CrossFormer
network to extract local spatial relationships and global spatial relationships from the fused
features generated in the first part and utilize them efficiently for the final classification
output. The following subsections explain the details of the proposed framework.
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2.2.1. Complementary Feature Learning and Fusion

In this part, we use two CNNs to extract visual features and social features from RSIs
and POIs. Then, the two types of features are fused efficiently to obtain fused features with
strong representation ability based on the FFM.

Visual Feature Learning

First, we crop a large-scale three-band RGB RSI with a size of 3 × h × w according
to the window step (h × w) to obtain a group of image units nj

(
j = 1, 2, 3, . . . , H

h ×
W
w

)
,

where each individual image unit represents a type of urban functional area. Then, ResNet-
50 [46] is used as the backbone network to extract features from these image units, and a
global average pooling operation is used to obtain the final visual feature fl ∈ R2048×1×1.

Social Feature Learning

Many UFZs are visually similar; for example, the appearance of commercial buildings
and institutional buildings may look extremely similar. Therefore, relying on remote-
sensing imagery alone will not yield satisfactory results in many cases. We introduce POI
data with rich social attributes as complementary features to RSI data and use a CNN with
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an attention mechanism to capture possible co-occurrence relationships between urban
functional zones and the corresponding points of interest.

Specifically, we first convert them into the corresponding hierarchical distance heatmap
tensor according to the number of POI categories and input it into the convolutional neural
network, as the CNN is better at processing two-dimensional continuous image data.
Assume that the region contains M types of POIs, and the number of each POI category
is nu (u = 1, 2, . . ., M). For the uth-category point of interest, we calculate the minimum
distance from pixel point (xi, yi) in the remote-sensing image to nu POIs according to
Equation (1) to generate the distance heatmap DP:

DP = MIN
(√

(xi − xl)
2 + (yi − yl)

2
)

(1)

where (xl, yl) represents the spatial coordinates of the uth-category point of interest,
l = 1, 2, . . ., nu. As a result, we obtain M types of distance heatmaps and then stack them
to form a distance heatmap tensor T ∈ RM×H×W. Similar to the remote-sensing-image-
cropping method, we crop the heatmap tensor T into H/h ×W/w nonoverlapping patches:
tj ∈ RM×h×w

(
j = 1, 2, . . . , H

h ×
W
w

)
. Second, the relationships between POIs and UFZs are

not one-to-one or one-to-many. An urban functional district may have multiple types of
POIs, or a POI may appear in different urban functional zones simultaneously. For example,
there will be retail POIs in both commercial and residential areas. To this end, inspired by
Lu’s approach [42], we adaptively weight tj by adding a layer-weighted model (LWM) to
the CNN to capture possible co-occurrence relationships between different types of POIs
and UFZs. The structure of the LWM model is shown in Figure 4. We first use global
average pooling encoding tj to obtain an intermediate heatmap tensor pj ∈ RM×1, and then
two fully connected (FC) layers are used to obtain the interlayer weights:

wj = ϕ
(
w2 δ

(
w1 pj

))
∈ RM (2)

where δ(x) is the ReLU activation function, and ϕ(x) is the sigmoid function. The first FC
layer has a learnable weight w1 ∈ RDr1×M to extend the dimension of the feature tj, and
the second FC layer has a learnable weight w2 ∈ RM×Dr1 to reduce the output dimension
of the first FC layer. Then, we use the output wj to adaptively weight the layers of tj by
performing layerwise multiplication between tj and wj:(

t′ j = wj × tj
)
∈ RM×h×w (3)

where t′j represents the heatmap tensor after adaptive weighting. Finally, we incorporate

the LWM into the CNN to extract the social feature fs ∈ R2048×1×1.
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Complementary Feature Fusion

As we can imagine, visual features are effective for identifying certain urban functional
areas, such as water and many open spaces. However, for commercial, industrial, and
institutional areas, we need social features that contain rich socioeconomic attributes
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for more accurate recognition, suggesting that visual and social features have different
discriminative abilities for different UFZ categories. Therefore, similar to the Social Feature
Learning section, we use an adaptive feature fusion module (FFM) for better feature fusion.
As shown in Figure 5, specifically, the module can learn the adaptive fusion weights from
the visual feature fl and the social feature fs, as shown in Equation (4):

w f = ϕ(w4 δ(w3 fc)) (4)

where fc =

[
fl
fs

]
∈ R4096. The first FC layer is a downsampling layer to reduce the output

dimension, and its weight is w3 ∈ R 4096
r ×4096; the second FC layer is a rescaling layer to

compute the feature’s weight factor, and r is the rescaling factor.
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w f = [wl ws] is a feature tensor of length 2, and wl and ws denote the ability of visual
and social features to discriminate between different urban functional zones, respectively.
Then, through Equation (5), we obtain the final fused feature f ′c by adaptively weighting
the visual features and social features:

fc
′ = w f fc =

(
[wl ws]

[
fl
fs

])
∈ R2048 (5)

2.2.2. Spatial Relationship Modeling

In the first part, we convert the input into a group of fused features f ′c
(

c = 1, 2, 3, . . . , H
h ×

W
w

)
.

After that, we construct the feature tensor Fp according to the position relation of the tensor f ′c, as defined
in Equation (6):

Fp =


f1
′ . . . f ′ W

w
...

. . .
...

f ′ W
w ×(

H
h −1)+1 · · · f ′ HW

hw

 ∈ R2048× H
h ×

W
w (6)

Each tensor f ′c in the feature tensor Fp corresponds to patch-level imagery clipping
from large-scale imagery. Then, a simple convolutional network is used to extract local
spatial relationships. Finally, we convert the feature Fp into a one-dimensional sequence Fo
and input it into the global module to extract the global spatial relationships:

Fo =

(
f ′1, f ′2, f ′3, . . . , f ′HW

hw

)
∈ RL×E (7)

where L = H
h ×

W
w is the sequence length, and E is the embedding dimension.

As shown in Figure 6, the local spatial relationships can be obtained through two groups
of parallel convolution operations, and four groups of CrossFormer blocks (CF blocks) are
used to obtain the global spatial relationships. The global features and local features are
added, and the results are weighted sums with the original input Fp. Finally, a feature
aggregation module (FGM) is used to obtain the final global–local context.
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Local Spatial Relationship Modeling

While global spatial relationships are crucial to identifying complex UFZs, local
information is also important for maintaining rich spatial details. As shown in the right
half of Figure 6, we use two groups of parallel convolutions containing batch normalization
operations to extract local information, with convolution kernel sizes of 1 and 3, and finally
perform a sum operation.

Global Spatial Relationship Modeling

On a large scale, global information represents the relationships between different
urban functional areas or a UFZ and its sub-UFZs. Some studies [19,47] have shown that
vision-transformer-based structures have unique advantages in capturing global spatial
relationships. In this paper, we present a network architecture designed to capture the
global spatial relationships of the urban functional district based on CrossFormer. As shown
in the left half of Figure 6, we first transform the original input Fp into a one-dimensional
sequence and then input it into the CrossFormer blocks sequentially. As shown in Figure 7a,
a CF block consists of a series of modules containing short-distance attention (SDA), long-
distance attention (LDA), dynamic position bias (DPB), and multilayer perception (MLP).
After that, we perform reshaping, upsampling, and convolution operations to restore the
output to the size of the input. Finally, a residual connection is used to prevent model
degradation, and we stack 6 global modules to obtain the final global features. In the
following, we explain the details of the CrossFormer block.

(a) Dynamic Position Bias

The commonly used relative position bias (RPB) represents the relative embedding
positions by adding a bias to the self-attention. The following equation represents the use
of RPB to represent long-short-distance attention:

Attn = so f tmax
(

QKT/
√

d + B
)

V (8)
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where Q, K, V ∈ RG2×D denote query, key, and value in the self-attention module, respec-
tively, G is the group size, and D is the dimension of the embeddings.

√
d is a constant, and

B ∈ RG2×G2
is the RPB matrix. In the past, Bi,j = B′∆x,∆y, where B′ is a fixed-size matrix,

and (∆x, ∆y) is the coordinate distance of the ith and jth embeddings. When the size of
(∆x, ∆y) is larger than B′, the size of the image or group is limited. The MLP-based module
DPB is designed to solve the following problem:

Bi,j = DPB(∆x, ∆y) (9)
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As shown in Figure 7b, the structure comprises three FC layers containing layer
normalization (LN) and ReLU activation, and the dimension of the middle layer is set
to D/4. The output Bi,j is a scalar representing the relative positions of the ith and jth
embeddings. The DPB is a trainable module that can be optimized along with the entire
model; it can handle arbitrary input group sizes without being limited by (∆x, ∆y).

(b) Long- and Short-Distance Attention

The self-attention module in the CrossFormer block is divided into two parts: short-
distance attention (SDA) and long-distance attention (LDA). For SDA, we use a group of
varying windows (G × G) to divide adjacent embeddings, and Figure 8a illustrates the
case where G = 3. Unlike the fixed window of the Swin Transformer, SDA has a variable
group size. In this experiment, the parameter G of the four CF blocks is {2, 4, 5, 4}. For LDA,
given an input of M ×M, the embeddings are sampled at a fixed interval I. As shown in
Figure 8b (M = 9, I = 3), all of the embeddings belonging to the red boxes form a group,
and the parts belonging to the purple boxes form another group. The width and height of
the group can be computed by G = M/I. After grouping embeddings, both SDA and LDA
compute the self-attention within their respective groups. As a result, the computational
cost of the self-attention module will be reduced while capturing the fine-grained spatial
relationships efficiently.

Feature Aggregation Module

The original feature FP retains rich spatial details but lacks semantic attributes. Ad-
ditionally, the global–local feature has fine-grained semantic information, but its spatial
resolution is insufficient. Therefore, adding the two directly may reduce the classification
accuracy [48]. In the method described in this paper, we use a feature aggregation module
(FGM) to narrow the semantic gap between the two types of features to achieve more
accurate UFZ recognition.
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First, a weighted-sum operation is performed on the two types of features, and the
weights can be updated during model training to make full use of the rich spatial details and
precise semantic attributes of different features. As shown in Figure 9, after a convolution
operation (3 × 3), the fused features are input into the spatial path and channel path.
Second, the two paths designed in the model help to strengthen the channel-based and
space-based feature representation. Specifically, for the spatial path, the model uses a depth-
separable convolution to produce a space-based attention feature S ∈ Rh×w×1, where h
and w represent the spatial resolution of the feature map. After processing by the sigmoid
function, matrix multiplication is used to obtain the path output. For the channel path, we
first use the global average pooling operation to obtain the channel-based attention feature
C ∈ R1×1×c, where c represents the channel dimension. In addition, the rescaling operation
consists of two convolution layers of 1 × 1, reducing and then restoring the dimension of
the channel by a fixed factor. Similar to the spatial path, the sigmoid function and matrix
multiplication are used to obtain the final path output. Finally, we use a convolution layer
of 1 × 1 to obtain the FGM output.
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3. Experimental Analysis
3.1. Implementation Details

In the first part, we use ResNet-50 as the backbone network to extract visual features
from the remote-sensing imagery. Meanwhile, the points of interest are transformed into
a hierarchical distance heatmap tensor and input into the convolutional neural network
to extract social features. Finally, a module based on an attention mechanism is used to
efficiently fuse the two types of features. To train this part, we used cross-entropy loss (CE)
and the Adam optimizer. The batch size was set to 16; the learning rate was initially set to
1 × 10−5, and every five epochs, it became 0.98 times the original.

In the second part, we use two modules to extract global spatial relationships and
local spatial relationships from the fused features, and then a feature aggregation module
is used to obtain the final global–local context. After the model of the first part was
trained, we saved the fused features obtained in this part to a local computer as input
for the second part. Meanwhile, the loss function, optimizer, batch size, and learning rate
adjustment strategies used in this part were exactly the same as in the first part.

We used the PyTorch deep-learning framework for training based on the Windows
10 operating system with an NVIDIA GeForce RTX 3090 graphics card (memory 24 GB). For
the complementary feature-learning and fusion part, the model converged after 200 epochs;
for the spatial-relationship-modeling part, the model converged after 150 epochs.

3.2. Evaluation Metrics

In the experiment, we used the kappa coefficient (Kappa) to evaluate the comprehensive
performance of each model, the F1 score to measure the accuracy of each category, and
the overall accuracy (OA) to evaluate the overall classification accuracy, as shown in the
following equations:

OA = TP+TN
TP+TN+FP+FN

precision = TP
TP+FP

recall = TP
TP+FN

F1 = 2×precision×recall
(precision+recall)

(10)

pe =
a1×b1+a2×b2+···+aC×bC

n×n
Kappa = po−pe

1−pe
(11)

where TP denotes the number of pixels correctly classified into the positive class, TN
denotes the number of pixels correctly classified into the negative class, FP denotes the
number of pixels misclassified into the positive class, and FN denotes the number of pixels
misclassified into the negative class. Po denotes the overall classification accuracy; a1,
a2, . . ., aC denote the number of true samples in each category; b1, b2, . . ., bC denote the
number of predicted samples in each category; and n is the total number of samples.

3.3. Experiments
3.3.1. Comparative Experiments for the Second Part

In the following experiment, we kept the structure of the first part unchanged and
compared different models for the second part to further verify the importance of spatial
relationships for urban functional zone recognition. The models we chose to compare
include the hierarchical vision transformer networks based on the sparse attention mecha-
nism Swin Transformer (SWINT) [49] and the pyramid vision transformer (PVT) [50], the
long short-term memory network (LSTM) [51], and the gated recurrent neural network
(GRU) [52] based on time-series modeling. For a fair comparison, we stack six global
modules and one local module for all experimental models.

As shown in Figure 10, the area classified by our method is purer and the road structure
is more complete compared with other methods. The main reason is that our model can



ISPRS Int. J. Geo-Inf. 2023, 12, 468 12 of 21

obtain richer composition patterns of spatial relationships by adding the variable group
size and long-short-distance attention. As shown in the red circles in the first row, our
method accurately identifies most of the institutional areas and has fewer misclassified
spots, with a clearer road network compared to the results obtained by the GRU and LSTM.
As marked by the red circles in the fourth row, our method obtains better results than
SWINT and PVT due to the consideration of finer spatial relationships. In the sixth row, the
classification results of our method are purer than those of the SWNT and PVT. Although
the GRU and LSTM have no obvious misclassified spots in this region, the urban functional
area edge recognized by them is not precise enough.
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The quantitative evaluation results of the models are shown in Table 3. The GRU
and LSTM can only capture the long-range dependence information in the horizontal
and vertical directions, so they are the least effective. Our method improves Kappa by
1.03% over the second-best method and 7.04% over the worst method, and the overall
accuracy is improved by at least 1.8% over other methods. In addition, the F1 scores
of each UFZ category can further prove the advantage of our method. Our model has
the best performance in six categories, especially the F1 score of the transport category,
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which reaches 0.8820. Meanwhile, the accuracy performance is not satisfactory in the
construction category due to the samples being scarce. For the other two categories, the
accuracy gap between our method and the best method is less than 1%. The qualitative and
quantitative evaluation results show that our model can make full use of the fine-grained
spatial relationships for more accurate urban functional zone recognition.

Table 3. Quantitative evaluation results of different models for the second part.

Models
s
a

F1 Scores Kappa OA

Transport Commerce Residence Construction Industry Institution Open
Space Water

Lu-CF 0.8820 0.7865 0.9300 0.6528 0.8661 0.7514 0.9125 0.9596 0.8697 0.9136
SWINT 0.8796 0.7458 0.9280 0.6213 0.8669 0.7349 0.9109 0.9600 0.8594 0.8956

PVT 0.8794 0.7338 0.9276 0.6471 0.8690 0.7202 0.9105 0.9571 0.8587 0.8924
LSTM 0.7805 0.6578 0.9146 0.4512 0.8392 0.7041 0.8772 0.9474 0.7993 0.8451
GRU 0.8196 0.6707 0.9225 0.5325 0.8139 0.6938 0.8915 0.9476 0.8276 0.8762

3.3.2. Comparative Experiments with Other Methods

In this part, we used three related methods and a benchmark model for comparative
experiments. The first one is the RPFM (Remote Sensing Images and Point-of-Interest
Fused Model) [41], which also uses the image patch as the basic mapping unit, and it
represents the relationship between POIs and urban region functions based on the distance
metric. The second one is DHAO (deep integration of high-resolution imagery and Open-
StreetMap) [53], which uses statistical features from POI data and visual features from RSI
data for urban functional zone classification, and the road network is used as the basic
mapping unit. The third one is the SO-CNN (Super-Object-based CNN) [21], which uses
only remote-sensing image data to identify UFZs, and the super object is used as the basic
mapping unit. In addition, the benchmark model is the widely used UNet network [20],
which only utilizes image data to identify urban functional areas.

On the one hand, social perception information is crucial for accurate UFZ recognition,
and our method can sufficiently capture it through the complementary feature-learning
and fusion module. By learning rich social features, our approach can identify institutional
areas, commercial areas, and open spaces more accurately. The results obtained by the SO-
CNN are not accurate enough because only RSI data are considered. Although the RPFM
and DHAO also use both POI data and RSI data, they simply incorporate the statistical
characteristics of POI data and therefore fail to take full advantage of their social attributes.
As a result, the inadequate representation can produce misclassified results, such as the red
circles in Figure 11. We further give two specific examples. The region in the fourth row of
Figure 11 consists of a large number of commercial areas as well as some residential areas.
Accurately identifying commercial areas has always been a difficult problem in the UFZ
classification task. Nevertheless, our method correctly identified almost all commercial
areas in the region and has fewer misclassification spots. In the fifth row, our model
accurately identified the area where the beach meets the ocean, while all other models
misclassified this area as a transport category. On the other hand, spatial relationship
features are also important for accurate UFZ classification. As marked by the yellow circles
in Figure 11, the results obtained by our method are purer and more continuous due to
the consideration of the spatial position relationships between different patches, while
other methods only utilize the features of a single UFZ. In addition, the benchmark model
obtained the worst results due to the model structure and use of a single data type.
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The quantitative evaluation results are shown in Table 4, which shows that our method
obtains the highest scores on most of the metrics. The kappa value of our method is at
least 2.84% higher than that of other methods, and it has an overall accuracy improvement
of 3.84% over the second-best method. In addition, our model achieves the highest F1
scores on seven UFZ categories, with the scores improved by at least 6.50% and 3.61% for
the commercial and institutional areas, respectively. The qualitative and quantitative
evaluation results show that our model has a better overall performance in the urban
functional zone recognition task.

Table 4. Quantitative evaluation results of different models.

Models
s
a

F1 Scores Kappa OA

Transport Commerce Residence Construction Industry Institution Open
Space Water

Lu-CF 0.8820 0.7865 0.9300 0.6528 0.8661 0.7514 0.9125 0.9596 0.8697 0.9136
RPFM 0.8613 0.7215 0.9063 0.6276 0.8479 0.7153 0.8995 0.9432 0.8413 0.8752
DHAO 0.8143 0.6736 0.8965 0.5928 0.8035 0.6814 0.8719 0.9361 0.8167 0.8567

SO-
CNN 0.8332 0.6961 0.9325 0.6016 0.8113 0.6976 0.8817 0.9456 0.8325 0.8643

UNet 0.7516 0.6198 0.8746 0.4332 0.7652 0.5678 0.7764 0.9175 0.7361 0.7623
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3.3.3. Ablation Experiment

In this section, we analyze the specific contribution of each module in the proposed
framework to the final urban functional zone recognition accuracy through a series of
ablation experiments. The results of the ablation experiments are shown in Table 5. We
conducted experiments by continuously adding new modules to verify the contribution of
different modules to the UFZ recognition accuracy. For example, using both RSI data and
POI data (Stage 2) improves the Kappa value by 0.0793 and OA value by 0.0779 compared
to using only remote-sensing imagery (Stage 1), and the use of the LWM module (Stage 3)
increases the Kappa value to 0.8246; meanwhile, the addition of the FFM (Stage 4) increases
the Kappa value from 0.8246 to 0.8379. The spatial relationship modules also have an
important impact on improving the urban functional district classification accuracy. After
adding the local module and global module (Stage 7), the Kappa value increases from
0.8379 to 0.8654. Finally, our model obtains the optimal performance (Kappa = 0.8697, OA
= 0.9136) after adding the FGM (Stage 8). It is worth noting that including only the local
module (Stage 6) leads to a greater accuracy improvement compared to including only
the global module (Stage 5), suggesting that the local spatial relationship is also crucial to
accurate UFZ classification. The results of the ablation experiments show that all of the
modules of our framework have a positive effect on improving the urban functional area
recognition accuracy, and using POI data leads to the greatest improvement in accuracy;
therefore, we discuss the relationship between points of interest and urban functional zone
recognition accuracy in the following section.

Table 5. The results of the ablation experiment. RSI: use of remote-sensing imagery. POI: use
of distance heatmap tensor of POIs. LWM: layer-weighted module. FFM: feature fusion module.
LOCAL: local spatial relationship modeling. Global: global spatial relationship modeling. FGM:
feature aggregation module.

Stage
Strategy

Kappa OA
RSI POI LWM FFM LOCAL GLOBAL FGM

1
√

0.7364 0.7639
2

√ √
0.8157 0.8418

3
√ √ √

0.8246 0.8579
4

√ √ √ √
0.8379 0.8713

5
√ √ √ √ √

0.8548 0.8925
6

√ √ √ √ √
0.8637 0.9012

7
√ √ √ √ √ √

0.8654 0.9058
8

√ √ √ √ √ √ √
0.8697 0.9136

4. Discussion

In this section, we discuss the contributions of different point-of-interest categories
to the UFZ classification accuracy and the synergy mechanism between RSI data and POI
data in the urban functional area recognition task. Finally, we visualize the layer activation
of visual features.

4.1. Specific Impact of POIs on UFZ Recognition

The relationship between POIs and UFZs is not one-to-one or one-to-many and is com-
plex in many cases. To determine which point-of-interest categories have a more important
impact on the urban functional zone classification accuracy, we deleted one POI category at
a time and repeated the experiment. As shown in Table 6, we find that regardless of which
POI types are deleted, the final recognition accuracy decreases, indicating that all POIs
have a positive effect on improving the urban functional area classification accuracy. When
we remove POIs in the institution, residence, industry, and public service categories, the
model accuracy decreases the most, suggesting that these POI categories have a relatively
strong association with the urban functional district. In contrast, deleting retail, hotel, and
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supermarket POIs has less of an impact on the classification accuracy, mainly because these
points of interest can occur in almost all urban functional area categories, and there is no
clear representative relationship between them and the urban functional zone.

Table 6. Impact of removing different types of POIs on model accuracy.

Drop POI
Category Institution Residence Industry Nature Airport Public

Service Retail Hotel Supermarket

Kappa 0.8391 0.8345 0.8456 0.8479 0.8527 0.8443 0.8613 0.8634 0.8625
Decreasing rate

of Kappa (%) 3.52 4.05 2.77 2.51 1.95 2.96 0.97 0.72 0.83

Using all POIs Kappa = 0.8697

In addition, we investigated the issue of the cost of using both remote-sensing images
and points of interest simultaneously versus training with more remote-sensing imagery
alone in the case of obtaining close classification accuracy. As Table 7 shows, training
with both RSIs and POIs results in higher accuracy than training with only twice as
much RSI data, which is close to the accuracy obtained when training with only three
times as many remote-sensing images, further demonstrating the advantages of using the
point-of-interest data.

Table 7. The advantages of using POI data.

RSI POI
F1 Score Kappa

Transport Commerce Industry Residence Construction Institution Water Open Space

27,000
√

0.8339 0.6051 0.5642 0.8655 0.3156 0.3912 0.8965 0.8749 0.7257
54,000 × 0.8271 0.3925 0.2313 0.8552 0.3119 0.1756 0.9125 0.7912 0.6913
80,800 × 0.8615 0.4349 0.3723 0.8964 0.3586 0.3146 0.9324 0.8153 0.7294

4.2. Synergy Mechanism of POIs and RSIs in UFZ Recognition

The discriminative abilities of visual and social features for different urban functional
zone categories are different; as we can imagine, visual features are more important for
identifying water, while social features may be more crucial to identifying commercial or
institutional areas. To further clarify this synergy mechanism, as shown in Figure 12, for
patch-level data, we take the weights of visual feature wl and social feature ws to generate
the point (wl , ws) and visualize the two-dimensional display of the discriminative ability of
the different features for each UFZ category. We observe two phenomena. First, even for the
same UFZ category, the fusion weights change dynamically, and the distribution of fusion
weights for all urban functional areas tends to be relatively dispersed and concentrated.
Second, visual features are more important for identifying urban functional zones in the
transport and water categories, while social features are more crucial for recognizing
the commerce, industry, institution, open space, and residence classes. However, for
the residence and open space categories, although the social features are dominant, the
complementary role of visual features becomes increasingly obvious. For the transport
category, the rule is the opposite. For the construction area, the two types of features have a
relatively equivalent status.

Based on the above discussion, we conjecture that this synergy mechanism is mani-
fested by taking one feature as the main fusion object and the other as an auxiliary object.
Nevertheless, for some urban functional area categories, when the discriminative ability of
the dominant feature reaches a peak or even declines, the counterpart of the complementary
feature continues to improve and approaches the dominant feature. As shown in Figure 13,
we give two examples to further illustrate this synergy mechanism. In Figure 13a, it is diffi-
cult to determine whether the sports field belongs to an institutional area, residential area,
or open space based on visual features alone, but the surrounding residential POIs provide
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strong social signals indicating that the field belongs to a residential area; in Figure 13b, a
large area of green space provides strong visual information indicating that the area belongs
to the open space, while the points of interest are scarce in this area, and it will produce
incorrect results if we only rely on the surrounding residential POIs. As a result, our model
tends to give the social features a larger weight in Figure 13a and the visual features a
larger weight in Figure 13b. Therefore, based on the different features obtained from RSIs
and POIs, the synergy mechanism is a dynamic process in specific urban functional zones,
and the experiments prove that the model in this paper can efficiently utilize this synergy
mechanism for more accurate urban functional area recognition.
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4.3. Layer Activation Visualization of Visual Features

In the above sections, we focused on the importance of social features for urban
functional zone classification; however, visual features are also crucial in almost all relevant
tasks. For this purpose, we use the Grad-CAM [54] method to visualize the layer activation
of the network for input during the visual feature extraction phase. As shown in Figure 14,
we find that in the shallow stage (Layer 1 or Layer 2), the network tends to focus on the
important regions of the image at a larger scale. When the number of layers deepens, the
network focuses on a specific region of the image at a relatively small scale. Meanwhile,
for urban functional districts containing more buildings, the edge and corner information
of some buildings is more important; for the institutional area, we chose a relatively
representative image and can see that the network mainly focuses on the areas of different
surface materials on the roof; for green spaces belonging to the open space category, the
network focuses on the texture information of the image; for water, the network tends to
focus on the edge region or texture information of the image. As a result, visual features
with strong representation ability lay a solid foundation for accurate urban functional
zone recognition.
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5. Conclusions

In this study, a unified deep-learning framework was designed for learning visual,
social, and spatial relationship features simultaneously from remote-sensing imagery data
and point-of-interest data for more accurate urban functional area recognition. In the com-
plementary feature-learning and fusion module, we use two convolutional neural networks
to extract visual features and social features from RSIs and POIs, respectively, and then the
feature fusion module is used to fuse them efficiently. In the spatial-relationship-modeling
module, taking the fused features obtained in the first part as input, we designed a new net-
work structure based on the CrossFormer to extract the global and local spatial information
of the urban functional zone distribution, and then a feature aggregation module is used
to utilize the two spatial relationships efficiently. The comparative experimental results
for the second part show that the Kappa value (0.8697) of our model on the test dataset
is 1.03% higher than that of the second-best method (0.8594) and 7.04% higher than that
of the worst method (0.7993). Additionally, it obtains the highest F1 scores in six urban
functional zone categories, proving that the proposed model can effectively utilize the
spatial relationship composition patterns of different urban functional zones to obtain more
accurate results. Meanwhile, the results of comparative experiments with other methods
show that the Kappa and OA values are improved by 2.84% and 3.84%, respectively, over the
second-best method, proving that our method can effectively utilize the synergy mechanism
based on different situations and integrates the visual features, social features, and spatial
relationship features for more rational and effective urban functional area recognition tasks.
In addition, we investigate the influence of different point-of-interest categories on the
urban functional zone classification accuracy, the synergy mechanism of POIs and RSIs
in the UFZ classification task, and the layer activation visualization of visual features. In
particular, we demonstrate that the synergy mechanism is a dynamic process based on
the discriminative ability of complementary features from RSIs and POIs in different UFZ
categories, and our method can capture this mechanism to obtain a better urban functional
zone recognition result. The framework in this paper is instructive for accurate urban
functional area recognition using multimodal data. In the future, we will attempt to use
more representative datasets and investigate the impact of different mapping units on the
UFZ classification accuracy to achieve more efficient and accurate urban functional zone
recognition tasks.
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