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Abstract: Bike sharing offers a usable form of feeder transportation for connecting to public trans-
portation and effectively meets unmet travel demands, alleviating the pressure on public trans-
portation systems by diverting urban commuters. To advance the comprehension of how the built
environment shapes the relationship between bike-sharing systems and public transport modes, we
implement a categorization framework that divides bike-sharing data into three distinct patterns:
competition, integration, and complementation, based on their coordination with public transporta-
tion. The SLM model is employed to investigate the complex correlations between the relationship
patterns and four key groups of environmental factors encompassing land use, transportation systems,
urban design, and social economy. We find a strong correlation between four groups of environ-
mental factors and three relationship patterns. Furthermore, the built environment variables exhibit
significant variations across the three patterns. Users in the competitive mode prefer the flexibility
of shared bikes and place a higher value on the sightseeing and leisure benefits. Instead, users in
the integration and complementation modes tend to prefer shared bikes to supplement unmet travel
demand and place a higher value on commuting benefits. These findings can benefit urban planners
seeking to encourage greater diversity in transportation modes and incentivize more commuting.

Keywords: bike sharing; public transportation; spatial pattern; geographical variability; spatial
autoregressive model

1. Introduction

Bike-sharing systems offer a sustainable [1] and rapidly expanding transportation
option [2], allowing individuals to rent bikes for short-distance trips [3]. Previous research
has recognized the numerous benefits of bike sharing, such as its convenience [4], cost-
effectiveness [5], and promotion of healthy lifestyles through increased physical activity [6].
Bike sharing can also reduce the use of motor vehicles, decreasing road congestion and
saving road space [7]. Compared to privately owned bikes, shared bikes are used on
demand, eliminating concerns related to maintenance costs and liability [8].

The association between bike sharing and public transportation is complex. Bike
sharing can function as a convenient feeder mode that connects to public transportation
systems, which effectively integrate with public transportation while simultaneously com-
peting with it to offer commuters a viable alternative option. There are three types of usage
patterns: competition, integration, and complementation [9]. Integrating bike sharing
and public transportation systems is considered an essential method for improving public
transportation efficiency [10], where transfer stations seem to be in close proximity to
where a person lives or works [11]. Martens et al. [12] proposed that “improving public
transportation integration” could be one of the most critical paths for the future of bike
sharing. Conversely, bike sharing competes with public transportation during specific
periods. For example, a study in major cities in the United States emphasized that bike
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sharing may have a negative effect on public transportation [9]. Therefore, the substitution
effect is accompanied by the integration effect and cannot be ignored [13].

According to recent studies, the built environment plays an essential role in deter-
mining the frequency of bike-sharing usage, particularly in urban areas. The layout and
infrastructure of a city’s physical environment strongly influence the accessibility, safety,
and convenience of bike sharing, which impact the usage patterns of the mode of trans-
portation [14,15]. For instance, residential and commercial areas generally account for a
significant percentage of bike-sharing commute trips [16]. In addition, a study conducted
on the Vélo’v program found that leisure activities, such as dining out, going to the cinema,
or visiting recreational places, primarily take place in urban centers [17]. Ni and Chen [18]
found that residential and office areas have a higher demand for bike sharing and metro
integration, while Guo et al. [19] found a positive correlation between land use mixture
and integration.

Despite extensive research on the impact of the built environment on bike sharing,
there are still a number of areas that require further investigation and analysis. Firstly, the
understanding of the impacts of built environment factors on the connections between bike
sharing and public transportation is limited. Secondly, the research on the relationship
between bike sharing and public transportation is not thoroughly explored. It is unclear
whether bike sharing is meeting previously unmet travel needs or diverting commuters
away from public transport.

To address the research gaps identified above, the objective of this research is to explore
the impact of built environment factors on the relationships between bike sharing and
public transportation by investigating the case of New York. It is important to note that the
aim of this study is not to establish a precise causal relationship between shared-bike riding
patterns and variables related to the built environment, nor is it to develop a predictive
model for shared-bike riding patterns based on built environment variables. Instead, the
focus is on analyzing the variations in correlation between different shared-bike modes and
a diverse range of built environment variables.

Based on the literature review, this study enriches the existing research in three
dimensions. Firstly, this study enhances the understanding of the built environment
patterns associated with the transfer between public transportation and bike sharing. The
built environment comprises three essential components: land use, transportation systems,
and urban design [20]. Nonetheless, the contribution of urban design factors as explanatory
variables has been disregarded. In this study, a more comprehensive definition of the built
environment is described by utilizing multisource data such as land use, transportation
systems, urban design, and social economy. In addition, compared to previous studies,
we have implemented a novel approach of categorizing bike-sharing data for regression
analysis, aiming to enhance the accuracy of the obtained results.

Secondly, the relationship between bike sharing and public transportation is further
revealed in New York using a systematic analytical method. Numerous studies have
examined the correlation between public transportation and bike usage, yet the consensus
on this matter remains uncertain. Based on the classification method proposed by Yunhe
Cui et al. [9], this study developed a more sophisticated model classification algorithm
using the Python programming language, which improved the accuracy of classifying the
three distinctive patterns of competition, integration, and complementation.

Thirdly, this study contributes to future research by proposing a quantitative re-
search framework that classifies bike-sharing data and builds a regression model with
the built environment. To promote future research and the sharing of this innovation, the
source data and research code are available at “https://github.com/tingfeng6/CITIBIKE-
DATACLASSIFICATION (accessed on 17 July 2023)”.

2. Literature Review

Since the aim of this study is to explore the impact of built environment factors on the
relationships between bike sharing and public transportation, this section reviews previous

https://github.com/tingfeng6/CITIBIKE-DATACLASSIFICATION
https://github.com/tingfeng6/CITIBIKE-DATACLASSIFICATION
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literature from the following two aspects: (1) the effects of the built environment on bike
sharing; (2) the relationship between bike sharing and public transportation; (3) modeling
approach of the relationship between biking sharing and built environment.

2.1. The Effects of the Built Environment on Bike Sharing

Scholars and researchers have shown increasing interest in understanding the con-
nection between shared-bike activity and the built environment [21]. According to Handy
et al.’s definition [20], the built environment consists of three parts: land use, transportation
systems, and urban design. In this study, we extend the dimensions of the urban built
environment by adding the social economy aspects. Therefore, this paper presents a review
of the connection focusing on land use, transportation systems, urban design, and social
economy.

The utilization patterns of shared bikes can vary depending on the land use character-
istics of the areas where bike stations are located. Research has found that the presence of
shopping malls is positively associated with overall bike-sharing usage [22–25]. FaghihI-
mani et al. pointed out that recreational points of interest (POI) are significant contributors
to high volumes of shared-bike ridership [26]. Wang et al. found that the closer the distance
between bike stations and lakes, rivers, and parks, the greater the passenger capacity of
shared bikes parked there [17]. Meanwhile, residential and commercial land use usually
generates much shared-bike commuting [16].

In addition, many academic papers analyzed the interconnectedness of bike sharing
and transportation systems. In general, there is a positive correlation between the number
of nearby bike stations and the usage of bike-sharing services [21]. Ni and Chen [18] found
that in both the United States and China, bus stops within a radius of 400 to 500 m from
metro stations impact the combined utilization of bike sharing and metro services. Similar
findings were reported by Guo and He [27] in China. According to research conducted
in the United States [28] and China [29], road density plays a crucial role in bike-sharing
usage. Within high-density road areas, pedestrians have easy and quick access to many
bikes within walking distance.

Research evidence suggested that the urban design, including density and compact-
ness, as well as the scale of the city, can impact bike usage [27,30]. For example, individuals
may be more likely to use motorized transportation modes in modern cities with sprawling
urban designs due to longer travel distances. On the other hand, compact urban areas are
often associated with higher levels of active transportation modes such as walking and cy-
cling. This is partly because shorter travel distances between origin and destination within
compact urban areas make active transportation modes more convenient and attractive
than motorized options [31].

The social economy conditions of an entire region can also impact the demand for
bike-sharing services. Multiple studies conducted in the U.S. [32] and China [25,29,33]
have demonstrated that population density has a significant positive impact on bike-
sharing usage. However, a Polish study by Radzimski and Dzięcielski [24] found that
population density has a negative impact on longer trips. The impact of population density
on bike-sharing usage appears inconsistent across various case studies, likely because of
the nonlinear influence of density on travel behavior [34]. Regarding employment density,
studies conducted in Canada [35] and China [29] indicate that this variable is positively
associated with various factors related to bike-sharing services, such as the destination
choice behavior of bike-sharing users, the demand for bike-sharing services, and the usage
of bike-sharing services among immigrant populations.

2.2. The Relationship between Bike Sharing and Public Transportation

There are many studies focusing on the relationship between public transportation and
bike usage. However, the conclusion on this point remains debatable. Some researchers
argued that there is a significant level of integration between bike sharing and public
transportation. For example, The findings of a Washington D.C. case study indicate that a
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10% rise in bike trips results in a 2.8% increase in ridership for public transportation [36].
Some researchers found that areas with more bus or subway stops are typically associated
with higher usage rates of shared bikes [37].

In contrast, bike-sharing services may compete with public transportation during
certain circumstances. A study conducted across major cities in the United States indicates
that bike sharing could decrease the number of individuals using buses as their mode of
transportation [38]. Campbell and Brakewood’s research discovered a substantial decrease
in the number of individuals using buses upon the expansion of NYC’s bike-sharing
systems [39]. Guo and He [27] conducted research in Shenzhen, revealing that an increase
in the number of metro stations does not necessarily correlate with the promotion of
bike–metro integrated usage. One possible explanation for this is that the metro system
is relatively advanced, and the density of metro stations is high in contemporary Chinese
cities. Therefore, people can readily access these metro stations by walking instead of
cycling, rendering the use of bikes for accessing metro stations redundant.

2.3. Modeling Approach of the Relationship between Bike Sharing and Built Environment

Table 1 presents a comprehensive summary of pertinent studies investigating shared-
bike systems that have employed spatial regression models. The table contains details
regarding the data utilized, criteria for model selection, independent and dependent
variables examined, as well as the methodology employed for model validation. As shown
in Table 1, many researchers conducted their studies based on big data (8 out of 14) because
big data improve the efficiency of data collection and processing at the city level. As
for the independent and dependent variables, 7 of 14 studies used ridership or usage
rate as the target variable, indicating the wide applicability of this variable for studying
travel-related issues. However, these studies have primarily focused on the utilization
of shared bikes in isolation, neglecting to take into account the intricate and multifaceted
relationship between shared bikes and public transportation systems. Transportation
systems and social economy variables were the most frequently used types of explanatory
variables and were considered in 12 out of 14 studies. Urban design factors were hardly
considered as explanatory variables. In terms of the models and verification methods,
geographically weighted regression (GWR) model and spatial lag mode (SLM) model
were used frequently in existing research because the influence of space–time factors
can be fully considered by these models. In contrast, machine-learning models such as
random parameters were less used by researchers because these models cannot account
for geospatial autocorrelation and spatial heterogeneity. Moran’s I has traditionally been a
widely employed statistical measure for assessing the presence of spatial autocorrelation
among variables. R2 functioned as a suitable measure of adequacy for ordinary least
squares (OLS) regressions, while p-value is frequently employed to analyze the associations
among variables (11 out of 14).
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Table 1. Summary of spatial regression models employed in selected studies.

Studies Independent Variables Data and Methodology

Land
Use

Transportation
Systems

Urban
Design

Social
Economy

Target
Variable Data Type Model Goodness-of-Fit/Spatial

Autocorrelation Test

Wu et al. [25] • • Usage rates Government open data GWR Moran’s I, R2

Chen et al. [2] • Accessibility Simulate data Random parameters p-values, log-likelihood

EI-AssI et al. [30] • Usage rates Government open data Multilevel/linear
mixed effects R2

Faghih-Imani et al. [40] • • • Usage rates Government open data and
enterprise open data SLM Coef, R2

González, F et al. [41] • • Destination and route
choices Survey data Logit Coef, t-test value

Ji et al. [42] • • • Usage rates Enterprise open data GWR, GWPR p-values

Guo et al. [27] • • • Travel volume Enterprise open data Negative binomial
regression Coef, p-values

Hu et al. [28] • • • Usage rates Government open data GAM Coef, p-values

Li et al. [43] • • • ACI GPS data GWR Coef, R2

Mehadil Orvin [35] • • • Probability of
choosing destination Enterprise open data RPLSL R2, log-likelihood, AIC,

BIC

Qian [44] • • Ridership GPS data GWR AIC, R2,

Kerkman et al. [45] • • Ridership Survey data SLM, SIM AIC, Moran’s I

Bao et al. [46] • • Crash counts Survey and social media data GWR R2, AICc, Moran’s I

Yang et al. [47] • • • Accessibility GPS data SLM, SEM, SAM,
SDM Log-likelihood, Moran’s I

Notes: The independent variables used in the studies are indicated by black dots.
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3. Data and Methodology
3.1. Research Framework

The three major stages of the research methodology for the present study are presented
in Figure 1.
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Figure 1. Analytical framework.

In the first step, bike-sharing data are collected from Citi Bike website, Google API is
called and Python code is written to divide the raw data into three categories: competition,
integration, and complementation. In the second step, multiple built environment variables
are collected and divided into four categories: land use, transportation systems, urban
design, and social economy to ensure the comprehensiveness of the data. Since different
data have different dimensions and ranges, STATA is used to standardize the data for the
convenience of subsequent data analysis. The third step is to analyze the impact of built
environment variables on competition, integration, and complementation. The study area
is evenly covered with a square grid with a side length of 500 M, and the sum of the values
of the variables contained in each grid is calculated. The Moran index is used to analyze the
autocorrelation of the space, and the SLM model is established as a suitable model by LM
test. The results are analyzed from multiple perspectives, including descriptive statistical
analysis, OLS regression, and SLM regression, to ensure the validity of the results. Finally,
the analysis results provide suggestions for urban design.
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3.2. Study Area

New York City, the most popular city in the United States, occupies an area of
302 square miles and spans five county-level administrative districts. Due to the high
cost of living in Manhattan, approximately one-third of daily commutes occur between
different administrative districts. In contrast to typical car-oriented American cities, less
than 10% of trips are made by private cars, owing to the existing public transportation-
oriented infrastructure and policies. Thus, commuters in New York City heavily rely on
the Metropolitan Transportation Authority (MTA), which includes buses, subways, and
commuter railroads. With the successful development of the sharing economy, bike sharing
has become increasingly popular. As the dominant dock-based systems in the greater New
York City area, Citi Bike provides service coverage with more than 13,000 bikes and over
850 stations in the city core. Given that Citi Bike stations are relatively concentrated in
Manhattan and its surrounding areas, we select 19 communities with relatively evenly
distributed station locations as the study objects to ensure the validity of the experimental
results. Figure 2 shows the distribution of Citi Bike docking stations and public transporta-
tion stations in the study area.
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3.3. Selection and Processing of Variables

Previous studies have investigated the relationship between the built environment
and bike usage using diverse data types that vary according to context. Early research
relied on surveys to gather information on the characteristics of bike users and factors in
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the built environment that may affect their transportation decisions [48]. More recently,
scholars in Europe and North America have shared bike-sharing data online to foster
research on these programs. The large amount of data available has provided a foundation
for many empirical studies on bike sharing. In this study, we extract user data from Citi
Bike “https://citibikenyc.com (accessed on 10 May 2020)” and classify it as the dependent
variable. Additionally, we use a range of open geospatial data as independent variables to
enhance the model’s explanatory power. Employing QGIS tools, the study area is divided
into grids with a side length of 500 m. Statistical measures of the three travel modes and
explanatory variables for each grid are computed.

3.3.1. Dependent Variables

The trip data were collected for five consecutive working days of a week from the Citi
Bike system’s data website. This dataset comprises approximately 275,000 trips across the
five administrative districts of New York City between 6 July and 10 July 2020. Each trip
entry provides information on the start time, end time, start dock ID, end dock ID, and trip
duration. We only consider trips within 1 min to 3 h, as trips outside this range are deemed
atypical. Subsequently, we utilize the GOOGLE API “https://developers.google.com/
maps/documentation/distance-matrix?hl=zh-cn (accessed on 1 March 2023)” and develop
Python code to classify the trip data into three dimensions: competition, integration, and
complementation.

3.3.2. Independent Variables

Grounded on the classic composition elements of the built environment proposed by
Handy et al. [20], this study selects 30 independent variables within four categories: land
use, transportation systems, urban design, and social economy factors. Land use includes
two types of data: land use type and POI data. It is concerned with the distribution of
various types of land and the spatial location and density of activities. Land use has a direct
impact on accessibility from origin to destination. Based on the current research addressing
the effects of the built environment on bike sharing [30,49], this paper selects 14 categories
to represent the land use status. The transportation systems typically comprise physical
infrastructure to support and facilitate transportation. By providing connections between
different activities, the transportation systems would affect the ease of individuals in
reaching their destination from their origin. In this study, four types of public transportation
facilities, including bus stations, metro stations, parking facilities, bike-share stations, and
the total length of highways within the unit grid, are selected as explanatory variables.
Finally, urban design pertains to the appearance and layout of physical elements, such
as the shape of blocks and the coverage of trees. It affects mode choice by influencing
individuals’ attractiveness judgments and sense of safety. Furthermore, the dimension of
the built environment is extended by introducing social economy factors like population
density, crime rate, rental prices, total land value, and poverty rate. Table 2 shows the
classification and the data sources of independent variables.

3.4. Citi Bike Data Classification

To investigate the correlation between shared bikes and public transportation, the data
are classified using three criteria [9]: bike travel time, proximity to public transportation
stations, and bike trip length.

https://citibikenyc.com
https://developers.google.com/maps/documentation/distance-matrix?hl=zh-cn
https://developers.google.com/maps/documentation/distance-matrix?hl=zh-cn
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Table 2. The classification and the data sources of independent variables.

Categories Variables Data Sources

Land use

Commercial official buildings

NYCOD

Industrial manufacturing facilities
Public facilities institutions
Openspace recreational facilities
One- and two-family buildings
Multifamily walkup buildings
Multifamily elevator buildings
Mixed residential and commercial buildings
Healthcare facilities
Companies
Schools
Playgrounds
Distance to the nearest park

Rented houses Airbnb

Transportation systems

Length of highway

NYCOD
Bus stops
Metro stations
Parking facilities

Bike-share stations Citi Bike

Urban design
Street trees

NYCODDepth of buildings
Widths of buildings

Urban design
Building floors

NYCODBuilding using units
Area of buildings

Social economy

Value of lots
NYCODPoverty rate

Crimes

House rent price Airbnb

Population World Pop

Notes: The sum of the number of variables inside each grid is to be calculated in 500 M units. NYCOD: New York
City Open Data.

The first criterion entails assessing the duration of a bike trip in comparison to the
equivalent journey taken using public transportation. Citi Bike supplies the individual
transit time of shared-bike rentals. At the same time, we utilize the Google Maps Directions
application programming interface (API) for the calculation of public transit time. More
specifically, for each bike trip, we obtain the public transit time using the same starting
and ending points of bike rental. It is noteworthy that the transit time generated by the
Directions API encompasses the multimodal aspects of public transportation, including
the time of walking to and from public transit stations and the time spent during transfers.
The Direction API generates transit time with a focus on minimizing commute duration. It
selects the best public transportation combination, including intermodal routing, to ensure
efficient and fast travel. This comprehensive consideration provides a realistic estimation
of transit time.

In terms of proximity to public transportation stations, previous articles have indicated
that the pedestrian-friendly distance between public transportation stations and public
bike stations is approximately 300 m [42,50]. Therefore, the original method [9] of setting
the buffer zone for the integration mode at 100 m is too small. Considering the high
density of public transportation stations in New York City, a 300 m buffer zone is too
large. Therefore, the screening radius for the integration mode is increased from 100 m to
200 m instead of 300 m. It is important to acknowledge that a more stringent validation
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condition is associated with a smaller maximum value. Conversely, as the maximum value
increases, there is a possibility of including some transfer behavior data that may not be
representative.

Regarding the length of bike trips, Google Maps Directions application programming
interface (API) is used for the calculation of cycling distance. In accordance with the
research findings of Cui et al. [9], it is inferred that employing bike sharing for distances
within two miles, wherein the starting point or destination is a public transit station,
presents a greater probability of integrating between bike sharing and public transit. Thus,
we consider two miles as the threshold for the preference of bike usage. A 10 min travel
time threshold criterion has been set to ensure the practical selection of shorter trips, as a
typical bike ride covering a two-mile distance usually takes less than ten minutes.

The classification framework is shown in Figure 1. A bike trip is considered to be in
competition with public transit if the alternative public transit option can be completed in
a shorter duration. This implies that travelers might choose bike sharing even if it requires
more time compared to using public transit. The integration mode refers to the journey
that satisfies the following conditions simultaneously: (1) it takes less time than using
public transit as an alternative; (2) either the starting point or the destination is within a
200 m radius of a public transit station; (3) the distance of the trip is less than two miles,
and the ride should take no more than ten minutes. Such an integration trip represents a
short-distance travel option that enables seamless mode switching between the bike and
public transit systems. A bike trip is deemed complementary to the public transit system
when it falls outside the aforementioned scenarios. This complementary trip, although
more time efficient compared to using public transit, is either situated far away from a
public transit station or involves a long-distance journey, indicating that its purpose is
unlikely to involve mode switching.

3.5. Spatial Autocorrelation

The present study conducts a spatial autocorrelation analysis on the three depen-
dent variables of competition, integration, and complementation using GEODA software.
Moran’s I test is the most commonly used method to evaluate spatial autocorrelation, which
can be expressed as follows [51]:

I =
n

∑n
i=1 ∑n

j=1 wij

∑n
i=1 ∑n

j=1 wij(yi − y)
(
yj − y

)
∑n

i=1(yi − y)2 (1)

As shown in Equation (1), n represents the number of spatial units; wij is the weight
between positions i and j; yi and yj represent attribute values chosen at locations i and j,
respectively; and y is the mean value of all observations.

The Moran’s I statistic ranges between −1 and +1, with a higher positive value
indicating spatial aggregation where nearby observations tend to have similar attribute
values and distant observations have different ones. Negative values indicate spatial
dispersion, while values near zero suggest random spatial distribution. The null hypothesis
of the Moran’s I test assumes that the explanatory variables are independent in space,
implying that the Moran’s I statistic is close enough to zero. The Z-score is typically used
as an indicator of the significance of the Moran’s I statistic to test the null hypothesis, and it
is calculated as follows:

Z(I) =
I − E(I)√

Var(I)
(2)

E(I) and Var(I) are the expected value and standard deviation of Moran’s I statistic,
respectively. The significance level of this study is p < 0.05.

3.6. Spatial Lag Model (SLM)

While machine-learning nonlinear models have the capability to capture intricate
relationships, they are not employed in this study due to the spatial data’s autocorrela-
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tion [52], which does not adhere to the assumption of independent distribution followed
by the majority of traditional machine-learning models. Despite the potential of the geo-
graphically and temporally weighted regression (GTWR) model to analyze the explanatory
variables through spatiotemporal weighted regression [53], it has been deemed unsuitable
for implementation in this particular research. The primary emphasis of this study lies in
the macroscopic comparison of the relationships between the three bike-sharing usage pat-
terns and the built environment rather than conducting a spatial heterogeneity analysis of
individual dependent variables through the application of geospatial weighted regression.
As such, the adoption of the GTWR model is not warranted in the present context.

In this study, the influence of spatial distribution on regional behavior is significant.
To account for spatial autocorrelation, a spatial lag model (SLM) is used instead of a spatial
error model, as the Lagrange multiplier test and robust LM test show significant results in
all three models. The SLM model incorporates spatial lag terms of the dependent variable,
allowing for neighborhood effects and spatial externalities analysis across different spatial
units [48]. This is described in detail by Sun et al. [54], and the model specifications are
provided below:

y = ρWy + βX + ε (3)

The model includes a vector y, representing the number of rides on shared bikes,
and a matrix X, containing explanatory variables. Additionally, a weighting matrix Wy is
incorporated, along with a coefficient vector β. The error term is represented by ε.

4. Results
4.1. Descriptive Statistical Analysis

According to the study findings, the proportion of integrated travel (54%) is the
highest, followed by competitive travel (39%), but complementary travel (6%) accounts for
a relatively small proportion of travel modes (Figure 3). The findings indicate a substantial
integration of bike sharing with public transportation. Despite the fact that competitive
travel often takes more time than alternative options via public transportation, bike sharing
can compete with public transportation to a significant degree and attract potential public
transportation users.

Figure 3 shows the spatial distribution of the three travel modes. Generally speaking,
shared-bike utilization under the three modes is concentrated on Manhattan Island and less
frequently utilized in eastern Queens and Brooklyn, in alignment with prior research con-
ducted by Yang et al., indicating that shared-bike usage rates decrease as the distance from
the CBD increases [55]. The competitive mode is mainly distributed in the south-central
region of Manhattan Island and along its eastern and western coasts. This distribution
may be due to the prevalence of cultural institutions, central parks, and museums that
generate a high volume of urban tourism demand, causing more people to choose bikes as
an alternative to urban public transportation. In contrast, the integrated and complemen-
tary modes are concentrated in the southern portion of Manhattan Island, which may be
due to the high concentration of corporate headquarters, high-end office buildings, and
working commuters with little commuting needs. These factors promote the integration
and complementary effects between shared bikes and public transportation in the southern
commercial and financial center of New York City. Results of descriptive statistical analysis
of the variables are attached in Table 3.
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Table 3. General descriptive statistics of the variables (n = 998).

Variables Mean Std. Dev. Min Max

Competition 116.544 234.611 0 2690
Integration 159.574 330.667 0 2876
Complementation 18.469 42.333 0 392
Commercial official buildings 6.845 12.982 0 106
Industrial manufacturing facilities 3.319 8.067 0 67
Public facilities institutions 3.844 4.915 0 36
Openspace recreational facilities 1.220 2.903 0 39
One- and two-family buildings 33.768 58.280 0 314
Multifamily walkup buildings 43.471 60.178 0 312
Multifamily elevator buildings 6.096 9.529 0 57
Mixed residential and commercial buildings 22.335 29.577 0 194
Healthcare facilities 2.275 4.576 0 56
Rented houses 38.388 46.692 0 294
Companies 1.108 4.659 0 73
Schools 1.408 2.085 0 15
Playgrounds 1.864 2.724 0 27
Distance to the nearest park 0.540 0.665 0 4.179

Length of highway 1947.400 1105.124 0 7387.322
Metro stations 0.223 0.537 0 4
Parking facilities 2.121 3.408 0 27
Bus stops 1.030 1.558 0 8
Bike-share stations 0.307 0.654 0 4
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Table 3. Cont.

Variables Mean Std. Dev. Min Max

Street trees 129.082 104.450 0 477
Depth of buildings 7539.364 7002.914 0 25,643.690
Widths of buildings 4049.810 3369.751 0 18,204.420
Building floors 4.460 4.845 0 53.600
Building using units 1538.613 1643.206 0 9531
Area of buildings 38,110.620 23,080.030 0 92,489.570

Value of lots 2.82 × 108 4.96 × 108 0 3.82 × 109

House rent price 65.894 70.773 0 1180
Crimes 145.620 207.177 0 1777
Poverty rate 15.761 7.128 6.111 33.646
Population 2365.783 2414.843 0 12,064.08

Std. dev. = standard error.

To further analyze the spatial distribution of the three modes, this study employs a
500 m uniform grid to calculate the frequency of usage for each mode per grid unit. The top
20% of grid units with the highest frequency of usage are identified as high competition,
high integration, and high complementation for each mode, respectively (Figure 4). The
high competition mode is most prevalent for Area A, while the other two are less common.
This may be due to the quiet and pleasant environment near Central Park, with a population
of higher income and more leisure time, providing a tremendous bike-sharing tourism
value rather than commuting value. Both high integration and high complementation
modes are prevalent for Area B, while the high competition mode is less common. This may
be because the traffic flow is high and road conditions are more complicated in the central
and western districts, with a large population of international students living in rented
apartments, which are more likely to use bike sharing for commuting. The distribution of
high complementation mode in Area C is relatively less common than in the other two.
This may be due to the presence of landmark buildings in this area, providing high tourism
value, and being located in the financial district of New York, with a large population of
workers for whom commuting value is more important. As the transportation system in
this area is well developed, bike sharing is highly integrated with public transportation. For
Area D, the high complementation model and the high integration model prevail notably
over the competitive model, likely due to Brooklyn’s relatively limited accessibility and
diminished cityscape compared to Manhattan. Consequently, bike sharing predominantly
serves as a tool for urban commuting rather than a mode of travel.
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The explanatory variables corresponding to the 500 m grid under each mode are
standardized and averaged to understand the explanatory variables associated with the
modes of high competition, high integration, and high complementation (Figure 5). The
results are used to characterize the geographical environment under each mode. The
study finds that commercial official buildings, rented houses, companies, poverty rate,
and crimes in the high competition mode are significantly lower than in the other two
modes. In contrast, multifamily elevator buildings, street trees, and the population is
significantly higher than the other two modes. This suggests that high competition occurs
in less office-dense, relatively affluent, safe areas with more greenery and comfortable
cycling environments. The values of multiple explanatory variables in high integration
and complementation modes are relatively close. These two modes often occur in offices
surrounded by relatively poor communities with higher crime rates, lower greenery, and
fewer people.

4.2. Bike-Sharing Riding Clustering

A spatial autocorrelation analysis using GEODA software is conducted. The resulting
Moran’s I statistics (999 permutations) are 0.337, 0.522, and 0.472, respectively, and are all
significant at the 0.001 level, indicating spatial dependence and clustering among the three
modes. Figure 6 depicts a local indicators of spatial association (LISA) cluster map, which
reveals the relationship between local Moran’s I value and bike-sharing usage at the urban
grid level. Specifically, in the competitive mode, high–high cluster areas are primarily
concentrated in the southern regions of Manhattan Island and on both sides of Central
Park, while low–low cluster areas are found in the northeastern and southern regions. In
the integrated and complementary modes, it is noteworthy that the high–high and low–low
clusters reflect that bike-sharing usage is highly concentrated in the central and southern
parts of Manhattan Island, while all low-usage values are concentrated in the northeastern
and southern edges. Moreover, the complementary mode exhibits a low–low cluster area,
almost entirely covering Bronx and Queens. Finally, the low–high and high–low cluster
areas under the three modes are observed to occupy only a small portion.

Notably, Moran’s I reveal considerable spatial autocorrelation. A spatial regression
analysis is performed to investigate the correlation between the operating volume and
the chosen variables. Based on the Lagrangian multiplier test results illustrated, LM-Lag
demonstrates significance in all three models. However, LM-Error, Robust LM-Lag, and
Robust LM-Error fail to meet all three models’ requirements simultaneously. Consequently,
it is suggested that a spatial lag model (SLM) be employed (Table 4).

Table 4. Lagrangian multiplier test of three dependent variables.

Test Statistic p-Value

Competition

Spatial error:
Moran’s I 1.238 0.216
Lagrange multiplier 7.595 0.006
Robust Lagrange multiplier 2.697 0.101
Spatial lag:
Lagrange multiplier 7.932 0.005
Robust Lagrange multiplier 3.034 0.082

Integration

Spatial error:
Moran’s I 1.289 0.197
Lagrange multiplier 232.709 0.000
Robust Lagrange multiplier 113.900 0.000
Spatial lag:
Lagrange multiplier 193.389 0.000
Robust Lagrange multiplier 74.580 0.000
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Table 4. Cont.

Test Statistic p-Value

Complementation

Spatial error:
Moran’s I 1.261 0.207
Lagrange multiplier 73.387 0.000
Robust Lagrange multiplier 23.575 0.000
Spatial lag:
Lagrange multiplier 100.574 0.000
Robust Lagrange multiplier 50.762 0.000
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4.3. OLS and SLM Results

To mitigate the issue of multicollinearity among explanatory variables, STATA is
utilized to calculate the variance inflation factor (VIF) values for each potential explanatory
variable to mitigate the issue of multicollinearity among explanatory variables. Variables
with more significant VIF values than 10 are commonly considered multicollinear variables.
The test result indicates that the VIF values for five variables exceeded 10: building using
units, depth of buildings, widths of buildings, multifamily walkup buildings, and one- and
two-family buildings. Subsequently, the two variables, namely widths of buildings and
depth of buildings, are excluded for relatively strong linear correlation, while the three
variables remaining are retained. A second examination is conducted, and the VIF values
for all variables are below 10 (Table A1).

Following the resolution of multicollinearity, a least squares regression analysis is
conducted using the STATA tool. In this study, a significance level of p < 0.05 is assigned,
and variables with a p-value exceeding 0.05 are assumed to have no significant influence
on the dependent variable. As the analysis involves regressing independent variables on
three distinct dependent variables, the performance of each independent variable varies
across different regression models (Table A2).
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Notably, the results for Moran’s I statistics and LM-Lag are significant across all
three models, which motivate the adoption of a spatial autoregressive (SLM) model for
regression analysis, as shown in Table 4. A comparative analysis of the OLS and SLM
models is presented in Table 5, revealing that incorporating the SLM model leads to
improvements in adjusted R2 values by 0.03, 0.077, and 0.048 for the three models. This
suggests that the SLM model produces higher degrees of goodness than the OLS model.
The SLM results are shown in Table 6, which is worth noting that most variables do not
demonstrate many changes in sign, magnitude, or significance of parameter estimates,
including spatial interaction, except for a few variables.

Table 5. Comparative analysis of the OLS and SLM models.

Adjusted R2 (OLS) Adjusted R2 (SLM)

Competition 0.425 0.442
Integration 0.560 0.637
Complementation 0.524 0.572

Table 6. SLM results.

Competition Integration Complementation

Coef. p-Value Coef. p-Value Coef. p-Value

Commercial official buildings −43.776 *** 0.000 −39.391 *** 0.003 −2.080 0.258
Industrial manufacturing facilities −7.708 0.376 −4.141 0.676 −0.241 0.861
Public facilities institutions 4.962 0.580 11.453 0.263 1.424 0.319
Openspace recreational facilities −2.003 0.767 13.686 * 0.076 0.576 0.591
One- and two-family buildings −20.361 ** 0.027 −4.377 0.674 −0.127 0.930
Multifamily walkup buildings −48.605 *** 0.000 −46.397 *** 0.000 −5.928 *** 0.001
Multifamily elevator buildings −9.131 0.341 −25.283 ** 0.020 −3.914 ** 0.010
Mixed residential and commercial
buildings

16.828 * 0.093 28.434 ** 0.013 2.024 0.201

Healthcare facilities −2.975 0.684 −10.212 0.219 −3.178 *** 0.006
Rented houses 10.629 0.284 80.724 *** 0.000 12.091 *** 0.000
Companies 11.862 0.139 46.577 *** 0.000 6.225 *** 0.000
Schools −19.105 ** 0.012 −12.044 0.165 −1.076 0.373
Playgrounds −22.168 ** 0.018 −24.372 ** 0.022 −4.260 *** 0.004
Distance to the nearest park 6.974 0.292 16.670 ** 0.027 1.210 0.248

Length of highway 3.358 0.684 −1.069 0.909 −1.003 0.442
Bus stops −0.757 0.916 3.898 0.634 −0.143 0.900
Metro stations −25.462 *** 0.002 −47.190 *** 0.000 −7.310 *** 0.000
Parking facilities −2.383 0.757 −17.884 ** 0.042 −2.353 * 0.054
Bike-share stations 48.328 *** 0.000 128.268 *** 0.000 14.655 *** 0.000

Street trees 35.845 ** 0.012 3.532 0.828 2.369 0.296
Building floors 33.003 *** 0.000 2.153 0.828 3.243 ** 0.019
Building using units 42.409 *** 0.002 0.745 0.963 2.871 0.193
Area of buildings 7.442 0.628 14.876 0.394 0.571 0.814

Value of lots 32.983 *** 0.009 28.854 ** 0.044 6.240 *** 0.002
House rent price 27.750 *** 0.000 13.442 0.120 4.955 *** 0.000
Crimes −7.043 0.390 39.536 *** 0.000 3.672 *** 0.005
Poverty rate −16.627 ** 0.020 −15.656 ** 0.048 0.363 0.742
Population 35.249 *** 0.009 −4.607 0.765 −5.662 *** 0.008

Note: Coef. = coefficient; significance levels: * p < 0.1. ** p < 0.05. *** p < 0.01.

The results show that commercial official buildings, one- and two-family buildings,
multifamily walkup buildings, schools, playgrounds, metro stations, and poverty rate are
negatively correlated with the competition mode, while bike-share stations, street trees,
building floors and building using units, value of lots, house rent price, and population
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are positively correlated with it. Rented houses, companies, distance to the nearest park,
and bike-share stations positively correlate with the integration mode, while multifamily
walkup buildings, multifamily elevator buildings, playgrounds, parking facilities, metro
stations, and poverty rate are negatively correlated with it. Multifamily walkup buildings,
multifamily elevator buildings, healthcare facilities, playgrounds, metro stations, and
population are negatively correlated with the complementation mode, while rented houses,
companies, bike-share stations, value of lots, house rent price, and crime are positively
correlated with it. These results are broadly consistent with the analysis in Figure 5,
demonstrating the validity of the results.

4.4. Sensitivity Analysis

To examine the validity of the shared-bike riding pattern classification algorithm
and SLM model developed in this study, a sensitivity analysis section is implemented.
Since the usage and distribution characteristics of different shared-bike riding patterns
cannot be directly measured through built environment variables, and considering the wide
range of explanatory variables involved in this study, the stability of the model cannot be
tested by simply adjusting model parameters or covariates. The sensitivity analysis in this
study is designed to examine the robustness of the shared-bike riding pattern classification
algorithm and SLM model by expanding and shrinking the time periods of the research
dataset. Two sets of data, one with an expanded time period and one with a reduced time
period, are used to build SLM models with the same set of built environment variables.
A comparison is made between the results of these models and the model results from
the original dataset in the paper, allowing for an assessment of the stability of the shared-
bike riding pattern classification algorithm and the SLM model developed in this study
(Table A3).

It is important to note that the models built based on the three different time periods do
not have numerical comparability. Therefore, the focus of the comparison will mainly be on
the changes in the correlation of the explanatory variables. To ensure that the shared-bike
riding volume in the dataset is not affected by seasonal variations, the selected time periods
for both model A and model B are close to each other and consist of weekdays in the month
of July. Specifically, the dataset for model A includes the total number of weekdays in July
2022, while the dataset for model B consists of a single day, 6 July 2020.

The outcomes demonstrate that the models constructed using the two sets of data both
achieve an R2 value of 0.3, as confirmed by the significance tests. The results of the two sets
of robustness tests align closely with the findings of the research. Therefore, the shared-bike
data classification methodology employed in this study, as well as the correlation between
the three riding patterns and the built environment, can be considered reliable.

Regarding land use, both model A and model B show no correlation between com-
panies and the competition mode but a positive correlation with the integration mode.
Similarly, rented houses have no correlation with the competition mode but a strong pos-
itive correlation with both the integration and complementation modes. In terms of the
transportation system, metro stations are negatively correlated with all three modes in
both model A and model B. Parking facilities show no correlation with the competition
mode but a negative correlation with both the integration and complementation modes
in model B. On the other hand, bike-share stations exhibit a positive correlation with all
three modes. Concerning urban design, both model A and model B demonstrate a positive
correlation between street trees and buildings using units with the competition mode,
while no correlation is found with the integration and complementation modes. Regarding
the social economy, house rent price shows a strong correlation with all three modes in
both model A and model B. The population has a significant negative correlation with the
complementation mode, while its correlation with the other two modes is relatively weak.
The correlation among fundamental variables remained relatively stable, safeguarding the
integrity of the findings.



ISPRS Int. J. Geo-Inf. 2023, 12, 293 19 of 27

The correlation between the poverty rate and the three travel modes is weak in both
models. Crime is positively correlated with the integration mode in both models, but this
correlation is weak with the competition mode. The correlation of crime with the com-
plementation mode shows inconsistent results between the two models, being unrelated
in model A and positively correlated in model B. Model A has a lower R2 compared to
model B, indicating a weaker overall correlation between the built environment and three
travel modes. This could be due to the longer time period covered by the dataset used in
model A, which may have influenced the characteristics of the bike-sharing users and thus
affected the experimental results. However, it is important to note that these inconsistent
results do not refute the findings of this study but rather indicate weaker correlations with
the explanatory variables, supporting the robustness and effectiveness of the experimental
results presented in the main text.

5. Discussion

The significance of four attribute groups in explaining three modes of bike-sharing
usage is subsequently examined by SLM models, which are presented in Table 7. The
goodness of fit of the four models, as assessed by adjusted R2, all surpass 0.300, confirming
the impact that each group has on three usage patterns. It is worth noting that the same
environmental variable exhibits significant differences across the three different usage
patterns. As the SLM model provides better explanatory power compared to the OLS
model, the discussion will primarily focus on the results based on the SLM model.

Table 7. SLM regression analyses for the four variable groups.

Adjusted R2

(Competition)
Adjusted R2

(Integration)
Adjusted R2

(Complementation)

Land use 0.303 0.523 0.458
Transportation systems 0.300 0.584 0.492
Urban design 0.359 0.486 0.428
Social economy 0.355 0.506 0.448

5.1. Priority of the Four Environmental Variables

In the three different models, the priority order of the four environmental variables
exhibits distinct patterns (Table 7). More specifically, in the competition model, the ex-
planatory power of the variables is ranked in descending order as follows: urban design,
social economy, land use, and transportation systems. Conversely, in the integration and
complementation models, the explanatory power of the variables is ranked in descending
order as follows: transportation systems, land use, social economy, and urban design. This
finding indicates that the same environmental variables impact travel patterns significantly
differently. The competition model is more closely associated with social economy and
urban design, while the integration and complementation models demonstrate stronger
relationships with transportation systems and land use. This implies that users in the com-
petition model value bike sharing for its recreational and leisure functions as they generally
have more free time. On the other hand, users in the integration and complementation
models place greater emphasis on the efficiency gains bike sharing offers for their daily
commutes, as commuting represents their primary motivation behind utilizing the service.
Therefore, transportation systems and land use variables have more substantial explanatory
power in these models.

5.2. Land Use Factors Analysis

In the competition model, commercial official buildings and schools are significantly
negatively correlated with bike-sharing usage. This result suggests that, compared to
the efficient urban commuting function of public transportation, users in the competition
model may not necessarily be New York workers who prioritize commuting efficiency
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while working in office buildings [56,57]. Furthermore, users in the competition mode are
not students either.

In the integration model, rented houses and companies positively correlate with
bike-sharing usage. At the same time, playgrounds, multifamily elevator buildings, and
multifamily walkup buildings show significant negative correlations. The distance to the
park is positively correlated with the integration model, indicating that customers in the
integration model are more likely to choose bike sharing when the park is farther away. This
suggests that customers in the integration model have a more substantial travel purpose
and attach greater importance to the traffic efficiency gains brought about by integrating
bike sharing with public transportation. Notably, rented houses positively correlate with
the integration model, but multifamily elevator buildings and multifamily walkup build-
ings are significantly negatively correlated with it. This suggests that customers in the
integration model are more likely to be New York renters than permanent residents. This is
consistent with Ni and Chen’s research on the correlation between residential and office
use and the degree of integration between bike sharing and subways [18].

In the complementation model, rented houses and companies are significantly posi-
tively correlated with bike-sharing usage, while playgrounds, multifamily walkup build-
ings, multifamily elevator buildings, and healthcare facilities show significant negative
correlations. Like the integration model, customers in the complementation model are
predominantly New York renters who primarily commute to work.

5.3. Transportation Systems Factors Analysis

All three models are strongly positively correlated with the bike-share stations, which
indicates that urban planners can increase or decrease the number of parking spaces based
on demand for bike sharing [25,28,35]. Research indicates that the size of a bike-sharing
station positively impacts the likelihood of bike-sharing usage. Opting for a station with
a larger capacity can improve the chances of finding an available bike or parking space,
particularly during weekends, holidays, and peak periods on weekday mornings and
evenings. The finding can serve as a valuable reference for the planning and design of
future bike-sharing stations. The integration model negatively correlates with parking
facilities, indicating that this model supplements the commuting needs that private cars
cannot meet. In the area where private automobiles have not been extensively established,
integration mode can play an important role due to its low-cost and reliable service, as
mentioned in the previous report [58]. It is worth noting that there is a negative correlation
between metro stations and all three modes. This may be attributed to the fact that when
selecting the dependent variables, we considered the total number of bus and metro stations.
This indirectly indicates that the integration of shared bicycles and public transportation
should consider not only the metro stations but also comprehensive bus and metro systems.

5.4. Urban Design Factors Analysis

The analysis reveals a positive correlation between the competition model and the
street trees, buildings using units, and total building floors in each grid. In contrast,
the correlation between the integration and complementation models and urban design
factors is comparatively weaker. These findings provide further support that users in the
competition model place a stronger emphasis on the recreational and leisure functions of
bike sharing. Green spaces, diverse building types, and higher building floors often indicate
an ideal urban environment. Conversely, customers in the integration and complementation
models prioritize the commuting function of bike sharing over its recreational benefits.
This explains why these groups exhibit weaker correlations with urban design variables, as
previously noted in the discussion on the priority of different attribute groups and their
association with the dependent variable. Therefore, varying approaches for the provision
of bikes should be adopted in order to address these concerns.
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5.5. Social Economy Factors Analysis

The competition model is positively correlated with the population size and negatively
correlated with poverty rates, suggesting that the competition model tends to occur in
economically prosperous areas with larger populations. The integration model shows a
positive correlation with the crime rate and a negative correlation with the poverty rate,
indicating that the surrounding environment in the integration mode, despite its vibrancy,
exhibits a higher crime rate. Meanwhile, the complementation model shows a positive
correlation with the crime rate and a negative correlation with population size, suggesting
that the areas where the complementation model occurs are typically suburban areas
with lower population densities, inadequate security measures, and lower coverage of
public transportation. Therefore, bike sharing provides a valuable supplement to public
transportation in these areas.

5.6. Policy Recommendations

This study provides practical evidence for landscape and urban planning. Our re-
search indicates that competition and integration relationships between bike sharing and
public transportation are important. Different relationship patterns reflect different urban
demands. Therefore, urban planners should consider relationships between bike sharing
and public transportation to make more human-centered decisions. For example, locations
with more substantial competition relationship attributes can be selected for parking spots
suitable for long-distance cycling. In contrast, locations with more robust integration
and complementary relationship attributes can be selected for parking spots suitable for
short-distance cycling.

Firstly, users in the competition model place more emphasis on the recreational value
of bike sharing, thus having a stronger correlation with urban design and social economic
relations. Urban planners should formulate city design policies based on spatial distribution
guided by the competitive model. For example, they should consider the establishment
of urban greenways in the riverside areas on both sides of Manhattan Island while also
implementing targeted urban revitalization in this area. Urban planners can also integrate
the bike-sharing system with the New York City tourism strategy, planning urban bike
touring and sightseeing routes and connecting relevant urban leisure nodes.

Secondly, users in the integration and complementation models place more emphasis
on the commuting value of bike sharing, thus having a stronger correlation with land
use and transportation systems, positively correlated with workplaces, and negatively
correlated with leisure parks. Urban planners should integrate bike sharing and public
transportation through careful planning based on the distribution of bike-sharing parking
spots with stronger integration and complementary relationship attributes. At the same
time, urban planners need to increase parking spots in areas with high rental demand,
particularly those in suburban regions that lack reliable, fixed-route public transportation
services.

Thirdly, the surroundings of the integration model have inadequate security measures
and are positively correlated with rental properties, with many users in poverty. The
public security department should strengthen public safety in the areas surrounding the
integration model to improve the living environment for underprivileged workers in New
York.

Lastly, the complementation model is negatively correlated with population size and
positively correlated with crime rates, indicating low public transportation coverage and
high crime rates in suburban areas. The planning department should strengthen public
transportation construction and enhance the efficacy of security patrols in suburban areas
to improve social equity.
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6. Conclusions

This study enriches the literature on bike sharing and the built environment, further
revealing the impact of the built environment on the collaborative interaction between bike
sharing and public transportation.

Firstly, the understanding of the quantitative relationship between shared bikes and
public transportation has been deepened. The study shows that both competitive and
integrative relationships between bike sharing and public transportation are significant,
indicating that while bike sharing solves the first and last-mile problems in urban trans-
portation systems, it also competes with the urban transportation systems to a large extent.
Secondly, this study advances our understanding of how the built environment influences
the relationship between bike-sharing systems and public transportation modes. Users
of the competition mode value the sightseeing and leisure value of bike sharing more. In
contrast, users of the integration and complementation modes value the commuting value
of bike sharing more. Moreover, this study makes a valuable contribution to forthcoming
research endeavors by introducing a quantitative research framework that categorizes
bike-sharing data and constructs a regression model incorporating the built environment.
This framework expands the definition of the built environment by incorporating diverse
data sources, including land use, transportation systems, urban design, and social economy,
thereby providing a more holistic understanding. The effectiveness of this approach is
demonstrated through sensitivity analysis experiments that involve extending and reducing
the time span of the dataset. These experiments verify the validity of the method.

Therefore, bike-sharing policymakers should consider differentiated strategies based
on the value orientation of each parking spot. For example, since bike sharing benefits
residents and provides affordable and reliable connections between homes or workplaces,
bike-sharing systems can be encouraged in rental housing, office-concentrated areas, and
suburban areas with low-quality fixed-route public transportation services. At the same
time, due to the advantages of bike sharing in sightseeing value competing with the
public transportation systems, more bike-sharing parking spots should be set up, even
planning bike-sharing sightseeing routes to fully display the cityscape in areas with solid
entertainment attributes and relatively complete urban design. Dedicated bike lanes can
even be set up within green spaces and parks to avoid traffic, injury, and traffic signals and
fully realize the sightseeing value of bike sharing. In addition, as many complementation
modes occur in areas with less population and higher crime rates, environmental enclosure,
and security monitoring should be enhanced to improve the safety of users.

The study has some limitations. Firstly, data were extracted for five non-holiday
weekdays from the Citi Bike website for analysis, resulting in a small sample size and not
considering weekends or holidays. Secondly, the variables examined in this study primarily
emphasized the quantity of public transport facilities, while the quality aspects of public
transport, such as frequency, service time, speed, and vehicle type, were not fully taken
into account. On the other hand, the study ignored the influence of other objective physical
features such as the street view environment, green view rate, street surface, and slope.
These omissions potentially engendered discrepancies in the research outcomes. Future
studies can incorporate variables related to these aspects to enhance the scientific rigor
of the argument. In addition, due to the limitation of Citi Bike data, which only contain
the coordinates of the starting point and the end point of the ride, the current research
adopted a buffering algorithm for classification, which caused the error of the results to a
certain extent. Future studies can be analyzed using graphics-based methods. Finally, the
study overlooked individual travel behavior (e.g., travel purpose, mode preferences, and
path selection). Therefore, mobile data mining must be combined with traditional datasets
(e.g., structured travel surveys) to elucidate bike-sharing behavior and context further. The
study provides a direction for further research. Future studies can apply this method to
cities outside New York and conduct more extensive time-sliced studies, which will enable
a deeper understanding of the complex relationship between bike sharing and the built
environment.
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Appendix A

Table A1. VIF test of the variables.

Variable VIF

Commercial official buildings 3.94
Industrial manufacturing facilities 2.08
Public facilities institutions 2.38
Openspace recreational facilities 1.34
One- and two-family buildings 2.41
Multifamily walkup buildings 3.48
Multifamily elevator buildings 2.66
Mixed residential and commercial buildings 2.93
Healthcare facilities 1.57
Rented houses 2.90
Companies 1.94
Schools 1.71
Playgrounds 2.50
Distance to the nearest park 1.17
Length of highway 1.81
Bus stops 1.55
Metro stations 1.93
Parking facilities 1.72
Bike-share stations 1.89
Street trees 5.24
Building floors 2.06
Building using units 5.74
Area of buildings 5.75
Value of lots 4.45
House rent price 1.52
Crimes 2.00
Poverty rate 1.31
Population 5.35

Table A2. OLS results.

Competition Integration Complementation

Coef. p > |t| Coef. p > |t| Coef. p > |t|

Commercial official buildings −44.350 *** 0.000 −16.607 0.229 0.401 0.827
Industrial manufacturing facilities −5.608 0.491 −6.315 0.529 −0.293 0.826
Public facilities institutions 6.765 0.436 28.344 *** 0.008 2.591 * 0.070
Openspace recreational facilities −2.343 0.719 17.393 ** 0.030 0.634 0.553
One- and two-family buildings −18.623 ** 0.033 −5.488 0.611 0.239 0.868
Multifamily walkup buildings −49.313 *** 0.000 −61.462 *** 0.000 −6.957 *** 0.000
Multifamily elevator buildings −4.333 −0.637 −18.303 0.106 −3.426 ** 0.023
Mixed residential and commercial
buildings 21.448 ** 0.026 42.019 *** 0.000 2.139 0.177

Healthcare facilities −2.148 0.761 −9.588 0.271 −3.463 *** 0.003
Rented houses 10.412 0.278 112.834 *** 0.000 15.553 *** 0.000

https://github.com/tingfeng6/CITIBIKE-DATACLASSIFICATION
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Table A2. Cont.

Competition Integration Complementation

Coef. p > |t| Coef. p > |t| Coef. p > |t|

Companies 12.792 0.103 64.269 *** 0.000 7.079 *** 0.000
Schools −17.779 ** 0.016 −14.043 0.122 −1.101 0.363
Playgrounds −21.838 ** 0.014 −31.088 *** 0.005 −5.158 *** 0.000
Distance to the nearest park 7.087 0.245 16.639 ** 0.027 1.005 0.315

Length of highway 2.498 0.742 1.078 0.908 −0.997 0.423
Bus stops 0.715 0.919 −4.654 0.591 −0.714 0.536
Metro stations −25.077 *** 0.001 −48.875 *** 0.000 −7.149 *** 0.000
Parking facilities −2.101 0.776 −25.912 *** 0.005 −2.638 ** 0.030
Bike-share stations 46.750 *** 0.000 121.754 *** 0.000 14.104 *** 0.000

Street trees 29.436 ** 0.023 −16.385 0.303 0.709 0.738
Building floors 32.991 *** 0.000 7.548 0.449 3.227 ** 0.015
Building using units 46.295 *** 0.001 12.519 0.452 3.633 0.102
Area of buildings −0.112 0.993 8.388 0.614 −0.773 0.727

Value of lots 41.429 *** 0.001 46.446 *** 0.002 10.319 *** 0.000
House rent price 27.037 *** 0.000 19.737 ** 0.021 5.228 *** 0.000
Crimes −8.207 0.303 43.205 *** 0.000 3.985 *** 0.002
Poverty rate −19.629 *** 0.002 −22.810 *** 0.004 −0.316 0.766
Population 40.321 *** 0.002 −2.079 0.897 −5.657 *** 0.008

Coef. = coefficient; significance levels: * p < 0.1. ** p < 0.05. *** p < 0.01.

Table A3. The results of the sensitivity analysis.

Model
Type

Competition Integration Complementation

Coef. p-Value Coef. p-Value Coef. p-Value

Commercial official buildings A −64.367 *** 0.008 −16.769 0.650 4.846 0.156
B −10.918 ** 0.045 −7.598 *** 0.008 −0.346 0.552

Industrial manufacturing facilities A −11.041 0.550 −21.105 0.447 1.764 0.491
B −1.993 0.353 0.260 0.904 −0.068 0.876

Public facilities institutions A 14.213 0.456 9.733 0.734 1.537 0.561
B 1.093 0.621 3.443 0.123 0.329 0.465

Openspace recreational facilities A −7.201 0.616 29.125 0.177 0.733 0.713
B −0.447 0.788 3.060 * 0.068 0.335 0.323

One- and two-family buildings A −31.036 0.111 −20.786 0.476 1.560 0.563
B −5.170 ** 0.022 −0.281 0.902 0.032 0.944

Multifamily walkup buildings A −80.859 *** 0.001 −65.457 * 0.063 −5.929 * 0.068
B −13.335 *** 0.000 −9.010 *** 0.001 −1.665 *** 0.003

Multifamily elevator buildings A 11.956 0.557 −5.961 0.845 0.861 0.760
B −1.630 0.490 −5.106 ** 0.031 −1.100 ** 0.022

Mixed residential and commercial buildings A 41.490 * 0.051 46.584 0.144 2.906 0.324
B 6.159 ** 0.013 4.962 ** 0.046 0.491 0.327

Healthcare facilities A 1.215 0.938 −36.528 0.116 −3.865 * 0.072
B −0.127 0.943 −0.319 0.860 −0.651 * 0.075

Rented houses A −27.445 0.192 145.148 *** 0.000 13.449 *** 0.000
B 4.079 * 0.095 15.774 *** 0.000 4.234 *** 0.000

Companies A −4.101 0.810 34.653 ** 0.017 2.988 0.206
B 3.589 * 0.069 9.151 *** 0.000 1.420 *** 0.000

Schools A −42.485 *** 0.009 −15.168 0.532 −1.428 0.524
B −4.847 ** 0.010 −2.755 0.145 −0.274 0.473

Playgrounds A −38.100 * 0.055 −45.830 0.123 −3.122 0.256
B −3.934 * 0.087 −5.066 ** 0.030 −1.582 *** 0.001

Distance to the nearest park A 7.108 0.613 21.686 0.303 0.763 0.695
B 1.126 0.491 3.937 ** 0.016 0.346 0.296
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Table A3. Cont.

Model
Type

Competition Integration Complementation

Coef. p-Value Coef. p-Value Coef. p-Value

Length of highway A 1.350 0.939 −8.603 0.743 −2.635 0.277
B 2.174 0.283 −0.778 0.703 −0.068 0.869

Bus stops A 21.940 0.151 11.244 0.624 2.453 0.247
B −0.930 0.600 3.836 ** 0.032 −0.083 0.817

Metro stations A −52.028 *** 0.002 −86.614 *** 0.001 −8.946 *** 0.000
B −6.961 *** 0.000 −8.139 *** 0.000 −2.526 *** 0.000

Parking facilities A 7.042 0.667 −20.448 0.405 −1.877 0.408
B −1.181 0.534 −4.044 ** 0.035 −0.830 ** 0.032

Bike-share stations A 75.138 *** 0.000 273.56 *** 0.000 12.368 *** 0.000
B 16.609 *** 0.000 29.300 *** 0.000 5.389 *** 0.000

Street trees A 50.679 ** 0.046 −12.500 0.784 −1.871 0.657
B 8.577 ** 0.015 −0.811 0.819 1.037 0.148

Building floors A 34.294 * 0.064 5.426 0.845 5.323 ** 0.038
B 6.884 *** 0.001 −0.496 0.818 0.580 0.184

Building using units A 106.658 *** 0.000 90.177 ** 0.042 4.175 0.309
B 10.788 *** 0.002 0.918 0.790 1.112 0.111

Area of buildings A 9.880 0.761 34.996 0.474 −7.417 0.101
B 2.618 0.488 0.652 0.864 0.257 0.738

Value of lots A 46.916 * 0.078 −4.342 0.913 6.902 * 0.063
B 8.360 *** 0.007 6.459 ** 0.038 2.338 *** 0.000

House rent price A 84.242 *** 0.000 73.087 *** 0.003 13.601 *** 0.000
B 8.098 *** 0.000 5.023 *** 0.008 1.225 *** 0.001

Crimes A −19.138 0.271 68.702 *** 0.008 3.116 0.196
B −2.080 0.302 9.464 *** 0.000 1.208 *** 0.003

Poverty rate A −8.035 0.591 −17.245 0.437 2.121 0.300
B −4.706 *** 0.008 −2.815 0.103 0.059 0.865

Population A 45.865 0.111 −59.751 0.166 −6.493 ** 0.045
B 8.688 *** 0.009 −0.624 0.853 −2.402 *** 0.000

Note: Coef. = coefficient; significance levels: * p < 0.1. ** p < 0.05. *** p < 0.01.
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